-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA.py
134 lines (114 loc) · 3.98 KB
/
PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
# Load the csv file data into a pandas dataframe
df = pd.read_csv("COMBO17.csv")
np.random.seed(291385)
num_samples = df.shape[0]
N = 2500
# Sample random training and evaluation sets and write them into csv files
train = np.random.choice(3461, 2500, replace=False)
df_train = df.iloc[train]
mask = df.index.isin(train)
df_test = df[~mask]
df_train.to_csv('COMBO17pca_291385.csv', index_label='Nr')
df_test.to_csv('COMBO17eval_291385.csv', index_label='Nr')
# Drop Nr columns and fill missing values for both datasets
def data_cleaner(df):
df = df.drop(columns='Nr')
for i in df.columns:
if df[i].isna().sum() > 0:
df[i].fillna(df[i].mean(), inplace=True)
return df
df_train = data_cleaner(df_train)
df_test = data_cleaner(df_test)
# Split each dataset into variable subset and label subset
X_train = df_train.drop(columns=['Mcz', 'e.Mcz', 'MCzml', 'chi2red'])
y_train = df_train['Mcz']
X_test = df_test.drop(columns=['Mcz', 'e.Mcz', 'MCzml', 'chi2red'])
y_test = df_test['Mcz']
# Define standard scalar and PCA and fit on the training data and transform both sets
znorm = StandardScaler()
pca = PCA(n_components=8)
X_train_norm = znorm.fit_transform(X_train)
X_test_norm = znorm.transform(X_test)
pca.fit(X_train_norm)
Qm = pca.transform(X_train_norm)
# Plot representations for explained variance ratio
print(f'The explained variance ration : {pca.explained_variance_ratio_}')
evr = pca.explained_variance_ratio_
x = np.arange(evr.shape[0])
cum_var = np.cumsum(pca.explained_variance_ratio_)
y = cum_var.tolist()
z = evr.tolist()
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
axes[0].bar(x, z)
axes[1].bar(x, y)
labels = ['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8']
plt.setp(axes, xticks=[0, 1, 2, 3, 4, 5, 6, 7], xticklabels=labels)
# 1st figure styling
plt.sca(axes[0])
plt.ylabel('Explained Variance Ratio')
plt.xlabel('Principal Components')
plt.title('Figure 1', y=-0.3)
# 2nd figure styling
plt.sca(axes[1])
plt.ylabel('Cumulative sum of Explained Variance Ratio')
plt.xlabel('Principal Components')
plt.title('Figure 2', y=-0.3)
plt.tight_layout()
plt.show()
# Bar graph showing the representation of the variables through the first two components
cols=X_train.columns
v=pca.components_
x=np.arange(v[1].shape[0])
locs=np.arange(cols.shape[0])
plt.figure(figsize=(7,12))
plt.barh(x,v[0])
plt.barh(x,v[1])
plt.barh(x,v[2])
plt.legend(('PC 1','PC 2','PC 3'))
plt.yticks(locs,cols)
plt.title('FIGURE 3. The Variables Representation Through the First Two Components')
plt.tight_layout()
plt.show()
# Score Plot Using PC 1
plt.figure()
plt.scatter(Qm[:, 0], np.zeros_like(Qm[:,0]),c=y_train)
plt.grid()
plt.xlabel('scores on PC 1 (41.7 %)')
plt.title('Figure 4. Score Plot Using PC 1')
plt.show()
# Score Plot Using PC 1 and PC 2
cols = X_train.columns
v = pca.components_
v[1].shape[0]
x = np.arange(v[1].shape[0])
locs = np.arange(cols.shape[0])
plt.figure()
plt.scatter(Qm[:, 0], Qm[:, 1],c=y_train)
plt.grid()
plt.xlabel('scores on PC 1 (41.7 %)')
plt.ylabel('scores on PC 2 (16.6 %)')
plt.title('Figure 5. Score Plot Using PC 1 and PC 2')
plt.show()
# Score Plot Using PC 1,2 and 3
fig=plt.figure()
ax=fig.add_subplot(111,projection='3d')
ax.scatter(Qm[:,0],Qm[:,1],Qm[:,2],c=y_train)
plt.grid()
ax.set_xlabel('scores on PC 1 (41.7 %)')
ax.set_ylabel('scores on PC 2 (16.6 %)')
ax.set_zlabel("scores on PC 3 (9.97 %)")
plt.title('Figure 6. Score Plot Using PC 1,2 and 3')
plt.show()
# Apply KNN to predict the redshift
knn = KNeighborsRegressor()
knn.fit(Qm, y_train)
y_pred = knn.predict(pca.transform(X_test_norm))
MAE = sum(abs(y_pred - y_test)) / (num_samples - N)
MRE = sum(abs(y_pred - y_test) / abs(y_test)) / (num_samples - N)
print(f'MAE = {MAE} , MRE = {MRE}')