-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multilabel.py
172 lines (137 loc) · 7.24 KB
/
train_multilabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import copy
import numpy as np
import os
import pandas as pd
from tabulate import tabulate
import json
import sys
import random
import hyperparameters_multilabel
import torch
from constants import *
from config_train import config
from src.dataloaders.rocf_dataloader import get_dataloader
from src.models import get_classifier
from src.training.train_utils import directory_setup, Logger, train_val_split
from src.training.multilabel_trainer import MultilabelTrainer
parser = argparse.ArgumentParser()
# parser.add_argument('--data-root', type=str, default=_DEBUG_DATADIR, required=False)
# parser.add_argument('--results-dir', type=str, default='./temp', required=False)
# parser.add_argument('--simulated-data', type=str, default=None, required=False)
# parser.add_argument('--max-simulated', type=int, default=-1, required=False)
# parser.add_argument('--workers', default=8, type=int)
# parser.add_argument('--is_binary', type=int, default=0, choices=[0, 1])
# parser.add_argument('--eval-test', action='store_true')
# parser.add_argument('--id', default=None, type=str)
# parser.add_argument('--epochs', default=75, type=int, help='number of total epochs to run')
# parser.add_argument('--batch-size', default=64, type=int, help='train batch size (default: 64)')
# parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, help='initial learning rate')
# parser.add_argument('--gamma', type=float, default=0.95, help='learning rate decay factor')
# parser.add_argument('--wd', '--weight-decay', type=float, default=0)
# parser.add_argument('--weighted-sampling', default=1, type=int, choices=[0, 1])
parser.add_argument('--image-size', type=str, help='height and width',
choices=['78 100', '116 150', '232 300', '348 450'], default='78 100')
parser.add_argument('--augment', type=int, choices=[0, 1], default=0)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--max_n', type=int, default=-1, help='number of training data points')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--n_classes', type=int, default=4, help='number of scores per item', choices=[3, 4])
args = parser.parse_args()
USE_CUDA = torch.cuda.is_available()
VAL_FRACTION = 0.2
if args.seed is not None:
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
if USE_CUDA:
torch.cuda.manual_seed_all(args.seed)
# Read parameters from hyperparameters_multilabel.py
PARAMS = copy.copy(hyperparameters_multilabel.train_params[args.image_size])
PARAMS = {**{k: v for k, v in vars(args).items() if k not in PARAMS.keys()}, **PARAMS}
# PARAMS = {'seed': args.seed, 'augment': args.augment, **hyperparameters_multilabel.train_params[args.image_size]}
DATA_ROOT = os.path.join(DATA_DIR, config['data_root'][args.image_size])
RESULTS_DIR = config['results_dir']
def main():
# setup dirs
dataset_name = os.path.split(os.path.normpath(DATA_ROOT))[-1]
if args.max_n > 0:
dataset_name = str(args.max_n) + '-' + dataset_name
if args.debug:
train_id = "debug-" + PARAMS['id'] + ('-aug' if PARAMS['augment'] else "")
PARAMS['epochs'] = 1
print('!! DEBUG MODE !!')
else:
train_id = PARAMS['id'] + ('-aug' if PARAMS['augment'] else "")
if args.n_classes != 4:
train_id = train_id + f'-{args.n_classes}_scores'
results_dir, checkpoints_dir = directory_setup(
model_name=REYMULTICLASSIFIER, dataset=dataset_name, results_dir=RESULTS_DIR, train_id=train_id
)
# dump args
with open(os.path.join(results_dir, 'args.json'), 'w') as f:
json.dump(PARAMS, f)
# save terminal output to file
sys.stdout = Logger(print_fp=os.path.join(results_dir, 'out.txt'))
# read and split labels into train and val
labels_csv = os.path.join(DATA_ROOT, 'train_labels.csv')
labels_df = pd.read_csv(labels_csv)
if args.max_n > 0:
labels_df = labels_df.sample(n=args.max_n, replace=False)
# split df into validation and train parts
train_labels, val_labels = train_val_split(labels_df, val_fraction=VAL_FRACTION)
# include simulated data
if PARAMS['simulated_data'] is not None:
sim_df = pd.read_csv(PARAMS['simulated_data'])
# subsamble simulated data
if PARAMS['max_simulated'] > 0:
sim_df = sim_df.sample(n=PARAMS['max_simulated'])
train_labels = pd.concat([train_labels, sim_df], ignore_index=True)
# save validation labels for future use
val_labels.to_csv(os.path.join(DATA_ROOT, 'val_labels.csv')) # noqa
# get train dataloader
train_loader = get_dataloader(labels=train_labels, label_type=CLASSIFICATION_LABELS,
batch_size=PARAMS['batch_size'], num_workers=PARAMS['workers'], shuffle=True,
weighted_sampling=PARAMS['weighted_sampling'], augment=PARAMS['augment'],
image_size=PARAMS['image_size'], num_classes=args.n_classes)
# get val dataloader
val_loader = get_dataloader(labels=val_labels, label_type=CLASSIFICATION_LABELS,
batch_size=PARAMS['batch_size'], num_workers=PARAMS['workers'], shuffle=False,
augment=False, image_size=PARAMS['image_size'], num_classes=args.n_classes)
print(f'# train images:\t{len(train_labels)}')
print(f'# val images:\t{len(val_labels)}')
model = get_classifier(REYMULTICLASSIFIER, num_classes=args.n_classes)
loss_func = torch.nn.CrossEntropyLoss()
trainer = MultilabelTrainer(model, loss_func, train_loader, val_loader, PARAMS, results_dir, is_binary=False)
trainer.train()
if PARAMS['eval_test']:
eval_test(trainer, results_dir)
def eval_test(trainer, results_dir):
# load best checkpoint
ckpt = os.path.join(results_dir, 'checkpoints/model_best.pth.tar')
ckpt = torch.load(ckpt, map_location=torch.device('cuda' if USE_CUDA else 'cpu'))
trainer.model.load_state_dict(ckpt['state_dict'], strict=True)
# get dataloader
test_labels = pd.read_csv(os.path.join(DATA_ROOT, 'test_labels.csv'))
test_dataloader = get_dataloader(labels=test_labels, label_type=CLASSIFICATION_LABELS,
batch_size=PARAMS['batch_size'], num_workers=PARAMS['workers'], shuffle=False,
image_size=PARAMS['image_size'], num_classes=args.n_classes)
test_stats = trainer.run_epoch(test_dataloader, is_train=False)
print('\n-------eval test-------')
# build train table
accuracies = test_stats['val-accuracies']
losses = test_stats['val-losses']
data = np.stack([accuracies, losses], axis=0)
indices = ['test-acc', 'test-loss']
if PARAMS['is_binary']:
specificities = test_stats['val-specificities']
sensitivities = test_stats['val-sensitivities']
gmeans = test_stats['val-gmeans']
data = np.concatenate([data, np.stack([specificities, sensitivities, gmeans], axis=0)], axis=0)
indices += ['test-specificity', 'test-sensitivity', 'test-g-mean']
df = pd.DataFrame(data, columns=[f'item_{i + 1}' for i in range(N_ITEMS)])
df['index'] = indices
df = df.set_index('index')
print(tabulate(df, headers='keys', tablefmt='presto', floatfmt=".3f"))
if __name__ == '__main__':
main()