-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
253 lines (223 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import torch.utils.data
from modules import Transformer
from data import SymbolicIntegrationDataset, collate_fn, get_validation_batches
from vocab import vocab, token2id, id2token
import argparse
import os
import random
import matplotlib
matplotlib.use('pdf')
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data', dest='data_paths', required=True, nargs='+', help='Paths of the dataset files')
parser.add_argument('-v', '--valid', dest='validation_paths', required=False, nargs='+',
help='Paths of the validation files')
parser.add_argument('-s', '--save', dest='save_dir', required=False, default='save', help='Where to save checkpoints')
parser.add_argument('-l', '--log', dest='log_dir', required=False, default='log', help='Where to save logs')
parser.add_argument('-r', '--restore', dest='restore_path', required=False, default=None,
help='Checkpoint to continue training from')
parser.add_argument('--batch_size', dest='batch_size', required=False, default=32, type=int)
parser.add_argument('--print_iter', dest='print_iter', required=False, default=1, type=int,
help='Print progress every x iterations')
parser.add_argument('--plot_iter', dest='plot_iter', required=False, default=1000, type=int,
help='Plot attention every x iterations')
parser.add_argument('--plot_layers', dest='plot_layers', required=False, nargs="+",
default=["decoder_layer3_block2"],
help='List of layers to plot attention on')
parser.add_argument('--save_iter', dest='save_iter', required=False, default=10000, type=int,
help='Save checkpoint every x iterations')
parser.add_argument('--val_iter', dest='val_iter', required=False, default=5000, type=int,
help='Calculate validation accuracy every x iterations')
parser.add_argument('--use_amp', dest='use_amp', action='store_true', help='Use Apex Automatic Mixed Precision')
parser.add_argument('--num_encoder_layers', dest="num_encoder_layers", required=False, default=6, type=int)
parser.add_argument('--num_decoder_layers', dest="num_decoder_layers", required=False, default=6, type=int)
parser.add_argument('--d_model', dest="d_model", required=False, default=512, type=int)
parser.add_argument('--num_heads', dest="num_heads", required=False, default=8, type=int)
parser.add_argument('--d_ff', dest="d_ff", required=False, default=2048, type=int)
parser.add_argument('--dropout_rate', dest="dropout_rate", required=False, default=0.1, type=float)
parser.add_argument('--max_input_seq_len', dest="max_input_seq_len", required=False, default=128, type=int)
parser.add_argument('--max_target_seq_len', dest="max_target_seq_len", required=False, default=256, type=int)
if __name__ == "__main__":
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
# Tensorboard
writer = SummaryWriter(args.log_dir)
print("Loading dataset...")
dataset = SymbolicIntegrationDataset(args.data_paths, device=device, max_input_len=args.max_input_seq_len,
max_target_len=args.max_target_seq_len)
data_loader = torch.utils.data.DataLoader(dataset, args.batch_size, collate_fn=collate_fn)
validation_data = {os.path.basename(path): get_validation_batches(path, args.batch_size,
max_input_len=args.max_input_seq_len,
max_target_len=args.max_target_seq_len)
for path in args.validation_paths}
print("Loading transformer...")
model = Transformer(num_encoder_layers=args.num_encoder_layers,
num_decoder_layers=args.num_decoder_layers,
d_model=args.d_model,
num_heads=args.num_heads,
d_ff=args.d_ff,
dropout_rate=args.dropout_rate,
max_input_seq_len=dataset.max_input_len,
max_target_seq_len=dataset.max_target_len,
input_vocab_size=len(vocab),
target_vocab_size=len(vocab),
vocab_padding_index=token2id("<pad>")).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
global_step = 0
# Learning rate schedule
# warmup_steps = 4000.0
# def decay(_):
# step = global_step + 1
# return model.d_model ** -0.5 * min(step ** -0.5, step * warmup_steps ** -1.5)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=decay)
if args.use_amp:
import apex.amp as amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
if args.restore_path is not None:
print("Restoring from checkpoint: {}".format(args.restore_path))
state = torch.load(args.restore_path, map_location=device)
global_step = state["global_step"]
model.load_state_dict(state["model"])
optimizer.load_state_dict(state["optimizer"])
# scheduler.load_state_dict(state["scheduler"])
print("Seeking previous position in dataset...")
dataset.seek_forward(global_step * args.batch_size)
def plot(m, p):
fig, ax = plt.subplots()
im = ax.imshow(m.detach().cpu())
fig.colorbar(im)
plt.title('{} Steps'.format(global_step))
plt.savefig(p, format='png')
plt.close(fig)
print("Start training")
while global_step < 100000000:
for i, sample in enumerate(data_loader):
optimizer.zero_grad()
inp = sample["input"].to(device) # [batch_size, seq_len_enc]
target = sample["target"].to(device) # [batch_size, seq_len_dec+1]
enc_padding_mask = sample["enc_padding_mask"].to(device) # [batch_size, 1, 1, seq_len_enc]
dec_padding_mask = sample["dec_padding_mask"].to(device) # [batch_size, 1, 1, seq_len_dec+1]
dec_combined_mask = sample["dec_combined_mask"].to(device) # [batch_size, 1, seq_len_dec+1, seq_len_dec+1]
# Remove rightmost position target to feed to decoder
target_to_decode = target[:, :-1] # [batch_size, seq_len_dec]
dec_combined_mask = dec_combined_mask[:, :, :-1, :-1] # [batch_size, 1, seq_len_dec, seq_len_dec]
# Run Text2Mel. Shape of y_logits: [batch_size, seq_len_dec, target_vocab_size]
y_logits, _, att = model(inp, target_to_decode, enc_padding_mask, dec_combined_mask)
# Shift target one position to the left (remove first position). This is what the transformer should output
target_for_loss = target[:, 1:] # [batch_size, seq_len_dec]
dec_padding_mask = dec_padding_mask[:, 0, 0, 1:] # This is needed for loss masking: [batch, dec_seq_len]
# 'target_for_loss' contains integer indices of the words, while 'y_logits' has vectors with vocab_size many
# components. Torch will automatically handle this, but we need to swap the 'target_vocab_size' axis with
# the 'seq_len_dec' axis.
# Resulting shape of loss is [batch_size, seq_len_dec]
loss = nn.functional.cross_entropy(y_logits.transpose(1, 2), # See comment above
target_for_loss,
reduction="none") # We reduce manually later
# We also should mask the loss before reducing
loss *= (1 - dec_padding_mask.float())
loss = loss.sum() / (dec_padding_mask.shape[0] * dec_padding_mask.shape[1] - dec_padding_mask.sum())
if args.use_amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
nn.utils.clip_grad_norm_(amp.master_params(optimizer), 5.0)
else:
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
# scheduler.step()
global_step += 1
# Tensorboard
writer.add_scalar('loss', loss, global_step)
if global_step % args.print_iter == 0:
print("Step {}, Loss={:.4f}".format(global_step, loss))
# Plot attention
if global_step % args.plot_iter == 0:
b = random.randint(0, inp.shape[0]-1) # Plot from random batch
for layer in args.plot_layers:
# To label the axes we need differentiate between encoder, decoder and self attention
if "encoder" in layer:
q_labels, k_labels = inp, inp
elif "decoder" in layer and "block1" in layer:
q_labels, k_labels = target_for_loss, target_for_loss
else:
q_labels, k_labels = target_for_loss, inp
q_labels, k_labels = q_labels.detach().cpu(), k_labels.detach().cpu() # [batch_size, seq_len]
q_labels = [id2token(q_labels[b, i].item()) for i in range(q_labels.shape[1])]
k_labels = [id2token(k_labels[b, i].item()) for i in range(k_labels.shape[1])]
# Plot each head
fig = plt.figure(figsize=(16, 8))
# plt.title("{} - Step {}".format(layer, global_step))
for head in range(args.num_heads):
attention = att[layer][b, head].detach().cpu().numpy() # [seq_len_q, seq_len_k]
ax = fig.add_subplot(2, 4, head + 1)
ax.matshow(attention, cmap="viridis")
# TODO: Labels look ugly
# ax.set_xticks(range(len(k_labels)))
# ax.set_yticks(range(len(q_labels)))
# ax.set_ylim(len(k_labels) - 1.5, -0.5)
# ax.set_xticklabels(k_labels, fontdict={"fontsize": 7}, rotation=90)
# ax.set_yticklabels(q_labels, fontdict={"fontsize": 7})
ax.set_xlabel("Head {}".format(head + 1))
plt.tight_layout()
writer.add_figure("attention_" + layer, fig, global_step)
# Validation
if global_step % args.val_iter == 0 and args.validation_paths:
print("Calculating validation accuracy...")
msg = "Validation accuracy:"
model.eval()
with torch.no_grad():
for name, samples in validation_data.items():
correct_total = 0
sequence_count = 0
for sample in samples:
# Run transformer on this batch. Exactly the same as above
inp = sample["input"].to(device)
target = sample["target"].to(device)
enc_padding_mask = sample["enc_padding_mask"].to(device)
dec_combined_mask = sample["dec_combined_mask"].to(device)
target_to_decode = target[:, :-1]
dec_combined_mask = dec_combined_mask[:, :, :-1, :-1]
_, y, _ = model(inp, target_to_decode, enc_padding_mask, dec_combined_mask)
# Apply padding mask to the output
mask = 1 - sample["dec_padding_mask"].to(device).float() # [batch_size, 1, 1, seq_len_dec]
mask = mask[:, 0, 0, 1:].unsqueeze(-1) # [batch_size, seq_len_dec, 1]
y *= mask # [batch, seq_len_dec, vocab_size]
# Count the number of sequences that are correct
predictions = torch.argmax(y, dim=-1) # [batch_size, seq_len_dec]
target = target[:, 1:] # [batch_size, seq_len_dec]
correct_positions = predictions == target # [batch_size, seq_len_dec]
correct_sequences = correct_positions.sum(dim=1) == mask[:, :, 0].sum(dim=1) # [batch_size]
num_correct = correct_sequences.sum()
correct_total += num_correct.item()
sequence_count += inp.shape[0]
accuracy = correct_total / sequence_count
print(correct_total, sequence_count, accuracy)
msg += " {}={:.2f}%,".format(name, accuracy * 100)
writer.add_scalar('validation_acc_' + name, accuracy, global_step) # Tensorboard
print(msg.rstrip(","))
model.train()
# Save checkpoints
if global_step % args.save_iter == 0:
state = {
"global_step": global_step,
"num_encoder_layers": model.num_encoder_layers,
"num_decoder_layers": model.num_decoder_layers,
"d_model": model.d_model,
"num_heads": model.num_heads,
"d_ff": model.d_ff,
"dropout_rate": model.dropout_rate,
"vocab": vocab,
"vocab_padding_index": token2id("<pad>"),
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
# "scheduler": scheduler.state_dict(),
}
print("Saving checkpoint...")
torch.save(state, os.path.join(args.save_dir, "checkpoint-{}.pth".format(global_step)))