forked from sktime/pytorch-forecasting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_data.py
587 lines (511 loc) · 20.8 KB
/
test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
from copy import deepcopy
import itertools
import pickle
from typing import Dict
import numpy as np
import pandas as pd
import pytest
from sklearn.preprocessing import StandardScaler
import torch
from pytorch_forecasting.data import (
EncoderNormalizer,
GroupNormalizer,
NaNLabelEncoder,
TimeSeriesDataSet,
TimeSynchronizedBatchSampler,
)
from pytorch_forecasting.data.encoders import MultiNormalizer, TorchNormalizer
from pytorch_forecasting.data.examples import get_stallion_data
from pytorch_forecasting.data.timeseries import _find_end_indices
from pytorch_forecasting.utils import to_list
torch.manual_seed(23)
@pytest.mark.parametrize(
"data,allow_nan",
itertools.product(
[
(np.array([2, 3, 4]), np.array([1, 2, 3, 5, np.nan])),
(np.array(["a", "b", "c"]), np.array(["q", "a", "nan"])),
],
[True, False],
),
)
def test_NaNLabelEncoder(data, allow_nan):
fit_data, transform_data = data
encoder = NaNLabelEncoder(warn=False, add_nan=allow_nan)
encoder.fit(fit_data)
assert np.array_equal(
encoder.inverse_transform(encoder.transform(fit_data)), fit_data
), "Inverse transform should reverse transform"
if not allow_nan:
with pytest.raises(KeyError):
encoder.transform(transform_data)
else:
assert encoder.transform(transform_data)[0] == 0, "First value should be translated to 0 if nan"
assert encoder.transform(transform_data)[-1] == 0, "Last value should be translated to 0 if nan"
assert encoder.transform(fit_data)[0] > 0, "First value should not be 0 if not nan"
def test_NaNLabelEncoder_add():
encoder = NaNLabelEncoder(add_nan=False)
encoder.fit(np.array(["a", "b", "c"]))
encoder2 = deepcopy(encoder)
encoder2.fit(np.array(["d"]))
assert encoder2.transform(np.array(["a"]))[0] == 0, "a must be encoded as 0"
assert encoder2.transform(np.array(["d"]))[0] == 3, "d must be encoded as 3"
@pytest.mark.parametrize(
"kwargs",
[
dict(method="robust"),
dict(transformation="log"),
dict(transformation="softplus"),
dict(transformation="log1p"),
dict(transformation="relu"),
dict(center=False),
],
)
def test_EncoderNormalizer(kwargs):
data = torch.rand(100)
defaults = dict(method="standard", center=True)
defaults.update(kwargs)
kwargs = defaults
normalizer = EncoderNormalizer(**kwargs)
if kwargs.get("transformation") in ["relu", "softplus"]:
data = data - 0.5
if kwargs.get("transformation") in ["relu", "softplus", "log1p"]:
assert (
normalizer.inverse_transform(normalizer.fit_transform(data)) >= 0
).all(), "Inverse transform should yield only positive values"
else:
assert torch.isclose(
normalizer.inverse_transform(normalizer.fit_transform(data)), data, atol=1e-5
).all(), "Inverse transform should reverse transform"
@pytest.mark.parametrize(
"kwargs,groups",
itertools.product(
[
dict(method="robust"),
dict(transformation="log"),
dict(transformation="relu"),
dict(center=False),
dict(transformation="log1p"),
dict(transformation="softplus"),
dict(scale_by_group=True),
],
[[], ["a"]],
),
)
def test_GroupNormalizer(kwargs, groups):
data = pd.DataFrame(dict(a=[1, 1, 2, 2, 3], b=[1.1, 1.1, 1.0, 5.0, 1.1]))
defaults = dict(method="standard", transformation=None, center=True, scale_by_group=False)
defaults.update(kwargs)
kwargs = defaults
kwargs["groups"] = groups
kwargs["scale_by_group"] = kwargs["scale_by_group"] and len(kwargs["groups"]) > 0
if kwargs.get("transformation") in ["relu", "softplus"]:
data.b = data.b - 2.0
normalizer = GroupNormalizer(**kwargs)
encoded = normalizer.fit_transform(data["b"], data)
test_data = dict(
prediction=torch.tensor([encoded[0]]),
target_scale=torch.tensor(normalizer.get_parameters([1])).unsqueeze(0),
)
if kwargs.get("transformation") in ["relu", "softplus", "log1p"]:
assert (normalizer(test_data) >= 0).all(), "Inverse transform should yield only positive values"
else:
assert torch.isclose(
normalizer(test_data), torch.tensor(data.b.iloc[0]), atol=1e-5
).all(), "Inverse transform should reverse transform"
def check_dataloader_output(dataset: TimeSeriesDataSet, out: Dict[str, torch.Tensor]):
x, y = out
assert isinstance(y, tuple), "y output should be tuple of wegith and target"
# check for nans and finite
for k, v in x.items():
for vi in to_list(v):
assert torch.isfinite(vi).all(), f"Values for {k} should be finite"
assert not torch.isnan(vi).any(), f"Values for {k} should not be nan"
# check weight
assert y[1] is None or isinstance(y[1], torch.Tensor), "weights should be none or tensor"
if isinstance(y[1], torch.Tensor):
assert torch.isfinite(y[1]).all(), "Values for weight should be finite"
assert not torch.isnan(y[1]).any(), "Values for weight should not be nan"
# check target
for targeti in to_list(y[0]):
assert torch.isfinite(targeti).all(), "Values for target should be finite"
assert not torch.isnan(targeti).any(), "Values for target should not be nan"
# check shape
assert x["encoder_cont"].size(2) == len(dataset.reals)
assert x["encoder_cat"].size(2) == len(dataset.flat_categoricals)
@pytest.mark.parametrize(
"kwargs",
[
dict(min_encoder_length=0, max_prediction_length=2),
dict(static_categoricals=["agency", "sku"]),
dict(static_reals=["avg_population_2017", "avg_yearly_household_income_2017"]),
dict(time_varying_known_categoricals=["month"]),
dict(
time_varying_known_categoricals=["special_days", "month"],
variable_groups=dict(
special_days=[
"easter_day",
"good_friday",
"new_year",
"christmas",
"labor_day",
"independence_day",
"revolution_day_memorial",
"regional_games",
"fifa_u_17_world_cup",
"football_gold_cup",
"beer_capital",
"music_fest",
]
),
),
dict(time_varying_known_reals=["time_idx", "price_regular", "discount_in_percent"]),
dict(time_varying_unknown_reals=["volume", "log_volume", "industry_volume", "soda_volume", "avg_max_temp"]),
dict(
target_normalizer=GroupNormalizer(
groups=["agency", "sku"],
transformation="log1p",
scale_by_group=True,
)
),
dict(target_normalizer=EncoderNormalizer(), min_encoder_length=2),
dict(randomize_length=True, min_encoder_length=2, min_prediction_length=1),
dict(predict_mode=True),
dict(add_target_scales=True),
dict(add_encoder_length=True),
dict(add_encoder_length=True),
dict(add_relative_time_idx=True),
dict(weight="volume"),
dict(
scalers=dict(time_idx=GroupNormalizer(), price_regular=StandardScaler()),
categorical_encoders=dict(month=NaNLabelEncoder()),
time_varying_known_categoricals=["month"],
time_varying_known_reals=["time_idx", "price_regular"],
),
dict(categorical_encoders={"month": NaNLabelEncoder(add_nan=True)}, time_varying_known_categoricals=["month"]),
dict(constant_fill_strategy=dict(volume=0.0), allow_missing_timesteps=True),
dict(target_normalizer=None),
],
)
def test_TimeSeriesDataSet(test_data, kwargs):
defaults = dict(
time_idx="time_idx",
target="volume",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
)
defaults.update(kwargs)
kwargs = defaults
if kwargs.get("allow_missing_timesteps", False):
np.random.seed(2)
test_data = test_data.sample(frac=0.5)
defaults["min_encoder_length"] = 0
defaults["min_prediction_length"] = 1
# create dataset and sample from it
dataset = TimeSeriesDataSet(test_data, **kwargs)
check_dataloader_output(dataset, next(iter(dataset.to_dataloader(num_workers=0))))
def test_from_dataset(test_dataset, test_data):
dataset = TimeSeriesDataSet.from_dataset(test_dataset, test_data)
check_dataloader_output(dataset, next(iter(dataset.to_dataloader(num_workers=0))))
def test_from_dataset_equivalence(test_data):
training = TimeSeriesDataSet(
test_data[lambda x: x.time_idx < x.time_idx.max() - 1],
time_idx="time_idx",
target="volume",
time_varying_known_reals=["price_regular", "time_idx"],
group_ids=["agency", "sku"],
static_categoricals=["agency"],
max_encoder_length=3,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=0,
randomize_length=None,
add_encoder_length=True,
add_relative_time_idx=True,
add_target_scales=True,
)
validation1 = TimeSeriesDataSet.from_dataset(training, test_data, predict=True)
validation2 = TimeSeriesDataSet.from_dataset(
training,
test_data[lambda x: x.time_idx > x.time_idx.min() + 2],
predict=True,
)
# ensure validation1 and validation2 datasets are exactly the same despite different data inputs
for v1, v2 in zip(iter(validation1.to_dataloader(train=False)), iter(validation2.to_dataloader(train=False))):
for k in v1[0].keys():
if isinstance(v1[0][k], (tuple, list)):
assert len(v1[0][k]) == len(v2[0][k])
for idx in range(len(v1[0][k])):
assert torch.isclose(v1[0][k][idx], v2[0][k][idx]).all()
else:
assert torch.isclose(v1[0][k], v2[0][k]).all()
assert torch.isclose(v1[1][0], v2[1][0]).all()
def test_dataset_index(test_dataset):
index = []
for x, _ in iter(test_dataset.to_dataloader()):
index.append(test_dataset.x_to_index(x))
index = pd.concat(index, axis=0, ignore_index=True)
assert len(index) <= len(test_dataset), "Index can only be subset of dataset"
@pytest.mark.parametrize("min_prediction_idx", [0, 1, 3, 7])
def test_min_prediction_idx(test_dataset, test_data, min_prediction_idx):
dataset = TimeSeriesDataSet.from_dataset(
test_dataset, test_data, min_prediction_idx=min_prediction_idx, min_encoder_length=1, max_prediction_length=10
)
for x, _ in iter(dataset.to_dataloader(num_workers=0, batch_size=1000)):
assert x["decoder_time_idx"].min() >= min_prediction_idx
@pytest.mark.parametrize(
"value,variable,target",
[
(1.0, "price_regular", "encoder"),
(1.0, "price_regular", "all"),
(1.0, "price_regular", "decoder"),
("Agency_01", "agency", "all"),
("Agency_01", "agency", "decoder"),
],
)
def test_overwrite_values(test_dataset, value, variable, target):
dataset = deepcopy(test_dataset)
# create variables to check against
control_outputs = next(iter(dataset.to_dataloader(num_workers=0, train=False)))
dataset.set_overwrite_values(value, variable=variable, target=target)
# test change
outputs = next(iter(dataset.to_dataloader(num_workers=0, train=False)))
check_dataloader_output(dataset, outputs)
if variable in dataset.reals:
output_name_suffix = "cont"
else:
output_name_suffix = "cat"
if target == "all":
output_names = [f"encoder_{output_name_suffix}", f"decoder_{output_name_suffix}"]
else:
output_names = [f"{target}_{output_name_suffix}"]
for name in outputs[0].keys():
changed = torch.isclose(outputs[0][name], control_outputs[0][name]).all()
if name in output_names or (
"cat" in name and variable == "agency"
): # exception for static categorical which should always change
assert not changed, f"Output {name} should change"
else:
assert changed, f"Output {name} should not change"
# test resetting
dataset.reset_overwrite_values()
outputs = next(iter(dataset.to_dataloader(num_workers=0, train=False)))
for name in outputs[0].keys():
changed = torch.isclose(outputs[0][name], control_outputs[0][name]).all()
assert changed, f"Output {name} should be reset"
assert torch.isclose(outputs[1][0], control_outputs[1][0]).all(), "Target should be reset"
@pytest.mark.parametrize(
"drop_last,shuffle,as_string,batch_size",
[
(True, True, True, 64),
(False, False, False, 64),
(True, False, False, 1000),
],
)
def test_TimeSynchronizedBatchSampler(test_dataset, shuffle, drop_last, as_string, batch_size):
if as_string:
dataloader = test_dataset.to_dataloader(
batch_sampler="synchronized", shuffle=shuffle, drop_last=drop_last, batch_size=batch_size
)
else:
sampler = TimeSynchronizedBatchSampler(
data_source=test_dataset, shuffle=shuffle, drop_last=drop_last, batch_size=batch_size
)
dataloader = test_dataset.to_dataloader(batch_sampler=sampler)
time_idx_pos = test_dataset.reals.index("time_idx")
for x, _ in iter(dataloader): # check all samples
time_idx_of_first_prediction = x["decoder_cont"][:, 0, time_idx_pos]
assert torch.isclose(
time_idx_of_first_prediction, time_idx_of_first_prediction[0]
).all(), "Time index should be the same for the first prediction"
def test_find_end_indices():
diffs = np.array([1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1])
max_lengths = np.array([4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1])
ends, missings = _find_end_indices(diffs, max_lengths, min_length=3)
ends_test = np.array([3, 4, 4, 5, 6, 8, 9, 10, 10, 10, 10, 14, 15, 15, 16, 17, 19, 20, 21, 21, 21, 21])
missings_test = np.array([[0, 2], [5, 7], [11, 13], [16, 18]])
np.testing.assert_array_equal(ends, ends_test)
np.testing.assert_array_equal(missings, missings_test)
def test_raise_short_encoder_length(test_data):
with pytest.warns(UserWarning):
test_data = test_data[lambda x: ~((x.agency == "Agency_22") & (x.sku == "SKU_01") & (x.time_idx > 3))]
TimeSeriesDataSet(
test_data,
time_idx="time_idx",
target="volume",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=5,
)
def test_categorical_target(test_data):
dataset = TimeSeriesDataSet(
test_data,
time_idx="time_idx",
target="agency",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
)
_, y = next(iter(dataset.to_dataloader()))
assert y[0].dtype is torch.long, "target must be of type long"
def test_pickle(test_dataset):
pickle.dumps(test_dataset)
pickle.dumps(test_dataset.to_dataloader())
@pytest.mark.parametrize(
"kwargs",
[
{},
dict(
target_normalizer=GroupNormalizer(groups=["agency", "sku"], transformation="log1p", scale_by_group=True),
),
],
)
def test_new_group_ids(test_data, kwargs):
"""Test for new group ids in dataset"""
train_agency = test_data["agency"].iloc[0]
train_dataset = TimeSeriesDataSet(
test_data[lambda x: x.agency == train_agency],
time_idx="time_idx",
target="volume",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
categorical_encoders=dict(agency=NaNLabelEncoder(add_nan=True), sku=NaNLabelEncoder(add_nan=True)),
**kwargs,
)
# test sampling from training dataset
next(iter(train_dataset.to_dataloader()))
# create test dataset with group ids that have not been observed before
test_dataset = TimeSeriesDataSet.from_dataset(train_dataset, test_data)
# check that we can iterate through dataset without error
for _ in iter(test_dataset.to_dataloader()):
pass
def test_timeseries_columns_naming(test_data):
with pytest.raises(ValueError):
TimeSeriesDataSet(
test_data.rename(columns=dict(agency="agency.2")),
time_idx="time_idx",
target="volume",
group_ids=["agency.2", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
)
def test_encoder_normalizer_for_covariates(test_data):
dataset = TimeSeriesDataSet(
test_data,
time_idx="time_idx",
target="volume",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
time_varying_known_reals=["price_regular"],
scalers={"price_regular": EncoderNormalizer()},
)
next(iter(dataset.to_dataloader()))
@pytest.mark.parametrize(
"kwargs",
[
{},
dict(
target_normalizer=MultiNormalizer(normalizers=[TorchNormalizer(), EncoderNormalizer()]),
),
dict(add_target_scales=True),
dict(weight="volume"),
],
)
def test_multitarget(test_data, kwargs):
dataset = TimeSeriesDataSet(
test_data.assign(volume1=lambda x: x.volume),
time_idx="time_idx",
target=["volume", "volume1"],
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
time_varying_known_reals=["price_regular"],
scalers={"price_regular": EncoderNormalizer()},
**kwargs,
)
next(iter(dataset.to_dataloader()))
def test_check_nas(test_data):
data = test_data.copy()
data.loc[0, "volume"] = np.nan
with pytest.raises(ValueError, match=r"1 \(.*infinite"):
TimeSeriesDataSet(
data,
time_idx="time_idx",
target=["volume"],
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=1,
)
@pytest.mark.parametrize(
"kwargs",
[
dict(target="volume"),
dict(target="agency", scalers={"volume": EncoderNormalizer()}),
dict(target="volume", target_normalizer=EncoderNormalizer()),
dict(target=["volume", "agency"]),
],
)
def test_lagged_variables(test_data, kwargs):
dataset = TimeSeriesDataSet(
test_data.copy(),
time_idx="time_idx",
group_ids=["agency", "sku"],
max_encoder_length=5,
max_prediction_length=2,
min_prediction_length=1,
min_encoder_length=3, # one more than max lag for validation
time_varying_unknown_reals=["volume"],
time_varying_unknown_categoricals=["agency"],
lags={"volume": [1, 2], "agency": [1, 2]},
add_encoder_length=False,
**kwargs,
)
x_all, _ = next(iter(dataset.to_dataloader()))
for name in ["volume", "agency"]:
if name in dataset.reals:
vars = dataset.reals
x = x_all["encoder_cont"]
else:
vars = dataset.flat_categoricals
x = x_all["encoder_cat"]
target_idx = vars.index(name)
for lag in [1, 2]:
lag_idx = vars.index(f"{name}_lagged_by_{lag}")
target = x[..., target_idx][:, 0]
lagged_target = torch.roll(x[..., lag_idx], -lag, dims=1)[:, 0]
assert torch.isclose(target, lagged_target).all(), "lagged target must be the same as non-lagged target"
@pytest.mark.parametrize(
"agency,first_prediction_idx,should_raise",
[("Agency_01", 0, False), ("xxxxx", 0, True), ("Agency_01", 100, True), ("Agency_01", 4, False)],
)
def test_filter_data(test_dataset, agency, first_prediction_idx, should_raise):
func = lambda x: (x.agency == agency) & (x.time_idx_first_prediction >= first_prediction_idx)
if should_raise:
with pytest.raises(ValueError):
test_dataset.filter(func)
else:
filtered_dataset = test_dataset.filter(func)
assert len(test_dataset.index) > len(
filtered_dataset.index
), "filtered dataset should have less entries than original dataset"
for x, _ in iter(filtered_dataset.to_dataloader()):
index = test_dataset.x_to_index(x)
assert (index["agency"] == agency).all(), "Agency filter has failed"
assert index["time_idx"].min() == first_prediction_idx, "First prediction filter has failed"