This repository has been archived by the owner on Dec 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ECN.py
347 lines (283 loc) · 18 KB
/
train_ECN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import tensorflow as tf
import tensorflow.contrib.slim as slim
#from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
from tensorflow.python.platform import tf_logging as logging
from ECN import ECN
from preprocessing import preprocess
from get_class_weights import ENet_weighting, median_frequency_balancing
import os
import time
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# ==============INPUT ARGUMENTS==================
flags = tf.app.flags
# Directory arguments
flags.DEFINE_string('dataset_dir', './dataset', 'The dataset directory to find the train, validation and test images.')
flags.DEFINE_string('logdir', './log/original', 'The log directory to save your checkpoint and event files.')
flags.DEFINE_string('bestdir', './log/original/best', 'The log directory to save best checkpoints and event files.')
flags.DEFINE_boolean('save_images', True, 'Whether or not to save your images.')
flags.DEFINE_boolean('combine_dataset', False, 'If True, combines the validation with the train dataset.')
# Training arguments
flags.DEFINE_integer('num_classes', 12, 'The number of classes to predict.')
flags.DEFINE_integer('batch_size', 10, 'The batch_size for training.')
flags.DEFINE_integer('eval_batch_size', 101, 'The batch size used for validation.')
flags.DEFINE_integer('image_height', 360, "The input height of the images.")
flags.DEFINE_integer('image_width', 480, "The input width of the images.")
flags.DEFINE_integer('num_epochs', 5000, "The number of epochs to train your model.")
flags.DEFINE_integer('num_epochs_before_decay', 1000, 'The number of epochs before decaying your learning rate.')
flags.DEFINE_float('weight_decay', 2e-4, "The weight decay for ENet convolution layers.")
flags.DEFINE_float('learning_rate_decay_factor', 1e-1, 'The learning rate decay factor.')
flags.DEFINE_float('initial_learning_rate', 5e-3, 'The initial learning rate for your training.')
flags.DEFINE_string('weighting', "MFB", 'Choice of Median Frequency Balancing or the custom ENet class weights.')
FLAGS = flags.FLAGS
# ==========NAME HANDLING FOR CONVENIENCE==============
num_classes = FLAGS.num_classes
batch_size = FLAGS.batch_size
image_height = FLAGS.image_height
image_width = FLAGS.image_width
eval_batch_size = FLAGS.eval_batch_size # Can be larger than train_batch as no need to backpropagate gradients.
combine_dataset = FLAGS.combine_dataset
# Training parameters
initial_learning_rate = FLAGS.initial_learning_rate
num_epochs_before_decay = FLAGS.num_epochs_before_decay
num_epochs =FLAGS.num_epochs
learning_rate_decay_factor = FLAGS.learning_rate_decay_factor
weight_decay = FLAGS.weight_decay
epsilon = 1e-8
# Use median frequency balancing or not
weighting = FLAGS.weighting
# Visualization and where to save images
save_images = FLAGS.save_images
photo_dir = os.path.join(FLAGS.logdir, "images")
# Directories
dataset_dir = FLAGS.dataset_dir
logdir = FLAGS.logdir
bestdir = FLAGS.bestdir
# ===============PREPARATION FOR TRAINING==================
# Get the images into a list
image_files = sorted([os.path.join(dataset_dir, 'train', file) for file in os.listdir(dataset_dir + "/train") if file.endswith('.png')])
annotation_files = sorted([os.path.join(dataset_dir, "trainannot", file) for file in os.listdir(dataset_dir + "/trainannot") if file.endswith('.png')])
image_val_files = sorted([os.path.join(dataset_dir, 'val', file) for file in os.listdir(dataset_dir + "/val") if file.endswith('.png')])
annotation_val_files = sorted([os.path.join(dataset_dir, "valannot", file) for file in os.listdir(dataset_dir + "/valannot") if file.endswith('.png')])
if combine_dataset:
image_files += image_val_files
annotation_files += annotation_val_files
if not os.path.exists(bestdir):
os.makedirs(bestdir)
#Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = len(image_files) / batch_size
decay_steps = int(num_epochs_before_decay * num_batches_per_epoch)
num_val_batch_per_epoch = len(image_val_files) / eval_batch_size
# =================CLASS WEIGHTS===============================
# Median frequency balancing class_weights
if weighting == "MFB":
class_weights = median_frequency_balancing()
print("========= Median Frequency Balancing Class Weights =========\n", class_weights)
# Inverse weighing probability class weights
elif weighting == "ENET":
class_weights = ENet_weighting()
print("========= ENet Class Weights =========\n", class_weights)
#============= TRAINING =================
def weighted_cross_entropy(onehot_labels, logits, class_weights):
'''
A quick wrapper to compute weighted cross entropy.
------------------
Technical Details
------------------
The class_weights list can be multiplied by onehot_labels directly because the last dimension
of onehot_labels is 12 and class_weights (length 12) can broadcast across that dimension, which is what we want.
Then we collapse the last dimension for the class_weights to get a shape of (batch_size, height, width, 1)
to get a mask with each pixel's value representing the class_weight.
This mask can then be that can be broadcasted to the intermediate output of logits
and onehot_labels when calculating the cross entropy loss.
------------------
INPUTS:
- onehot_labels(Tensor): the one-hot encoded labels of shape (batch_size, height, width, num_classes)
- logits(Tensor): the logits output from the model that is of shape (batch_size, height, width, num_classes)
- class_weights(list): A list where each index is the class label and the value of the index is the class weight.
OUTPUTS:
- loss(Tensor): a scalar Tensor that is the weighted cross entropy loss output.
'''
weights = onehot_labels * class_weights
weights = tf.reduce_sum(weights, 3)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits, weights=weights)
return loss
def run():
with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO)
# ===================TRAINING BRANCH=======================
# Load the files into one input queue
images = tf.convert_to_tensor(image_files)
annotations = tf.convert_to_tensor(annotation_files)
input_queue = tf.train.slice_input_producer( [images, annotations]) # Slice_input producer shuffles the data by default.
# Decode the image and annotation raw content
image = tf.read_file(input_queue[0])
image = tf.image.decode_image(image, channels=3)
annotation = tf.read_file(input_queue[1])
annotation = tf.image.decode_image(annotation)
# Pre-process and batch up the image and annotation
preprocessed_image, preprocessed_annotation = preprocess(image, annotation, image_height, image_width)
images, annotations = tf.train.batch([preprocessed_image, preprocessed_annotation],
batch_size=batch_size,
allow_smaller_final_batch=True)
# Create the model inference
logits, probabilities = ECN(images,
num_classes=num_classes,
batch_size=batch_size,
reuse=None,
is_training=True)
# Perform one-hot-encoding on the ground truth annotation to get same shape as the logits
annotations = tf.reshape(annotations, shape=[batch_size, image_height, image_width])
annotations_ohe = tf.one_hot(annotations, num_classes, axis=-1)
# Actually compute the loss
loss = weighted_cross_entropy(logits=logits, onehot_labels=annotations_ohe, class_weights=class_weights)
total_loss = tf.losses.get_total_loss()
# Create the global step for monitoring the learning_rate and training.
global_step = tf.train.get_or_create_global_step()
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(learning_rate=initial_learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=learning_rate_decay_factor,
staircase=True)
# Now we can define the optimizer that takes on the learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=epsilon)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer)
# State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
predictions = tf.argmax(probabilities, -1)
#accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, annotations)
accuracy, accuracy_update = tf.metrics.accuracy(labels=annotations, predictions=predictions)
mean_IOU, mean_IOU_update = tf.contrib.metrics.streaming_mean_iou(predictions=predictions,
labels=annotations,
num_classes=num_classes)
metrics_op = tf.group(accuracy_update, mean_IOU_update)
# Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
def train_step(sess, train_op, global_step, metrics_op):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, accuracy_val, mean_IOU_val, _ = sess.run([train_op,
global_step,
accuracy,
mean_IOU,
metrics_op])
time_elapsed = time.time() - start_time
# Run the logging to show some results
logging.info('Epoch %d / %d: Batch %d / %d: Loss: %.4f (%.2f sec/step) Current Streaming Accuracy: %.4f Current Mean IOU: %.4f',
epoch+1, num_epochs, batch+1, num_batches_per_epoch, total_loss, time_elapsed, accuracy_val, mean_IOU_val)
return total_loss, accuracy_val, mean_IOU_val
# ================VALIDATION BRANCH========================
# Load the files into one input queue
images_val = tf.convert_to_tensor(image_val_files)
annotations_val = tf.convert_to_tensor(annotation_val_files)
input_queue_val = tf.train.slice_input_producer([images_val, annotations_val])
# Decode the image and annotation raw content
image_val = tf.read_file(input_queue_val[0])
image_val = tf.image.decode_jpeg(image_val, channels=3)
annotation_val = tf.read_file(input_queue_val[1])
annotation_val = tf.image.decode_png(annotation_val)
# Pre-process and batch up the image and annotation
preprocessed_image_val, preprocessed_annotation_val = preprocess(image_val,
annotation_val,
image_height,
image_width)
images_val, annotations_val = tf.train.batch([preprocessed_image_val, preprocessed_annotation_val],
batch_size=eval_batch_size,
allow_smaller_final_batch=True)
logits_val, probabilities_val = ECN(images_val,
num_classes=num_classes,
batch_size=eval_batch_size,
is_training=True,
reuse=True)
# Perform one-hot-encoding on the ground truth annotation to get same shape as the logits
annotations_val = tf.reshape(annotations_val, shape=[eval_batch_size, image_height, image_width])
annotations_ohe_val = tf.one_hot(annotations_val, num_classes, axis=-1)
# State the metrics that you want to predict.
# We get a predictions that is not one_hot_encoded. ----> Should we use OHE instead?
predictions_val = tf.argmax(probabilities_val, -1)
# accuracy_val, accuracy_val_update = tf.contrib.metrics.streaming_accuracy(predictions_val, annotations_val)
accuracy_val, accuracy_val_update = tf.metrics.accuracy(labels=annotations_val, predictions=predictions_val)
mean_IOU_val, mean_IOU_val_update = tf.contrib.metrics.streaming_mean_iou(predictions=predictions_val,
labels=annotations_val,
num_classes=num_classes)
metrics_op_val = tf.group(accuracy_val_update, mean_IOU_val_update)
# Create an output for showing the segmentation output of validation images
segmentation_output_val = tf.cast(predictions_val, dtype=tf.float32)
segmentation_output_val = tf.reshape(segmentation_output_val, shape=[-1, image_height, image_width, 1])
segmentation_ground_truth_val = tf.cast(annotations_val, dtype=tf.float32)
segmentation_ground_truth_val = tf.reshape(segmentation_ground_truth_val,
shape=[-1, image_height, image_width, 1])
def eval_step(sess, metrics_op):
'''
Simply takes in a session, runs the metrics op and some logging information.
'''
start_time = time.time()
_, accuracy_value, mean_IOU_value = sess.run([metrics_op, accuracy_val, mean_IOU_val])
time_elapsed = time.time() - start_time
# Log some information
sec_per_image = time_elapsed / eval_batch_size
fps = int(1 / sec_per_image)
logging.info('---VALIDATION--- Validation Accuracy: %.4f Validation Mean IOU: %.4f (%.4f sec/per image, %d FPS)',
accuracy_value, mean_IOU_value, sec_per_image, fps)
return accuracy_value, mean_IOU_value
# ===================================================
# Now finally create all the summaries you need to monitor and group them into one summary op.
tf.summary.scalar('Monitor/Total_Loss', total_loss)
tf.summary.scalar('Monitor/validation_accuracy', accuracy_val)
tf.summary.scalar('Monitor/training_accuracy', accuracy)
tf.summary.scalar('Monitor/validation_mean_IOU', mean_IOU_val)
tf.summary.scalar('Monitor/training_mean_IOU', mean_IOU)
tf.summary.scalar('Monitor/learning_rate', lr)
tf.summary.image('Images/Validation_original_image', images_val, max_outputs=1)
tf.summary.image('Images/Validation_segmentation_output', segmentation_output_val, max_outputs=1)
tf.summary.image('Images/Validation_segmentation_ground_truth', segmentation_ground_truth_val,
max_outputs=1)
my_summary_op = tf.summary.merge_all()
# Define your supervisor for running a managed session.
# Do not run the summary_op automatically or else it will consume too much memory
sv = tf.train.Supervisor(logdir=logdir, summary_op=None, init_fn=None)
# Run the managed session
with sv.managed_session() as sess:
for epoch in range(num_epochs):
# At the start of every epoch, show the vital information:
print('---- Running Training Step ----')
logging.info('Epoch %s/%s', epoch+1, num_epochs)
logging.info('Current Learning Rate: %s', sess.run([lr]))
for batch in range(int(num_batches_per_epoch)):
loss, training_accuracy, training_mean_IOU = train_step(sess, train_op, sv.global_step, metrics_op=metrics_op)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
# Check the validation data only at every third of an epoch
print('---- Running Validation Step ----')
for batch in range(int(num_val_batch_per_epoch)):
validation_accuracy, validation_mean_IOU = eval_step(sess, metrics_op_val)
# We log the final training loss
logging.info('Final Loss: %s', loss)
logging.info('Final Training Accuracy: %s', training_accuracy)
logging.info('Final Training Mean IOU: %s', training_mean_IOU)
logging.info('Final Validation Accuracy: %s', validation_accuracy)
logging.info('Final Validation Mean IOU: %s', validation_mean_IOU)
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
sv.saver.save(sess, sv.save_path, global_step=sv.global_step)
if save_images:
if not os.path.exists(photo_dir):
os.mkdir(photo_dir)
# Plot the predictions - check validation images only
logging.info('Saving the images now...')
predictions_value, annotations_value = sess.run([predictions_val, annotations_val])
for i in range(eval_batch_size):
predicted_annotation = predictions_value[i]
annotation = annotations_value[i]
plt.subplot(1, 2, 1)
plt.imshow(predicted_annotation)
plt.subplot(1, 2, 2)
plt.imshow(annotation)
plt.savefig(photo_dir + "/image_" + str(i))
if __name__ == '__main__':
run()