-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
164 lines (125 loc) · 5.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2022 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import datetime
import argparse
from tqdm import tqdm
import megengine as mge
from megengine.optimizer import Adam, MultiStepLR
from megengine.autodiff import GradManager
import megengine.distributed as dist
from tensorboardX import SummaryWriter
import dataset.data_loader as data_loader
from model import fetch_net
from common import utils
from common.manager import Manager
from evaluate import evaluate
from loss.losses import compute_losses
from common.utils import init_weights
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='experiments', help="Directory containing params.json")
parser.add_argument('--restore_file',
default=None,
help="Optional, name of the file in --model_dir containing weights to reload before training") # 'best' or 'train'
parser.add_argument('-ow', '--only_weights', action='store_true', help='Only use weights to load or load all train status.')
def train(model, manager, gm, info=False):
rank = dist.get_rank()
# loss status and val/test status initial
manager.reset_loss_status()
# set model to training mode
model.train()
# Use tqdm for progress bar
if rank == 0:
t = tqdm(total=len(manager.dataloaders['train']))
for i, data_batch in enumerate(manager.dataloaders['train']):
# move to GPU if available
data_batch = utils.tensor_mge(data_batch)
# infor print
print_str = manager.print_train_info()
with gm:
# compute model output and loss
output_batch = model(data_batch)
loss = compute_losses(data_batch, output_batch, manager.params)
# update loss status and print current loss and average loss
manager.update_loss_status(loss=loss, split="train")
gm.backward(loss['total'])
# performs updates using calculated gradients
manager.optimizer.step().clear_grad()
manager.update_step()
if rank == 0:
# manager.writer.add_scalar("Loss/train", manager.loss_status['total'].val, manager.step)
t.set_description(desc=print_str)
t.update()
if rank == 0:
t.close()
manager.scheduler.step()
manager.update_epoch()
def train_and_evaluate(model, manager):
rank = dist.get_rank()
# reload weights from restore_file if specified
if args.restore_file is not None:
manager.load_checkpoints()
world_size = dist.get_world_size()
if world_size > 1:
dist.bcast_list_(model.parameters())
dist.bcast_list_(model.buffers())
gm = GradManager().attach(
model.parameters(),
callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None,
)
for epoch in range(manager.params.num_epochs):
# compute number of batches in one epoch (one full pass over the training set)
train(model, manager, gm)
# Evaluate for one epoch on validation set
evaluate(model, manager)
# Save best model weights accroding to the params.major_metric
if rank == 0:
manager.check_best_save_last_checkpoints(latest_freq=5)
def main(params):
mge.dtr.enable()
rank = dist.get_rank()
# Set the logger
logger = utils.set_logger(os.path.join(params.model_dir, 'train.log'))
# Set the tensorboard writer
log_dir = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tb_dir = os.path.join(params.model_dir, "summary", log_dir)
os.makedirs(tb_dir, exist_ok=True)
writter = SummaryWriter(log_dir=tb_dir)
# Create the input data pipeline
if rank == 0:
logger.info("Loading the datasets from {}".format(params.data_dir))
# fetch dataloaders
dataloaders = data_loader.fetch_dataloader(params)
# Define the model and optimizer
model = fetch_net(params)
# init_weights(model)
optimizer = Adam(model.parameters(), lr=params.learning_rate)
milestones = [100, 150]
scheduler = MultiStepLR(optimizer, milestones, 0.5)
# initial status for checkpoint manager
manager = Manager(model=model,
optimizer=optimizer,
scheduler=scheduler,
params=params,
dataloaders=dataloaders,
writer=writter,
logger=logger)
# Train the model
if rank == 0:
logger.info("Starting training for {} epoch(s)".format(params.num_epochs))
train_and_evaluate(model, manager)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
params.update(vars(args))
train_proc = dist.launcher(main) if dist.helper.get_device_count_by_fork("gpu") > 1 else main
train_proc(params)