-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
138 lines (108 loc) · 4.69 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import numpy as np
from typing import Iterable
from glob import glob
from torch import nn
from tqdm import tqdm
import os
import gc
from sklearn.metrics import precision_score, recall_score, f1_score, roc_curve, auc
from utils import Metrics
def train(model, epochs, device, train_loader, val_loader, optimizer, criterion, checkpoint_path='checkpoints/', step=0, writer=None, monitor_value=None, early_stop_patience=5, dct=False, sb=False):
model = model.to(device)
criterion = criterion.to(device)
val_metrics = Metrics()
early_stop_patience_counter = early_stop_patience
for epoch in range(epochs):
for i, data in enumerate(tqdm(train_loader)):
if(dct and sb):
image, mask, d, s= data
if(dct and not sb):
image, mask, d = data
if(sb and not dct):
image, mask, s = data
image = image.to(device)
mask = mask.to(device)
if dct:
d = d.to(device)
if sb:
s = s.to(device)
model.train()
optimizer.zero_grad()
if(dct and sb):
output = model(image, d, s)
if(dct and not sb):
output = model(image, d)
if(sb and not dct):
output =model(image, s)
loss = criterion(output.float(), mask.float())
loss.backward()
optimizer.step()
if i % 10 == 0:
writer.add_scalar('train/loss', loss, step)
step += 1
with torch.no_grad():
val_iterator = iter(val_loader)
val_metric_results = evaluate(model, criterion, val_iterator, device, val_metrics, dct, sb)
val_loss = val_metric_results['loss']
if(monitor_value is None or monitor_value>val_loss):
monitor_value = val_loss
early_stop_patience_counter = early_stop_patience
print('saving to ckpt_{}_{}.pth'.format(epoch,step))
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'loss':val_loss,
},os.path.join(checkpoint_path,'ckpt_{}_{}.pth'.format(epoch,step)))
else:
early_stop_patience_counter-=1
if early_stop_patience_counter == 0:
print('early stopping')
for metric in val_metric_results:
if np.size(val_metric_results[metric])>1:
for i in range(len(val_metric_results[metric])):
writer.add_scalar('val/'+metric+'_'+str(i), val_metric_results[metric][i], epoch)
writer.add_scalar('val/'+metric, np.mean(val_metric_results[metric]), epoch)
else:
writer.add_scalar('val/'+metric, val_metric_results[metric], epoch)
@torch.no_grad()
def evaluate(model, criterion, iterator, device, metrics, dct=False, sb=False):
model.eval()
criterion.eval()
losses = []
pbar = tqdm(range(len(iterator)) ,unit='iterations',desc='Validation',postfix={metric:np.nan for metric in metrics.get_metric_names()})
for iteration in pbar:
batch = next(iterator)
if(dct and sb):
samples, targets, d, s= batch
if(dct and not sb):
samples, targets, d = batch
if(sb and not dct):
samples, targets, s = batch
if isinstance(samples,list):
samples = [s.to(device) for s in samples]
else:
samples = samples.to(device)
targets = targets.to(device)
if dct:
d = d.to(device)
if sb:
s = s.to(device)
if(dct and sb):
outputs = model(samples, d, s)
if(dct and not sb):
outputs = model(samples, d)
if(sb and not dct):
outputs =model(samples, s)
outputs = torch.squeeze(outputs , 1)
loss = criterion(outputs, targets.float())
losses.append(loss.detach().cpu().numpy())
targets = targets.long()
results = metrics.update(outputs.detach().cpu(), targets.detach().cpu())
results['loss'] = loss.item()
pbar.set_postfix(**results)
results = metrics.compute()
results['loss'] = np.mean(losses)
pbar.set_postfix(**results)
return results