-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_MFISNet_Refinement_multi_term_loss.py
610 lines (533 loc) · 20.2 KB
/
train_MFISNet_Refinement_multi_term_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
"""
This script does the following:
1. Loads data from specified directories
2. Sets up an ParallelFYNetInverse model (with or without a skip connection)
3. Trains the model
4. Runs inference on all of the train / val samples.
5. Transforms the intermediate outputs to Cart coordinates.
6. Writes the scattering objects to disk
"""
import logging
from typing import Tuple, Dict, List, Callable
import argparse
from timeit import default_timer
import os
import sys
import numpy as np
import h5py
import torch
import pandas as pd
import wandb
from src.data.data_naming_constants import (
X_VALS,
RHO_VALS,
THETA_VALS,
Q_POLAR,
Q_POLAR_LPF,
Q_CART,
D_MH,
KEYS_FOR_TRAINING_METADATA,
D_RS,
SAMPLE_COMPLETION,
H_VALS,
M_VALS,
KEYS_FOR_EXPERIMENT_INFO_OUT,
)
from src.data.data_io import load_dir
from src.models.MFISNet_Refinement import (
MFISNet_Refinement,
)
from src.training_utils.train_loop import (
train,
evaluate_losses_on_dataloader,
EarlyStopper,
)
from src.training_utils.loss_functions import MultiTermLossFunction
from src.training_utils.make_predictions import make_preds_on_dataset
from src.utils.logging_utils import FMT, TIMEFMT, write_result_to_file, hash_dict
def setup_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("-meas_dir_train_frmt")
parser.add_argument("-scobj_dir_train")
parser.add_argument("-meas_dir_val_frmt")
parser.add_argument("-scobj_dir_val")
parser.add_argument("-output_dir_train")
parser.add_argument("-output_dir_val")
parser.add_argument("-results_fp")
parser.add_argument("-model_weights_dir")
parser.add_argument("-wavenumbers", nargs="+")
parser.add_argument("-truncate_num", type=int)
parser.add_argument("-truncate_num_val", type=int)
parser.add_argument("-seed", type=int, default=35675)
parser.add_argument("-n_cnn_1d", type=int, default=3)
parser.add_argument("-n_cnn_2d", type=int, default=3)
parser.add_argument("-n_cnn_channels_1d", type=int, default=10)
parser.add_argument("-n_cnn_channels_2d", type=int, default=10)
parser.add_argument("-kernel_size_1d", type=int, default=13)
parser.add_argument("-kernel_size_2d", type=int, default=13)
parser.add_argument("-batch_size", type=int, default=32)
parser.add_argument("-n_epochs", type=int, default=10)
parser.add_argument("-lr_init", type=float, default=1.0)
parser.add_argument("-weight_decay", type=float, default=0.0)
parser.add_argument("-eta_min", type=float, default=1e-04)
parser.add_argument("-n_epochs_per_log", type=int, default=5)
parser.add_argument("-debug", default=False, action="store_true")
parser.add_argument("-wandb_project_name", type=str, help="W&B project name")
parser.add_argument("-wandb_entity", type=str, help="The W&B entity")
parser.add_argument("-wandb_mode", choices=["offline", "online"], default="offline")
parser.add_argument("-dont_use_wandb", default=False, action="store_true")
parser.add_argument("-skip_reader_setup", default=False, action="store_true")
parser.add_argument("-dont_write_outputs", default=False, action="store_true")
parser.add_argument("-input_q_hat", default=False, action="store_true")
parser.add_argument("-input_after_adj", default=False, action="store_true")
parser.add_argument("-warm_start_init", default=False, action="store_true")
# parser.add_argument("-lr_decrease_factor", default=None, type=float)
parser.add_argument(
"-loss_scale_factor",
type=float,
default=1.0,
help="Values > 1 make the later freqs more important",
)
parser.add_argument(
"-init_mode",
default="original",
choices=[
"original",
"uniform-with-old-scale",
"normal-with-old-scale",
"he-normal",
],
)
parser.add_argument("-early_stopping", default=False, action="store_true")
a = parser.parse_args()
return a
class MultiFreqResidData(torch.utils.data.Dataset):
def __init__(
self,
d_mh: torch.Tensor,
q_polar_lpf: torch.Tensor,
output_nan_samples_bool: bool = False,
freq_output_idx: int = None,
) -> None:
"""_summary_
Args:
d_mh (torch.Tensor): Has shape (N_samples, N_freqs, N_m, N_h)
q_polar_lpf (torch.Tensor): Has shape (N_samples, N_freqs, N_m, N_h)
output_nan_samples_bool (bool, optional): Defaults to False.
"""
self.d_mh = torch.view_as_real(d_mh).to(torch.float)
self.q_polar_lpf = q_polar_lpf.to(torch.float)
self.output_nan_samples_bool = output_nan_samples_bool
logging.debug(
"MultiFreqResidData: q_polar_lpf shape: %s", self.q_polar_lpf.shape
)
logging.debug("MultiFreqResidData: d_mh shape: %s", self.d_mh.shape)
nan_samples = torch.any(torch.isnan(self.d_mh[:, :, 0, 0, 0]), dim=1)
self.keep_indices = torch.argwhere(torch.logical_not(nan_samples)).flatten()
logging.debug(
"MultiFreqResidData: nan_samples has shape: %s and sum %s",
nan_samples.shape,
torch.sum(nan_samples),
)
logging.debug(
"MultiFreqResidData: self.keep_indices: shape: %s", self.keep_indices.shape
)
logging.info(
"Initialized a MultiFreqResidData instance with d_mh shape: %s and q_polar_lpf shape: %s",
self.d_mh.shape,
self.q_polar_lpf.shape,
)
self.n_samples = self.d_mh.shape[0]
if freq_output_idx is None:
self.freq_output_idx = 0
else:
self.freq_output_idx = freq_output_idx
def __len__(self):
if self.output_nan_samples_bool:
return self.n_samples
else:
return self.keep_indices.shape[0]
def __getitem__(self, idx):
"""Returns (x, y, z)
where:
- x is the wave field d_mh at multiple different freqs. It has shape (N_M, N_H, N_freqs)
- y is the target scattering object in polar coords. It
"""
if not self.output_nan_samples_bool:
idx = self.keep_indices[idx]
x = self.d_mh[idx]
return x, self.q_polar_lpf[idx], self.q_polar_lpf[idx, -1]
def __repr__(self) -> str:
_, N_freqs, N_m, N_h, _ = self.d_mh.shape
N_samples = self.__len__()
s = f"MultiFreqResidData object with N_m={N_m}, N_h={N_h}, N_freqs={N_freqs}, freq_output_idx={self.freq_output_idx}"
s += f" N_samples={N_samples}"
return s
def load_data(
meas_data_dir_frmt: str,
scobj_data_dir: str,
wavenumbers: List[str],
truncate_num: int = None,
) -> MultiFreqResidData:
"""This function loads all of the samples indicated by the data_dir.
It arranges the data and returns a MultiFreqResidData object.
Args:
data_dir (str): Where the data is located
truncate_num (int, optional): _description_. Defaults to None.
Returns:
MultiFreqResidData: _description_
"""
dd_last = load_dir(
meas_data_dir_frmt.format(wavenumbers[-1]),
scobj_data_dir,
truncate_num=truncate_num,
)
d_mh = np.empty(
(
dd_last[D_MH].shape[0],
len(wavenumbers),
dd_last[D_MH].shape[1],
dd_last[D_MH].shape[2],
),
dtype=np.complex64,
)
d_mh[:, -1] = dd_last[D_MH]
q_polar = dd_last[Q_POLAR]
q_polar_lpf = np.empty(
(q_polar.shape[0], len(wavenumbers), q_polar.shape[1], q_polar.shape[2])
)
q_polar_lpf[:, -1] = q_polar
# logging.debug(
# "load_data: Now I am looping over the remaining wavenumbers: %s",
# wavenumbers[:-1],
# )
for i, w in enumerate(wavenumbers[:-1]):
# logging.debug("load_data: w=%s, i=%s", w, i)
dd_i = load_dir(
meas_data_dir_frmt.format(w),
scobj_data_dir,
truncate_num=truncate_num,
)
d_mh[:, i] = dd_i[D_MH]
q_polar_lpf[:, i] = dd_i[Q_POLAR_LPF]
q_polar_lpf = torch.from_numpy(q_polar_lpf)
d_mh = torch.from_numpy(d_mh)
dset_obj = MultiFreqResidData(d_mh, q_polar_lpf, output_nan_samples_bool=False)
metadata_dd = {i: dd_last[i] for i in KEYS_FOR_EXPERIMENT_INFO_OUT}
return dset_obj, metadata_dd
def main(args: argparse.Namespace) -> None:
"""
1. Load data
2. Do necessary transformations
3. Set up NN
4. Train NN
"""
# Check arguments. Some settings of the arguments may not be acceptable. In this case, we'll
# exit early.
if args.input_after_adj and not args.input_q_hat:
logging.warning(
f"Invalid argument setting: input_q_hat={args.input_q_hat} and input_after_adj={args.input_after_adj}"
)
return
if args.input_q_hat and args.warm_start_init:
logging.warning(
f"Invalid argument setting: input_q_hat={args.input_q_hat} and warm_star_init={args.warm_start_init}"
)
return
# Make sure output directories exist
d = [
args.model_weights_dir,
]
if args.output_dir_train is not None:
d.append(args.output_dir_train)
if args.output_dir_val is not None:
d.append(args.output_dir_val)
for i in d:
if not os.path.isdir(i):
os.mkdir(i)
# Check whether this training run pre-exists
if os.path.isfile(args.results_fp):
pre_existing_bool = True
results_df = pd.read_table(args.results_fp)
last_row = results_df.iloc[-1]
# Check to make sure all of the arguments are the same.
assert (
last_row["hash"] == args.hash
), f"Hashes don't match: {last_row['hash']} vs {args.hash}"
final_epoch = last_row["epoch"]
final_training_part = last_row["training_part"]
if final_training_part.startswith("pretrain"):
final_training_part_int = int(final_training_part.split("_")[-1])
else:
final_training_part_int = len(args.wavenumbers)
logging.info(
"Resuming after %i epochs during training part %s",
final_epoch,
final_training_part,
)
else:
pre_existing_bool = False
final_epoch = 0
final_training_part = "pretrain_0"
final_training_part_int = 0
# Set seeds for reproducibility
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Load data from disk
dset_train, train_metadata_dd = load_data(
args.meas_dir_train_frmt,
args.scobj_dir_train,
args.wavenumbers,
args.truncate_num,
)
dset_val, val_metadata_dd = load_data(
args.meas_dir_val_frmt,
args.scobj_dir_val,
args.wavenumbers,
args.truncate_num_val,
)
# Grab some metadata
x_vals = train_metadata_dd[X_VALS]
rho_vals = train_metadata_dd[RHO_VALS]
theta_vals = train_metadata_dd[THETA_VALS]
N_x = x_vals.shape[0]
N_rho = rho_vals.shape[0]
N_theta = theta_vals.shape[0]
N_freqs = len(args.wavenumbers)
logging.info("Working with %i wavenumbers: %s", N_freqs, args.wavenumbers)
n_train = len(dset_train)
n_val = len(dset_val)
args.n_train = n_train
args.n_val = n_val
logging.info("Done Data Loading. N_train=%i, N_val=%i", n_train, n_val)
#########################################################
# Set dataloaders
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Training on device: %s", device)
#########################################################
# Set up NN architecture
model = MFISNet_Refinement(
N_h=N_rho,
N_rho=N_rho,
c_1d=args.n_cnn_channels_1d,
c_2d=args.n_cnn_channels_2d,
w_1d=args.kernel_size_1d,
w_2d=args.kernel_size_2d,
N_cnn_1d=args.n_cnn_1d,
N_cnn_2d=args.n_cnn_2d,
N_freqs=len(args.wavenumbers),
init_mode=args.init_mode,
return_all_q_hats=True,
)
if pre_existing_bool:
fp_weights = os.path.join(args.model_weights_dir, f"epoch_{final_epoch}.pickle")
logging.info("Loading weights from file: %s", fp_weights)
incompatible_keys = model.load_state_dict(
torch.load(fp_weights, map_location="cpu")
)
logging.info("Message from model loading: %s", incompatible_keys)
###########################################################################
# SET UP LOG FUNCTION
def log_function(model_0, epoch_local):
"""
NEED TO SET ANEW:
loss_fn_dd
epoch_stagger
training_part
n_epochs_this_step
OTHER OUTER SCOPE STUFF:
train_dloader,
val_dloader,
device,
args
"""
with torch.no_grad():
epoch_eff = epoch_stagger + epoch_local
# 1. Evaluate on train set
train_loss_dd = evaluate_losses_on_dataloader(
model_0, train_dloader, loss_fn_dd, device
)
# 2. Evaluate on val set
val_loss_dd = evaluate_losses_on_dataloader(
model_0, val_dloader, loss_fn_dd, device
)
weight_norm = torch.norm(
torch.cat([x.view(-1) for x in model_0.parameters()]), 2
)
# 3. Log to console and log file
logging.info(
"%s Epoch %i/%i. Train MSE: %f, Train Rel L2: %f, Train Loss Val: %f",
training_part,
epoch_local,
n_epochs_this_step,
torch.mean(train_loss_dd["mse"]).item(),
torch.mean(train_loss_dd["rel_l2"]).item(),
torch.mean(train_loss_dd["loss_value"]).item(),
# train_rel_l2_aaa,
# train_psnr_aaa,
)
logging.info(
"\t Val MSE: %f, Val Rel L2: %f, Val Loss Val: %f",
torch.mean(val_loss_dd["mse"]).item(),
torch.mean(val_loss_dd["rel_l2"]).item(),
torch.mean(val_loss_dd["loss_value"]).item(),
)
logging.info("\t Weight L2 norm: %f", weight_norm.item())
train_dd = {
# Optimization info
"epoch": epoch_local + epoch_stagger,
"weight_norm": weight_norm.item(),
"training_part": training_part,
# Experiment info
"n_train": n_train,
"n_val": n_val,
"n_cnn_1d": args.n_cnn_1d,
"n_cnn_2d": args.n_cnn_2d,
"n_cnn_channels_1d": args.n_cnn_channels_1d,
"n_cnn_channels_2d": args.n_cnn_channels_2d,
"kernel_size_1d": args.kernel_size_1d,
"kernel_size_2d": args.kernel_size_2d,
"lr_init": args.lr_init,
"weight_decay": args.weight_decay,
"batch_size": args.batch_size,
"eta_min": args.eta_min,
"n_rho_vals": N_rho,
"n_theta_vals": N_theta,
"hash": args.hash,
"meas_dir_train_frmt": args.meas_dir_train_frmt,
"scobj_dir_train": args.scobj_dir_train,
"meas_dir_val_frmt": args.meas_dir_val_frmt,
"scobj_dir_val": args.scobj_dir_val,
"output_dir_train": args.output_dir_train,
"output_dir_val": args.output_dir_val,
"init_mode": args.init_mode,
}
for k, v in train_loss_dd.items():
train_dd["train_" + k] = torch.mean(v).item()
for k, v in val_loss_dd.items():
train_dd["val_" + k] = torch.mean(v).item()
write_result_to_file(args.results_fp, **train_dd)
# Try to log results to W&B
if not args.dont_use_wandb:
try:
wandbrun.log(train_dd)
except ValueError:
logging.error("Error: wandb logging failed for %s" % wandbrun.id)
fp_weights = os.path.join(args.model_weights_dir, f"epoch_{epoch_eff}.pickle")
torch.save(model_0.state_dict(), fp_weights)
model_0 = model_0.to(device)
if args.early_stopping:
return early_stopper.early_stop(train_dd["val_rel_l2"])
else:
return False
##########################################################################################
# TRAIN THE MODEL
loss_module = MultiTermLossFunction(
pred_idx=N_freqs - 1, scale_factor=args.loss_scale_factor
)
loss_fn_dd = {
"mse": loss_module.mse,
"psnr": loss_module.psnr,
"rel_l2": loss_module.relative_l2_error,
"final_mse": loss_module.mse_against_final,
"final_psnr": loss_module.psnr_against_final,
"final_rel_l2": loss_module.relative_l2_error_against_final,
"loss_value": loss_module,
}
train_dloader = torch.utils.data.DataLoader(dset_train, batch_size=args.batch_size)
val_dloader = torch.utils.data.DataLoader(dset_val, batch_size=args.batch_size)
training_part = "fine-tune"
epoch_stagger = 0
n_epochs_this_step = args.n_epochs
if args.early_stopping:
early_stopper = EarlyStopper()
model = train(
model=model,
n_epochs=args.n_epochs,
lr_init=args.lr_init,
weight_decay=args.weight_decay,
momentum=0.0,
eta_min=args.eta_min,
train_loader=train_dloader,
device=device,
n_epochs_per_log=args.n_epochs_per_log,
log_function=log_function,
loss_function=loss_module,
)
if not args.dont_write_outputs:
#######################################################################
# FIND EPOCH WITH MINIMAL TEST ERROR
df = pd.read_table(args.results_fp)
df_this_part = df[df["training_part"] == training_part]
df_best = df_this_part[
df_this_part["val_rel_l2"] == df_this_part["val_rel_l2"].min()
]
best_epoch = df_best.iloc[0]["epoch"]
logging.info("Epoch %i was best; loading these weights", best_epoch)
best_weight_fp_final = os.path.join(
args.model_weights_dir, f"epoch_{best_epoch}.pickle"
)
model.load_state_dict(
torch.load(best_weight_fp_final, map_location=torch.device("cpu"))
)
model = model.to(device)
#######################################################################
# RUN INFERENCE ON ALL OF THE TRAIN/TEST SAMPLES
dset_train.output_nans_bool = True
dset_val.output_nans_bool = True
n_train_all = len(dset_train)
n_val_all = len(dset_val)
train_dloader = torch.utils.data.DataLoader(
dset_train, batch_size=args.batch_size
)
val_dloader = torch.utils.data.DataLoader(dset_val, batch_size=args.batch_size)
logging.info(
"Running inference on all %i train and %i val samples",
n_train_all,
n_val_all,
)
model.return_all_q_hats = False
model.freq_output_idx = N_freqs - 1
make_preds_on_dataset(
model,
train_dloader,
device,
args.output_dir_train,
shard_size=500,
experiment_info=train_metadata_dd,
)
make_preds_on_dataset(
model,
val_dloader,
device,
args.output_dir_val,
shard_size=500,
experiment_info=val_metadata_dd,
)
logging.info("Finished")
if __name__ == "__main__":
a = setup_args()
for name, logger in logging.root.manager.loggerDict.items():
logging.getLogger(name).setLevel(logging.WARNING)
if a.debug:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.DEBUG)
else:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.INFO)
id_hash = hash_dict(vars(a))
a.hash = id_hash
if a.dont_use_wandb:
main(a)
else:
# print(vars(a))
# print(id_hash)
with wandb.init(
id=id_hash,
project=a.wandb_project_name,
entity=a.wandb_entity,
config=vars(a),
mode=a.wandb_mode,
reinit=True,
resume=None,
settings=wandb.Settings(start_method="fork"),
) as wandbrun:
main(a)