-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_MFISNet_Refinement.py
271 lines (228 loc) · 9.1 KB
/
eval_MFISNet_Refinement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Load and evaluate the MFISNet-Refinement on the test set
import logging
from typing import Tuple, Dict, List, Callable
import argparse
import yaml
import os
import sys
import numpy as np
import torch
from src.models.MFISNet_Refinement import (
MFISNet_Refinement,
load_MFISNet_Refinement_from_state_dict,
)
from src.data.data_io import load_hdf5_to_dict, _get_number_from_filename
from src.training_utils.make_predictions import make_preds_on_dataset
from src.training_utils.loss_functions import (
psnr,
relative_l2_error,
_mse_along_batch,
)
from src.utils.logging_utils import FMT, TIMEFMT, find_best_epoch
from src.data.data_naming_constants import (
X_VALS,
Q_CART,
)
from train_MFISNet_Refinement import load_data
def setup_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir_base",
type=str,
help="Indicate the directory containing all the measurement folders"
" corresponding to the relevant frequencies and data subsets",
)
parser.add_argument("--wavenumbers", type=str, nargs="+")
parser.add_argument(
"--model_dir",
type=str,
help="Point to the directory containing the desired model parameters",
)
parser.add_argument(
"--training_results_fp",
type=str,
help="tab-separated file containing training results.",
)
parser.add_argument(
"--training_results_key",
type=str,
help="key used to select the epoch with the minimal validation loss.",
)
parser.add_argument("--model_fp_format", type=str, default="epoch_{}.pickle")
parser.add_argument(
"--hyperparam_summary_fp",
type=str,
help="Point to the hyperparameter search summary file (yaml format)",
)
parser.add_argument(
"--test_output_summary_fp",
type=str,
help="Point to the desired output summary file",
)
parser.add_argument(
"--test_output_predictions_dir",
type=str,
help="Point to the desired output predictions file",
)
parser.add_argument("--noise_to_signal_ratio", default=None, type=float)
parser.add_argument("--type_C_model", default=False, action="store_true")
parser.add_argument(
"--manual_batch_size",
default=None,
type=int,
help="Set a batch size for inference if desired. Defaults to batch size present in the hyperparam summary file, and then falls back to 32.",
)
parser.add_argument("--debug", default=False, action="store_true")
a = parser.parse_args()
return a
SCOBJ_DIR_TEST = "test_scattering_objs"
MEAS_DIR_FRMT_TEST = "test_measurements_nu_{}"
def main(args: argparse.Namespace) -> None:
"""
1. Load data
2. Do necessary transformations
3. Set up NN with hyperparameters
4. Run and evaluate the NN on the test set
"""
if not os.path.isdir(args.test_output_predictions_dir):
os.mkdir(args.test_output_predictions_dir)
if args.manual_batch_size is not None:
batch_size = args.manual_batch_size
elif args.hyperparam_summary_fp is not None:
# Load hyperparameter summary:
with open(args.hyperparam_summary_fp, "r") as hsf:
hyperparam_sd = yaml.load(hsf, Loader=yaml.Loader)
# hyperparam_sd = yaml.load(args.hyperparam_summary_fp, Loader=yaml.Loader)
logging.debug(f"hp_sd: {hyperparam_sd.keys()}")
hps_log_info = hyperparam_sd["log_info"]
logging.debug(f"hps log info: {hps_log_info}")
batch_size = hps_log_info["batch_size"]
else:
batch_size = 32
# Set up CUDA device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Evaluating on device: %s", device)
N_freqs = len(args.wavenumbers)
logging.info(f"data_dir_base: {args.data_dir_base}")
logging.info("nu values received: %s", args.wavenumbers)
#########################################################
# Load the dataset
meas_dir_test_frmt = os.path.join(args.data_dir_base, MEAS_DIR_FRMT_TEST)
scobj_dir_test = os.path.join(args.data_dir_base, SCOBJ_DIR_TEST)
test_dset, test_metadata_dd = load_data(
meas_dir_test_frmt,
scobj_dir_test,
args.wavenumbers,
None,
args.noise_to_signal_ratio,
)
test_dset.output_nan_samples_bool = True
test_dloader = torch.utils.data.DataLoader(
test_dset, batch_size=batch_size, shuffle=False
)
#########################################################
# Load the model
best_epoch_dd = find_best_epoch(
args.training_results_fp, args.training_results_key, selection_mode="min"
)
epoch_num = best_epoch_dd["epoch"]
model_fp = os.path.join(args.model_dir, args.model_fp_format.format(epoch_num))
model_state_dict = torch.load(model_fp, map_location=device)
model = load_MFISNet_Refinement_from_state_dict(model_state_dict)
model = model.to(device)
model.freq_pred_idx = N_freqs - 1 # Set to the highest frequency
model.eval()
logging.info(f"Loaded model: {model}")
#########################################################
# Make the predictions and save them to the disk
logging.info("Starting to make predictions on the test set")
logging.info("Saving predictions to %s", args.test_output_predictions_dir)
make_preds_on_dataset(
model=model,
dloader=test_dloader,
experiment_info=test_metadata_dd,
output_dir=args.test_output_predictions_dir,
device=device,
shard_size=500,
)
#########################################################
# Load the predictions to evaluate
preds_file_lst = os.listdir(args.test_output_predictions_dir)
preds_file_lst = sorted(preds_file_lst, key=_get_number_from_filename)
test_preds_lst = [
load_hdf5_to_dict(os.path.join(args.test_output_predictions_dir, x))
for x in preds_file_lst
]
test_preds_arr = np.concatenate([x[Q_CART] for x in test_preds_lst])
logging.info("Loaded test predictions with shape %s", test_preds_arr.shape)
test_targets_files = os.listdir(scobj_dir_test)
test_targets_files = sorted(test_targets_files, key=_get_number_from_filename)
test_targets_lst = [os.path.join(scobj_dir_test, x) for x in test_targets_files]
test_targets_arr = np.concatenate(
[load_hdf5_to_dict(x)[Q_CART] for x in test_targets_lst]
)
logging.info("Loaded test targets with shape %s", test_targets_arr.shape)
n_samples = test_targets_arr.shape[0]
#########################################################
# Evaluate the predictions
test_preds_arr = torch.from_numpy(test_preds_arr)
test_targets_arr = torch.from_numpy(test_targets_arr)
#########################################################
# Remove nans if necessary
is_nan_preds = torch.isnan(test_preds_arr[:, 0, 0])
is_not_nan = torch.logical_not(is_nan_preds)
logging.info(
"Removing %i samples that have nans", n_samples - torch.sum(is_not_nan)
)
test_preds_arr = test_preds_arr[is_not_nan]
test_targets_arr = test_targets_arr[is_not_nan]
rel_l2_errors = relative_l2_error(
preds=test_preds_arr,
targets=test_targets_arr,
).numpy()
mse_errors = _mse_along_batch(
preds=test_preds_arr, targets=test_targets_arr
).numpy()
psnrs = psnr(preds=test_preds_arr, targets=test_targets_arr).numpy()
cart_rel_l2_mean = np.mean(rel_l2_errors)
cart_rel_l2_std = np.std(rel_l2_errors)
cart_mse_mean = np.mean(mse_errors)
cart_mse_std = np.std(mse_errors)
cart_psnr_mean = np.mean(psnrs)
cart_psnr_std = np.std(psnrs)
logging.info(f"~~~Summary~~~")
logging.info(f"MSE error: {cart_mse_mean:.3e}±{cart_mse_std:.3e}")
logging.info(f"Rel l2 error: {cart_rel_l2_mean:.5f}±{cart_rel_l2_std:.5f}")
logging.info(f"PSNR: {cart_psnr_mean:.5f}±{cart_psnr_std:.5f}")
summary_errors_dict = {
"cart_mse_mean": cart_mse_mean,
"cart_mse_std": cart_mse_std,
"cart_rel_l2_mean": cart_rel_l2_mean,
"cart_rel_l2_std": cart_rel_l2_std,
"cart_psnr_mean": cart_psnr_mean,
"cart_psnr_std": cart_psnr_std,
}
summary_errors_dict = {k: v.item() for k, v in summary_errors_dict.items()}
summary_dict = {
# Summary values
**summary_errors_dict,
# Metadata
"wavenumbers": args.wavenumbers,
"data_dir_base": args.data_dir_base,
"model_file_name": model_fp,
"hyperparam_summary_file_name": args.hyperparam_summary_fp,
}
# Save to disk
with open(args.test_output_summary_fp, "w") as sfile:
yaml.dump(summary_dict, sfile, default_flow_style=False)
logging.info(f"Saved summary file to {args.test_output_summary_fp}")
logging.info(f"Finished!")
if __name__ == "__main__":
a = setup_args()
for name, logger in logging.root.manager.loggerDict.items():
logging.getLogger(name).setLevel(logging.WARNING)
if a.debug:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.DEBUG)
else:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.INFO)
main(a)