-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_MFISNet_Fused.py
355 lines (302 loc) · 11.5 KB
/
eval_MFISNet_Fused.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Load and evaluate the MFISNet_Fused on the test set
import logging
import argparse
import yaml
import os
import numpy as np
import torch
from src.data.data_io import (
save_dict_to_hdf5,
)
# from src.FYNet.multi_freq_FYNet import FYNetMultiFreq
from src.models.MFISNet_Fused import MFISNet_Fused, load_MFISNet_Fused_from_state_dict
from src.data.data_transformations import (
prep_conv_interp_2d,
prep_polar_padder,
polar_pad_and_apply,
)
from src.data.data_io import load_hdf5_to_dict, _get_number_from_filename
from src.data.data_naming_constants import KEYS_FOR_EXPERIMENT_INFO_OUT, Q_CART
from src.training_utils.make_predictions import make_preds_on_dataset
from src.training_utils.loss_functions import (
psnr,
relative_l2_error,
_mse_along_batch,
)
from train_MFISNet_Fused import load_multifreq_dataset, setup_single_dataset
from src.utils.logging_utils import FMT, TIMEFMT, find_best_epoch
SCOBJ_DIR_TEST = "test_scattering_objs"
def setup_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir_base",
type=str,
help="Indicate the directory containing all the measurement folders"
" corresponding to the relevant frequencies and data subsets",
)
parser.add_argument("--data_input_nus", type=str, nargs="+")
parser.add_argument("--eval_on_test_set", default=True, action="store_true")
parser.add_argument(
"--no_eval_on_test_set", action="store_false", dest="eval_on_test_set"
)
parser.add_argument(
"--model_dir",
type=str,
help="Point to the directory containing the desired model parameters",
)
parser.add_argument(
"--training_results_fp",
type=str,
help="tab-separated file containing training results.",
)
parser.add_argument(
"--training_results_key",
type=str,
help="key used to select the epoch with the minimal validation loss.",
)
parser.add_argument("--model_fp_format", type=str, default="epoch_{}.pickle")
# parser.add_argument(
# "--hyperparam_summary_fp",
# type=str,
# help="Point to the hyperparameter search summary file (yaml format)",
# )
parser.add_argument(
"--test_output_summary_fp",
type=str,
help="Point to the desired output summary file",
)
parser.add_argument(
"--test_output_predictions_dir",
type=str,
help="Point to the desired output predictions file",
)
parser.add_argument("--seed", default=None, type=int) # seed bc we're using noise
parser.add_argument(
"--noise_to_signal_ratio", default=None, type=float
) # test with noise
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="For evaluation this just needs to be small enough to fit into GPU memory",
)
# parser.add_argument("--n_epochs_per_log", type=int, default=5)
parser.add_argument("--debug", default=False, action="store_true")
a = parser.parse_args()
return a
class LinearData(torch.utils.data.Dataset):
def __init__(self, X: torch.Tensor, y: torch.Tensor) -> None:
self.X = X
self.y = y
logging.info(
"Initialized a LinearData instance with X shape: %s and y shape: %s",
self.X.shape,
self.y.shape,
)
self.n_samples = X.shape[0]
def __len__(self):
return self.n_samples
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
def main(args: argparse.Namespace) -> None:
"""
1. Load data
2. Do necessary transformations
3. Set up NN with hyperparameters
4. Run and evaluate the NN on the test set
"""
if not os.path.isdir(args.test_output_predictions_dir):
os.mkdir(args.test_output_predictions_dir)
# Set seeds for reproducible noise
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Find the best epoch
best_epoch_dd = find_best_epoch(
args.training_results_fp, args.training_results_key, selection_mode="min"
)
best_epoch = best_epoch_dd["epoch"]
hps_polar_padding = best_epoch_dd["polar_padding"]
logging.info(f"Best epoch: {best_epoch}")
model_fp = os.path.join(args.model_dir, args.model_fp_format.format(best_epoch))
# Set up CUDA device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Evaluating on device: %s", device)
#########################################################
# Load data
data_dir_base = args.data_dir_base
str_nu_list = (
args.data_input_nus
) # nu in string form (to preserve decimals properly)
nu_list = [float(str_nu) for str_nu in str_nu_list]
N_freqs = len(nu_list)
logging.info(f"data_dir_base: {data_dir_base}")
logging.info(f"nu values received: {str_nu_list}")
# args.eval_on_test_set = False
if args.eval_on_test_set:
eval_set_name = "test"
else:
eval_set_name = "val"
eval_files = [
os.path.join(data_dir_base, f"{eval_set_name}_measurements_nu_{nu}")
for nu in str_nu_list
]
logging.info(f"Attempting to load the {eval_set_name} set: {eval_files}")
### Load Evaluation dataset to a dictionary and local variables ###
logging.info(f"Loading evaluation dataset")
eval_dd, eval_metadata_dd = load_multifreq_dataset(
eval_files,
# key_replacement=key_replacement,
noise_to_sig_ratio=args.noise_to_signal_ratio,
add_noise_to="d_mh",
nan_mode="keep",
load_cart=True,
)
eval_q_polar = eval_dd["q_polar"]
eval_q_cart = eval_dd["q_cart"]
eval_d_mh = eval_dd["d_mh"]
rho_vals = eval_dd["rho_vals"]
theta_vals = eval_dd["theta_vals"]
h_vals = eval_dd["h_vals"]
omega_vals = eval_dd["omega_sf"]
x_vals = (
eval_dd["x_vals"]
if "x_vals" in eval_dd.keys()
else np.linspace(-0.5, 0.5, eval_q_cart.shape[-1])
) # default value..
N_x = x_vals.shape[0]
N_rho = rho_vals.shape[0]
N_h = h_vals.shape[0]
N_theta = theta_vals.shape[0]
N_eval = eval_q_polar.shape[0]
# Prepare the LinearData object
eval_dset = setup_single_dataset(eval_dd["q_polar"], eval_dd["d_mh"])
# Prepare the DataLoader
eval_dloader = torch.utils.data.DataLoader(
eval_dset, batch_size=args.batch_size, shuffle=False
)
##### Load model from disk #####
model_state_dict = torch.load(model_fp, map_location=device)
model = load_MFISNet_Fused_from_state_dict(
model_state_dict, N_freqs, polar_padding=hps_polar_padding
)
model = model.to(device)
model.eval()
logging.info(f"Loaded model: {model}")
#########################################################
# Make the predictions and save them to disk.
experiment_info = {}
for key, value in eval_dd.items():
if key in KEYS_FOR_EXPERIMENT_INFO_OUT:
experiment_info[key] = value
make_preds_on_dataset(
model=model,
dloader=eval_dloader,
experiment_info=experiment_info,
output_dir=args.test_output_predictions_dir,
device=device,
shard_size=500,
)
#########################################################
# Load the predictions to evaluate
scobj_dir_test = os.path.join(args.data_dir_base, SCOBJ_DIR_TEST)
preds_file_lst = os.listdir(args.test_output_predictions_dir)
preds_file_lst = sorted(preds_file_lst, key=_get_number_from_filename)
test_preds_lst = [
load_hdf5_to_dict(os.path.join(args.test_output_predictions_dir, x))
for x in preds_file_lst
]
test_preds_arr = np.concatenate([x[Q_CART] for x in test_preds_lst])
logging.info("Loaded test predictions with shape %s", test_preds_arr.shape)
test_targets_files = os.listdir(scobj_dir_test)
test_targets_files = sorted(test_targets_files, key=_get_number_from_filename)
test_targets_lst = [os.path.join(scobj_dir_test, x) for x in test_targets_files]
test_targets_arr = np.concatenate(
[load_hdf5_to_dict(x)[Q_CART] for x in test_targets_lst]
)
logging.info("Loaded test targets with shape %s", test_targets_arr.shape)
n_samples = test_targets_arr.shape[0]
#########################################################
# Evaluate the predictions
test_preds_arr = torch.from_numpy(test_preds_arr)
test_targets_arr = torch.from_numpy(test_targets_arr)
#########################################################
# Remove nans if necessary
is_nan_preds = torch.isnan(test_preds_arr[:, 0, 0])
is_not_nan = torch.logical_not(is_nan_preds)
logging.info(
"Removing %i samples that have nans", n_samples - torch.sum(is_not_nan)
)
test_preds_arr = test_preds_arr[is_not_nan]
test_targets_arr = test_targets_arr[is_not_nan]
rel_l2_errors = relative_l2_error(
preds=test_preds_arr,
targets=test_targets_arr,
).numpy()
mse_errors = _mse_along_batch(
preds=test_preds_arr, targets=test_targets_arr
).numpy()
psnrs = psnr(preds=test_preds_arr, targets=test_targets_arr).numpy()
cart_rel_l2_mean = np.mean(rel_l2_errors)
cart_rel_l2_std = np.std(rel_l2_errors)
cart_mse_mean = np.mean(mse_errors)
cart_mse_std = np.std(mse_errors)
cart_psnr_mean = np.mean(psnrs)
cart_psnr_std = np.std(psnrs)
# logging.info(f"Main loop successful")
logging.info(f"~~~Summary~~~")
logging.info(f"MSE error: {cart_mse_mean:.3e}±{cart_mse_std:.3e}")
logging.info(f"Rel l2 error: {cart_rel_l2_mean:.5f}±{cart_rel_l2_std:.5f}")
logging.info(f"PSNR: {cart_psnr_mean:.5f}±{cart_psnr_std:.5f}")
common_settings_dict = {
# Grid info
"N_rho": N_rho,
"N_theta": N_theta,
"N_m": N_theta,
"N_h": N_h,
"N_x": N_x,
"N_freqs": N_freqs,
# Hyperparam info
"N_cnn_1d": model.N_cnn_1d,
"N_cnn_2d": model.N_cnn_2d,
"N_channels_cnn_1d": model.c_1d,
"N_channels_cnn_2d": model.c_2d,
"kernel_size_1d": model.w_1d,
"kernel_size_2d": model.w_2d,
}
summary_errors_dict = {
"cart_mse_mean": cart_mse_mean,
"cart_mse_std": cart_mse_std,
"cart_rel_l2_mean": cart_rel_l2_mean,
"cart_rel_l2_std": cart_rel_l2_std,
"cart_psnr_mean": cart_psnr_mean,
"cart_psnr_std": cart_psnr_std,
}
# common_settings_dict = {key: val for (key,val) in common_settings_dict.items()}
summary_errors_dict = {
key: val.item() for (key, val) in summary_errors_dict.items()
}
summary_dict = {
# Summary values
**summary_errors_dict,
# Metadata
"model_file_name": model_fp,
"predictions_fp": args.test_output_predictions_dir,
**common_settings_dict,
}
# Save to disk
with open(args.test_output_summary_fp, "w") as sfile:
yaml.dump(summary_dict, sfile, default_flow_style=False)
logging.info(f"Saved summary file to {args.test_output_summary_fp}")
logging.info(f"Saved predictions to {args.test_output_predictions_dir}")
logging.info(f"Finished!")
if __name__ == "__main__":
a = setup_args()
for name, logger in logging.root.manager.loggerDict.items():
logging.getLogger(name).setLevel(logging.WARNING)
if a.debug:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.DEBUG)
else:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.INFO)
logging.info(f"Received the following arguments: {a}")
main(a)