-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathpack_images.py
41 lines (37 loc) · 1.44 KB
/
pack_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from __future__ import print_function
import argparse
import numpy as np
import os
from PIL import Image
import re
import torch
import numpy as np
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--images-path', type=str, required=True,
help='folder containing preprocessed png images')
parser.add_argument('--labels-path', type=str, required=True,
help='folder containing image labels')
parser.add_argument('--output-path', type=str, required=True,
help='output file path')
parser.add_argument('--val-size', type=int, default=100)
args = parser.parse_args()
images = []
labels = []
for f in os.listdir(args.images_path):
if not f.endswith('.png'):
continue
m = re.match('^image-(\d+).png$', f)
if not m:
print('no label for file {}, skipping'.format(f))
with open(os.path.join(args.labels_path, 'label-{}.txt'.format(m.group(1)))) as label_f:
label = label_f.read()
labels.append(ord(label) - 96) # 'a' is 97 but label 0 is not used in EMNIST
image = Image.open(os.path.join(args.images_path, f))
image = torch.from_numpy(np.array(image)).t().unsqueeze(0)
images.append(image)
images = torch.cat(images)
labels = torch.LongTensor(labels)
n = args.val_size
torch.save([images[:n], labels[:n]], args.output_path.replace(".pt", "-val.pt"))
torch.save([images[n:], labels[n:]], args.output_path.replace(".pt", "-test.pt"))