-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_multilabel.py
63 lines (48 loc) · 2.49 KB
/
eval_multilabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import argparse
import json
import pandas as pd
import sys
from config_train import config as cfg_train
from config_eval import config as cfg_eval
import hyperparameters_multilabel
from constants import REYMULTICLASSIFIER, DATA_DIR
from src.analyze.performance_measures import PerformanceMeasures
from src.training.train_utils import Logger
from src.models import get_classifier
from src.evaluate import MultilabelEvaluator
# setup arg parser
parser = argparse.ArgumentParser()
parser.add_argument('--results-dir', type=str, default=None)
parser.add_argument('--batch-size', default=100, type=int)
parser.add_argument('--validation', action='store_true')
parser.add_argument('--tta', action='store_true')
args = parser.parse_args()
def main():
# load args from .json
with open(os.path.join(args.results_dir, 'args.json'), 'r') as f:
train_args = json.load(f)
num_classes = train_args['n_classes']
image_size_str = " ".join(str(s) for s in train_args['image_size'])
data_dir = os.path.join(DATA_DIR, cfg_train['data_root'][image_size_str])
print(f'--> evaluating model from {args.results_dir}')
print(f'--> using data from {data_dir}')
# Read parameters from hyperparameters_multilabel.py
hyperparams = hyperparameters_multilabel.train_params[image_size_str]
# save terminal output to file
sys.stdout = Logger(print_fp=os.path.join(args.results_dir, 'eval_out.txt'))
model = get_classifier(arch=REYMULTICLASSIFIER, num_classes=num_classes)
evaluator = MultilabelEvaluator(model=model, image_size=hyperparams['image_size'],
results_dir=args.results_dir,
data_dir=data_dir, batch_size=args.batch_size,
tta=args.tta, validation=args.validation, workers=hyperparams['workers'],
angles=cfg_eval[REYMULTICLASSIFIER]['angles'], num_classes=num_classes)
evaluator.run_eval(save=True)
predictions = pd.read_csv(os.path.join(args.results_dir, 'test_predictions.csv'))
ground_truths = pd.read_csv(os.path.join(args.results_dir, 'test_ground_truths.csv'))
# run performance report
perf_meas = PerformanceMeasures(ground_truths=ground_truths, predictions=predictions, num_classes=num_classes)
perf_meas.generate_report(save_dir=os.path.join(args.results_dir, 'performance-report'))
perf_meas.create_figures(save_dir=os.path.join(args.results_dir, 'performance-report'))
if __name__ == '__main__':
main()