-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
208 lines (154 loc) · 8.26 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import luigi
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn import linear_model
from sklearn.externals import joblib
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils import resample
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import precision_score, recall_score, f1_score
class CleanDataTask(luigi.Task):
""" Cleans the input CSV file by removing any rows without valid geo-coordinates.
Output file should contain just the rows that have geo-coordinates and
non-(0.0, 0.0) files.
"""
tweet_file = luigi.Parameter()
output_file = luigi.Parameter(default='clean_data.csv')
def run(self):
"""Read the file with encoding and replace [0.0, 0.0] with None and drop all Na rows"""
tweet_file = pd.read_csv(self.tweet_file, encoding='iso8859_1')
tweet_file['tweet_coord'].replace('[0.0, 0.0]', np.nan, inplace=True)
clean_data = tweet_file.dropna(subset=['tweet_coord'])
clean_data['tweet_coord'].replace("[", "",inplace=True)
clean_data['tweet_coord'].replace("]", "",inplace=True)
clean_data.to_csv(self.output_file)
def output(self):
return luigi.LocalTarget(self.output_file)
class TrainingDataTask(luigi.Task):
""" Extracts features/outcome variable in preparation for training a model.
Output file should have columns corresponding to the training data:
- y = airline_sentiment (coded as 0=negative, 1=neutral, 2=positive)
- X = a one-hot coded column for each city in "cities.csv"
"""
tweet_file = luigi.Parameter()
clean_data_file = luigi.Parameter(default='clean_data.csv')
cities_file = luigi.Parameter(default='cities.csv')
output_file = luigi.Parameter(default='features.csv')
def requires(self):
return CleanDataTask(self.tweet_file)
def run(self):
clean_data = pd.read_csv(self.clean_data_file,encoding='iso8859_1')
city_file = pd.read_csv(self.cities_file, encoding='iso8859_1')
sentiment = {"negative": 0, "neutral": 1, "positive": 2}
clean_data = clean_data.replace({"airline_sentiment":sentiment})
y = clean_data['airline_sentiment']
# Iterate over all cities rows with iterrows() and find minimum euclidian distance for each row
x = []
R = 6371
for index, row in clean_data.iterrows():
geo = str(row['tweet_coord']).split(',')
latitude = float(geo[0].replace("[", ""))
longitude = float(geo[1].replace("]", ""))
"""
Convert latitude and longitude to x,y,x coordinates using below formula:
r = (x,y,z) = (R.cos(lat)cos(long),R.cos(lat)sin(long),R.sin(lat))
And then calculate euclidean distance
Probably not required for data challenge but from physics point of view this the correct way to find the euclidian distance given two cordinates
"""
convertToRadian = np.pi/180
x1 = R*np.cos(latitude*convertToRadian)*np.cos(longitude*convertToRadian)
y1 = R*np.cos(latitude*convertToRadian)*np.sin(longitude*convertToRadian)
z1= R*np.sin(latitude*convertToRadian)
euclidean_distance_list = ((((R*np.cos(city_file['latitude']*convertToRadian )*np.cos(city_file['longitude']*convertToRadian )) - x1).pow(2) +
((R*np.cos(city_file['latitude']*convertToRadian)*np.sin(city_file['longitude']*convertToRadian )) - y1).pow(2)
+((R*np.sin(city_file['latitude']*convertToRadian ))-z1).pow(2)) ** 0.5)
nearest_index = euclidean_distance_list.index[euclidean_distance_list.argsort()[0]]
x.append(city_file.loc[nearest_index,'name'])
# One-hot encoding
X = pd.get_dummies(pd.DataFrame(x),prefix='', prefix_sep='')
features = pd.concat([X, y], axis=1)
features.to_csv(self.output_file)
def output(self):
return luigi.LocalTarget(self.output_file)
class TrainModelTask(luigi.Task):
""" Trains a classifier to predict negative, neutral, positive
based only on the input city.
Output file should be the pickle'd model.
"""
tweet_file = luigi.Parameter()
feature_file = luigi.Parameter(default='features.csv')
output_file = luigi.Parameter(default='model.pkl')
def requires(self):
return TrainingDataTask(self.tweet_file)
def run(self):
features = pd.read_csv(self.feature_file, encoding='iso8859_1')
X= features.iloc[:,1:len(features.columns)-1].values
y = features.iloc[:,len(features.columns)-1].values
def rf_cv(splits, X, Y, pipeline, average_method):
kfold = StratifiedKFold(n_splits=splits, shuffle=True, random_state=777)
accuracy = []
precision = []
recall = []
f1 = []
for train, test in kfold.split(X, Y):
rf_fit = pipeline.fit(X[train], Y[train])
prediction = rf_fit.predict(X[test])
scores = rf_fit.score(X[test], Y[test])
accuracy.append(scores * 100)
precision.append(precision_score(Y[test], prediction, average=average_method) * 100)
print(' negative neutral positive')
print('precision:', precision_score(Y[test], prediction, average=None))
recall.append(recall_score(Y[test], prediction, average=average_method) * 100)
print('recall: ', recall_score(Y[test], prediction, average=None))
f1.append(f1_score(Y[test], prediction, average=average_method) * 100)
print('f1 score: ', f1_score(Y[test], prediction, average=None))
print('-' * 50)
print("accuracy: %.2f%% (+/- %.2f%%)" % (np.mean(accuracy), np.std(accuracy)))
print("precision: %.2f%% (+/- %.2f%%)" % (np.mean(precision), np.std(precision)))
print("recall: %.2f%% (+/- %.2f%%)" % (np.mean(recall), np.std(recall)))
print("f1 score: %.2f%% (+/- %.2f%%)" % (np.mean(f1), np.std(f1)))
# Save the model
joblib.dump(rf_fit, self.output_file)
smote = SMOTE(ratio='minority')
classifier = RandomForestClassifier(n_estimators=5,random_state=2)
SMOTE_pipeline = Pipeline([('smt', smote), ('rf', classifier)])
rf_cv(5, X, y, SMOTE_pipeline, 'macro')
def output(self):
return luigi.LocalTarget(self.output_file)
class ScoreTask(luigi.Task):
""" Uses the scored model to compute the sentiment for each city.
Output file should be a four column CSV with columns:
- city name
- negative probability
- neutral probability
- positive probability
"""
tweet_file = luigi.Parameter()
feature_file = luigi.Parameter(default='features.csv')
model = luigi.Parameter(default='model.pkl')
output_file = luigi.Parameter(default='scores.csv')
def requires(self):
return TrainModelTask(self.tweet_file)
def run(self):
features = pd.read_csv(self.feature_file, encoding='iso8859_1')
loaded_model = joblib.load(open(self.model, 'rb'))
features.drop(features.columns[0],inplace=True,axis=1)
X = features.loc[:, ~features.columns.isin(['airline_sentiment'])]
city_names = pd.DataFrame(X.idxmax(axis=1)).drop_duplicates(keep="first")
Cities = features.drop("airline_sentiment",axis=1).drop_duplicates(keep="first").values
sentiments = pd.DataFrame(loaded_model.predict_proba(Cities[:]))
scores = pd.concat([city_names.reset_index(drop=True), sentiments.reset_index(drop=True)],axis=1)
scores.columns = ['city', 'negative','neutral','positive']
scores.sort_values(by='positive', ascending=False,inplace = True)
scores.to_csv(self.output_file, index = False)
def output(self):
return luigi.LocalTarget(self.output_file)
if __name__ == "__main__":
luigi.run()