-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_MFISNet_Fused.py
501 lines (448 loc) · 18.4 KB
/
train_MFISNet_Fused.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Train the MFISNet-Fused variant
import logging
from typing import List
import argparse
from timeit import default_timer
import os
import numpy as np
import torch
import wandb
import os, psutil # to fetch memory usage
from src.data.add_noise import add_noise_to_d
from src.data.data_io import (
load_dir, load_multifreq_dataset
)
from src.models.MFISNet_Fused import MFISNet_Fused
from src.training_utils.train_loop import train, evaluate_losses_on_dataloader
from src.training_utils.loss_functions import MSEModule
from src.utils.logging_utils import FMT, TIMEFMT, write_result_to_file, hash_dict
from src.data.data_naming_constants import (
Q_POLAR,
Q_CART,
D_MH,
D_RS,
Q_POLAR_LPF,
Q_CART_LPF,
NU_SF,
OMEGA_SF,
KEYS_FOR_TRAINING_SAMPLES_ALL,
FREQ_DEPENDENT_KEYS,
TRUNCATABLE_KEYS,
)
def setup_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir_base",
type=str,
help="Indicate the directory containing all the measurement folders"
" corresponding to the relevant frequencies and data subsets",
)
parser.add_argument("--data_input_nus", type=str, nargs="+")
# New option to use smoothed targets or not
parser.add_argument("--use_smoothed_targets", default=False, action="store_true")
parser.add_argument("--use_original_targets", action="store_false", dest="use_smoothed_targets")
parser.add_argument("--eval_on_test_set", default=False, action="store_true")
parser.add_argument(
"--no_eval_on_test_set", action="store_false", dest="eval_on_test_set"
)
parser.add_argument("--train_results_fp")
parser.add_argument("--model_weights_dir")
parser.add_argument("--truncate_num", type=int)
parser.add_argument("--truncate_num_val", type=int)
parser.add_argument("--seed", type=int, default=35675)
parser.add_argument("--n_cnn_1d", type=int, default=3)
parser.add_argument("--n_cnn_2d", type=int, default=3)
parser.add_argument("--n_cnn_channels_1d", type=int, default=10)
parser.add_argument("--n_cnn_channels_2d", type=int, default=10)
parser.add_argument("--kernel_size_1d", type=int, default=13)
parser.add_argument("--kernel_size_2d", type=int, default=13)
parser.add_argument("--merge_middle_freq_channels", type=str)
# parser.add_argument("--merge_middle_freq_channels", action="store_true",
# dest="merge_middle_freq_channels_bool")
# parser.add_argument("--no_merge_middle_freq_channels", action="store_false",
# dest="merge_middle_freq_channels_bool")
parser.add_argument("--polar_padding", type=str)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--n_epochs", type=int, default=100)
# parser.add_argument("--n_epochs_pretrain_0", type=int, default=10)
# parser.add_argument("--n_epochs_pretrain_1", type=int, default=10)
parser.add_argument("--lr_init", type=float, default=1.0)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--eta_min", type=float, default=1e-04)
parser.add_argument("--n_epochs_per_log", type=int, default=5)
# parser.add_argument("--omega_0_idx", type=int, default=1)
parser.add_argument("--debug", default=False, action="store_true")
parser.add_argument("--forward_model_adjustment", type=float, default=1.0)
parser.add_argument(
"--noise_to_signal_ratio", default=None, type=float
) # train and test with noise
parser.add_argument(
"--init_mode",
default="original",
choices = [
"original",
"uniform-with-old-scale",
"normal-with-old-scale",
"he-normal",
],
)
# Weights and Biases setup
parser.add_argument("--wandb_project", type=str, help="W&B project name")
parser.add_argument("--wandb_entity", type=str, help="The W&B entity")
parser.add_argument(
"--wandb_mode", choices=["offline", "online", "disabled"], default="offline"
)
# Misc. options
# parser.add_argument("--concat_wave_fields", default=False, action="store_true")
# parser.add_argument("--skip_connections", default=False, action="store_true")
# parser.add_argument("--forward_network", default=False, action="store_true")
parser.add_argument("--big_init", default=False, action="store_true")
parser.add_argument("--small_init", action="store_false", dest="big_init")
a = parser.parse_args()
return a
class LinearData(torch.utils.data.Dataset):
def __init__(self, X: torch.Tensor, y: torch.Tensor, y_orig: torch.Tensor=None) -> None:
self.X = X
self.y = y
self.y_orig = y_orig if y_orig is not None else y
logging.info(
"Initialized a LinearData instance with X shape: %s and y shape: %s",
self.X.shape,
self.y.shape,
)
self.n_samples = X.shape[0]
def __len__(self):
return self.n_samples
def __getitem__(self, idx):
return self.X[idx], self.y[idx], self.y_orig[idx]
def setup_single_dataset(
q_polar: np.ndarray,
wave_field_mh: np.ndarray,
q_polar_orig: np.ndarray = None,
) -> LinearData:
"""
Set up a single (multi-frequency) dataset (such as training/eval)
Parameters:
# data_dd (dict): dictionary received while loading the dataset
q_polar (np.ndarray): stack of scattering objects
wave_field_mh (np.ndarray): stack of wavefield patterns
Return values:
dset (LinearData): torch-ready data
"""
inputs_dset = torch.view_as_real(torch.from_numpy(wave_field_mh))
targets_dset = torch.from_numpy(q_polar)
targets_orig_dset = torch.from_numpy(q_polar_orig) if q_polar_orig is not None else None
dset = LinearData(
inputs_dset,
targets_dset,
targets_orig_dset,
)
return dset
def main(
args: argparse.Namespace,
# Extra arguments for testing purposes
# skip_wandb: bool = False,
return_model: bool = False,
) -> None:
"""
1. Load data
2. Do necessary transformations
3. Set up NN
4. Train NN
"""
mmfc_bool = False if args.merge_middle_freq_channels.lower() == "false" else True
polar_padding_bool = False if args.polar_padding.lower() == "false" else True
logging.info(
f"Received: merge_middle_freq_channels={mmfc_bool} and polar_pad={polar_padding_bool}"
)
args.merge_middle_freq_channels_bool = mmfc_bool
args.polar_padding_bool = polar_padding_bool
if not os.path.isdir(args.model_weights_dir):
os.mkdir(args.model_weights_dir)
# Set seeds for reproducibility
np.random.seed(args.seed)
torch.manual_seed(args.seed)
#########################################################
# Load data
data_dir_base = args.data_dir_base
str_nu_list = (
args.data_input_nus
) # nu in string form (to preserve decimals properly)
nu_list = [float(str_nu) for str_nu in str_nu_list]
N_freqs = len(nu_list)
logging.info(f"data_dir_base: {data_dir_base}")
logging.info(f"nu values received: {str_nu_list}")
# os.path.join()
train_files = [
os.path.join(data_dir_base, f"train_measurements_nu_{nu}") for nu in str_nu_list
]
val_files = [
os.path.join(data_dir_base, f"val_measurements_nu_{nu}") for nu in str_nu_list
]
if args.eval_on_test_set:
test_files = [
os.path.join(data_dir_base, f"test_measurements_nu_{nu}")
for nu in str_nu_list
]
else:
test_files = None
logging.info(
f"Attempting to load the following folders: {train_files} and {val_files}"
)
# Training data dictionary
# key_replacement = {
# "Theta_vals": "theta_vals",
# "Input": "q_polar",
# # "Input_Cart": "q_cart",
# }
logging.info(f"Loading training dataset")
train_dd, train_meta_dd = load_multifreq_dataset(
train_files,
truncate_num=args.truncate_num,
# key_replacement=key_replacement,
noise_to_sig_ratio=args.noise_to_signal_ratio,
add_noise_to="d_mh",
nan_mode="skip",
load_cart=False,
)
def kv_shrinker(key, val):
"""Little helper function to see the shapes of entires in a dictionary"""
if isinstance(val, np.ndarray):
if val.size > 1:
return f"{key}<shape>", val.shape
else:
return key, val.item()
elif hasattr(val, "__len__") and len(val) > 1:
return f"{key}<len>", len(val)
else:
return key, val
train_dd_short = dict(kv_shrinker(k, v) for (k, v) in train_dd.items())
logging.info(f"train_dd has entries with shapes: {train_dd_short}")
# Evaluation data dictionary
logging.info(f"Loading evaluation dataset")
eval_dd, eval_meta_dd = load_multifreq_dataset(
test_files if args.eval_on_test_set else val_files,
truncate_num=args.truncate_num_val,
# key_replacement=key_replacement,
noise_to_sig_ratio=args.noise_to_signal_ratio,
add_noise_to="d_mh",
nan_mode="skip",
load_cart=False,
)
eval_dd_short = dict(kv_shrinker(k, v) for (k, v) in eval_dd.items())
logging.info(f"eval_dd has entries with shapes: {eval_dd_short}")
# logging.info(f"Received a dictionary with keys: {list(train_dd.keys())}")
if args.use_smoothed_targets:
logging.info(f"Using smoothed targets for training and validation")
train_q_polar = train_dd[Q_POLAR_LPF][:, -1, ...]
eval_q_polar = eval_dd[Q_POLAR_LPF][:, -1, ...]
else:
logging.info(f"Using original targets for training and validation")
train_q_polar = train_dd[Q_POLAR]
eval_q_polar = eval_dd[Q_POLAR]
# Also provide an alias for the original target regardless of training setting
train_q_polar_orig = train_dd[Q_POLAR]
eval_q_polar_orig = eval_dd[Q_POLAR]
train_d_mh = train_dd[D_MH]
eval_d_mh = eval_dd[D_MH]
rho_vals = train_dd["rho_vals"]
theta_vals = train_dd["theta_vals"]
h_vals = train_dd["h_vals"]
omega_vals = train_dd["omega_sf"]
x_vals = train_dd["x_vals"]
N_rho = rho_vals.shape[0]
N_h = h_vals.shape[0]
N_theta = theta_vals.shape[0]
N_train = train_q_polar.shape[0]
N_eval = eval_q_polar.shape[0]
# Next... run the "setup_single_dataset" function
# to-do: make sure this is functioning as expected...
train_dset = setup_single_dataset(train_q_polar, train_d_mh, train_q_polar_orig)
eval_dset = setup_single_dataset(eval_q_polar, eval_d_mh, eval_q_polar_orig)
logging.info(f"Finished loading data. N_train={N_train}, N_eval={N_eval}")
### Prepare for NN training ###
# Set up CUDA device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Training on device: %s", device)
# Send to the data loader
train_dloader = torch.utils.data.DataLoader(train_dset, batch_size=args.batch_size)
eval_dloader = torch.utils.data.DataLoader(eval_dset, batch_size=args.batch_size)
extra_params = {}
# Skip it for now... doesnt seem to do much...?
# extra_params = {
# **extra_params,
# "train_inputs_mean": train_dset.X.mean(),
# "train_inputs_std": train_dset.X.std(),
# "train_outputs_mean": train_dset.y.mean(),
# "train_outputs_std": train_dset.y.std(),
# }
# Initialize the model
model = MFISNet_Fused(
N_h=N_h,
N_rho=N_rho,
N_freqs=N_freqs,
c_1d=args.n_cnn_channels_1d,
c_2d=args.n_cnn_channels_2d,
w_1d=args.kernel_size_1d,
w_2d=args.kernel_size_2d,
N_cnn_1d=args.n_cnn_1d,
N_cnn_2d=args.n_cnn_2d,
merge_middle_freq_channels=args.merge_middle_freq_channels_bool,
big_init=args.big_init,
init_mode=args.init_mode,
polar_padding=args.polar_padding_bool,
**extra_params,
)
########################### Training procedure ###########################
N_epochs = args.n_epochs
# loss_module_0 = MSEModule(loss_idx=slice(None), final_output_idx=slice(None))
loss_module_0 = MSEModule()
loss_fn_dd = {
"mse": loss_module_0.mse,
"psnr": loss_module_0.psnr,
"rel_l2": loss_module_0.relative_l2_error,
"final_mse": loss_module_0.mse_against_final,
"final_psnr": loss_module_0.psnr_against_final,
"final_rel_l2": loss_module_0.relative_l2_error_against_final,
}
id_hash = hash_dict(vars(args))
epoch_stagger = 0 # Just a single training step
# Spin up the Weights and Biases environment
with wandb.init(
id=id_hash,
project=args.wandb_project,
entity=args.wandb_entity,
config=vars(args),
# mode="disabled" if skip_wandb else args.wandb_mode,
mode=args.wandb_mode,
reinit=True,
resume=None,
settings=wandb.Settings(start_method="fork"),
) as wandbrun:
# First, set up the logging function
def log_function(model_0, epoch_local):
"""
Need to set:
- loss_fn_dd
"""
nonlocal train_dloader, eval_dloader
with torch.no_grad():
epoch_eff = epoch_stagger + epoch_local
# 1. Evaluate on train set
train_loss_dd = evaluate_losses_on_dataloader(
model_0, train_dloader, loss_fn_dd, device
)
eval_loss_dd = evaluate_losses_on_dataloader(
model_0, eval_dloader, loss_fn_dd, device
)
weight_norm = torch.norm(
torch.cat([x.view(-1) for x in model_0.parameters()]), 2
)
# 3. Log to console and log file
logging.info(
"Epoch %i/%i. Train MSE: %f, Train Rel L2: %f, Train PSNR: %f",
epoch_local,
N_epochs,
torch.mean(train_loss_dd["mse"]).item(),
torch.mean(train_loss_dd["rel_l2"]).item(),
torch.mean(train_loss_dd["psnr"]).item(),
# train_rel_l2_aaa,
# train_psnr_aaa,
)
logging.info(
"\t Val MSE: %f, Val Rel L2: %f, Val PSNR: %f",
torch.mean(eval_loss_dd["mse"]).item(),
torch.mean(eval_loss_dd["rel_l2"]).item(),
torch.mean(eval_loss_dd["psnr"]).item(),
# test_mse_aaa,
# test_rel_l2_aaa,
# test_psnr_aaa,
)
logging.info("\t Weight L2 norm: %f", weight_norm.item())
process = psutil.Process()
logging.info(
f"Memory usage: {process.memory_info().rss>>20} MB"
) # this is not where the memory usage peaks
if torch.cuda.is_available():
vram_free_bytes, vram_available_bytes = torch.cuda.mem_get_info()
vram_used_mb = (vram_available_bytes - vram_free_bytes) >> 20
logging.info(
f"Current VRAM usage: {vram_used_mb} MB / {vram_available_bytes>>20} MB"
)
train_dd = {
# Optimization info
"epoch": epoch_local + epoch_stagger,
"weight_norm": weight_norm.item(),
# Experiment info
"eval_on_val_set": not args.eval_on_test_set,
"eval_on_test_set": args.eval_on_test_set,
"n_train": N_train,
"n_eval": N_eval,
"n_freqs": N_freqs,
"n_cnn_1d": args.n_cnn_1d,
"n_cnn_2d": args.n_cnn_2d,
"n_cnn_channels_1d": args.n_cnn_channels_1d,
"n_cnn_channels_2d": args.n_cnn_channels_2d,
"merge_middle_freq_channels": args.merge_middle_freq_channels_bool,
"polar_padding": args.polar_padding_bool,
"kernel_size_1d": args.kernel_size_1d,
"kernel_size_2d": args.kernel_size_2d,
"lr_init": args.lr_init,
"weight_decay": args.weight_decay,
"batch_size": args.batch_size,
"big_init": args.big_init,
"eta_min": args.eta_min,
"n_rho_vals": N_rho,
"n_theta_vals": N_theta,
"init_mode": args.init_mode,
"hash": id_hash,
# Extra data
"source_nu_list": nu_list,
}
for k, v in train_loss_dd.items():
train_dd["train_" + k] = torch.mean(v).item()
for k, v in eval_loss_dd.items():
train_dd["eval_" + k] = torch.mean(v).item()
write_result_to_file(args.train_results_fp, **train_dd)
# Try to log results to W&B
try:
wandbrun.log(train_dd)
except ValueError:
logging.error("Error: wandb logging failed for %s" % wandbrun.id)
fp_weights = os.path.join(
args.model_weights_dir, f"epoch_{epoch_eff}.pickle"
)
torch.save(model_0.state_dict(), fp_weights)
model_0 = model_0.to(device)
for p in model.parameters():
logging.info(
f"Parameter with shape {p.shape} requires grad: {p.requires_grad}"
)
# Now train it!
model = train(
model=model,
n_epochs=N_epochs,
lr_init=args.lr_init,
weight_decay=args.weight_decay,
momentum=0.0,
eta_min=args.eta_min,
train_loader=train_dloader,
device=device,
n_epochs_per_log=args.n_epochs_per_log,
log_function=log_function,
loss_function=loss_module_0,
)
logging.info("Finished!")
if return_model:
return model
return
if __name__ == "__main__":
a = setup_args()
for name, logger in logging.root.manager.loggerDict.items():
logging.getLogger(name).setLevel(logging.WARNING)
if a.debug:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.DEBUG)
else:
logging.basicConfig(format=FMT, datefmt=TIMEFMT, level=logging.INFO)
logging.info(f"Received the following arguments: {a}")
main(a)