-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathval_finetune_noprompt.py
130 lines (112 loc) · 4.8 KB
/
val_finetune_noprompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#from segment_anything import SamPredictor, sam_model_registry
from models.sam import SamPredictor, sam_model_registry
from models.sam.utils.transforms import ResizeLongestSide
from skimage.measure import label
from models.sam_LoRa import LoRA_Sam
#Scientific computing
import numpy as np
import os
#Pytorch packages
import torch
from torch import nn
import torch.optim as optim
import torchvision
from torchvision import datasets
#Visulization
import matplotlib.pyplot as plt
from torchvision import transforms
from PIL import Image
#Others
from torch.utils.data import DataLoader, Subset
from torch.autograd import Variable
import matplotlib.pyplot as plt
import copy
from utils.dataset import Public_dataset
import torch.nn.functional as F
from torch.nn.functional import one_hot
from pathlib import Path
from tqdm import tqdm
from utils.losses import DiceLoss
from utils.dsc import dice_coeff
import cv2
import monai
from utils.utils import vis_image
import cfg
from argparse import Namespace
import json
def main(args,test_image_list):
# change to 'combine_all' if you want to combine all targets into 1 cls
test_dataset = Public_dataset(args,args.img_folder, args.mask_folder, test_img_list,phase='val',targets=[args.targets],if_prompt=False)
testloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1)
if args.finetune_type == 'adapter' or args.finetune_type == 'vanilla':
sam_fine_tune = sam_model_registry[args.arch](args,checkpoint=os.path.join(args.dir_checkpoint,'checkpoint_best.pth'),num_classes=args.num_cls)
elif args.finetune_type == 'lora':
sam = sam_model_registry[args.arch](args,checkpoint=os.path.join(args.sam_ckpt),num_classes=args.num_cls)
sam_fine_tune = LoRA_Sam(args,sam,r=4).to('cuda').sam
sam_fine_tune.load_state_dict(torch.load(args.dir_checkpoint + '/checkpoint_best.pth'), strict = False)
sam_fine_tune = sam_fine_tune.to('cuda').eval()
class_iou = torch.zeros(args.num_cls,dtype=torch.float)
cls_dsc = torch.zeros(args.num_cls,dtype=torch.float)
eps = 1e-9
img_name_list = []
pred_msk = []
test_img = []
test_gt = []
for i,data in enumerate(tqdm(testloader)):
imgs = data['image'].to('cuda')
msks = torchvision.transforms.Resize((args.out_size,args.out_size))(data['mask'])
msks = msks.to('cuda')
img_name_list.append(data['img_name'][0])
with torch.no_grad():
img_emb= sam_fine_tune.image_encoder(imgs)
sparse_emb, dense_emb = sam_fine_tune.prompt_encoder(
points=None,
boxes=None,
masks=None,
)
pred_fine, _ = sam_fine_tune.mask_decoder(
image_embeddings=img_emb,
image_pe=sam_fine_tune.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_emb,
dense_prompt_embeddings=dense_emb,
multimask_output=True,
)
pred_fine = pred_fine.argmax(dim=1)
pred_msk.append(pred_fine.cpu())
test_img.append(imgs.cpu())
test_gt.append(msks.cpu())
yhat = (pred_fine).cpu().long().flatten()
y = msks.cpu().flatten()
for j in range(args.num_cls):
y_bi = y==j
yhat_bi = yhat==j
I = ((y_bi*yhat_bi).sum()).item()
U = (torch.logical_or(y_bi,yhat_bi).sum()).item()
class_iou[j] += I/(U+eps)
for cls in range(args.num_cls):
mask_pred_cls = ((pred_fine).cpu()==cls).float()
mask_gt_cls = (msks.cpu()==cls).float()
cls_dsc[cls] += dice_coeff(mask_pred_cls,mask_gt_cls).item()
#print(i)
class_iou /=(i+1)
cls_dsc /=(i+1)
save_folder = os.path.join('test_results',args.dir_checkpoint)
Path(save_folder).mkdir(parents=True,exist_ok = True)
#np.save(os.path.join(save_folder,'test_masks.npy'),np.concatenate(pred_msk,axis=0))
#np.save(os.path.join(save_folder,'test_name.npy'),np.concatenate(np.expand_dims(img_name_list,0),axis=0))
print(dataset_name)
print('class dsc:',cls_dsc)
print('class iou:',class_iou)
if __name__ == "__main__":
args = cfg.parse_args()
if 1: # if you want to load args from taining setting or you want to identify your own setting
args_path = f"{args.dir_checkpoint}/args.json"
# Reading the args from the json file
with open(args_path, 'r') as f:
args_dict = json.load(f)
# Converting dictionary to Namespace
args = Namespace(**args_dict)
dataset_name = args.dataset_name
print('train dataset: {}'.format(dataset_name))
test_img_list = args.img_folder + '/train_slices_info_sampled_1000.txt'
main(args,test_img_list)