-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.zig
442 lines (356 loc) · 13.8 KB
/
main.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
const std = @import("std");
const warn = std.debug.warn;
var rng = std.rand.DefaultPrng.init(0x12345678);
pub fn binarySort(comptime T: type, items: []T, lessThan: fn (context: void, lhs: T, rhs: T) bool) void {
{
if (items.len < 2)
return;
var i: usize = 1;
while (i < items.len) : (i += 1) {
const v = items[i];
var l : usize = 0;
var r : usize = i;
while (l < r) {
const m = (l + r) / 2;
if (lessThan({}, items[m], v)) {
l = m + 1;
} else {
r = m;
}
}
if (l == i)
continue;
var n = i;
while (n > l) : (n -= 1)
items[n] = items[n - 1];
// std.mem.copy(T, items[l+1..i+1], items[l..i]);
items[l] = v;
}
}
}
pub const StackedAllocator = struct {
allocator: std.mem.Allocator,
child_allocator: *std.mem.Allocator,
cur_len: usize,
cur_used: usize,
cur_alloc: []u8,
pub fn init(child_allocator: *std.mem.Allocator) StackedAllocator {
return StackedAllocator{
.allocator = std.mem.Allocator{
.reallocFn = realloc,
.shrinkFn = shrink,
},
.child_allocator = child_allocator,
.cur_len = 0,
.cur_used = 0,
.cur_alloc = undefined
};
}
pub fn deinit(self: *StackedAllocator) void {
self.child_allocator.free(self.cur_alloc);
}
fn alloc(allocator: *std.mem.Allocator, n: usize, alignment: u29) error{OutOfMemory}![]u8 {
const self = @fieldParentPtr(StackedAllocator, "allocator", allocator);
if (self.cur_len == 0) { //nothing was allocated yet
self.cur_alloc = try self.child_allocator.alloc(u8, n);
self.cur_len = self.cur_alloc.len;
self.cur_used = self.cur_alloc.len;
return self.cur_alloc[0..n];
} else if (self.cur_len < self.cur_used + n) { //we need more memory
self.cur_alloc = try self.child_allocator.realloc(self.cur_alloc, self.cur_used + n);
self.cur_len = self.cur_alloc.len;
const alloc_slice = self.cur_alloc[self.cur_used..self.cur_used + n];
self.cur_used += n;
return alloc_slice;
} else {
const alloc_slice = self.cur_alloc[self.cur_used..self.cur_used + n];
self.cur_used += n;
return alloc_slice;
}
}
fn shrink(allocator: *std.mem.Allocator, old_mem_unaligned: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
const self = @fieldParentPtr(StackedAllocator, "allocator", allocator);
if ((self.cur_alloc.ptr + self.cur_used) != (old_mem_unaligned.ptr + old_mem_unaligned.len)) {
warn("Failed ptr align", .{});
unreachable;
}
self.cur_used -= old_mem_unaligned.len;
return self.cur_alloc[0..0];
}
fn realloc(allocator: *std.mem.Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
return alloc(allocator, new_size, new_align);
}
};
fn lowerBound(comptime T: type, items: []T, value: T, lessThan: fn(l: T, r: T) bool) usize {
if (items.len < 2)
return 0;
var l : usize = 0;
var r : usize = items.len;
while (l + 1 < r) {
const m = (l + r) / 2;
if (lessThan({}, items[m], value)) {//we want l to be _past_ the value (for sorting purpose)
l = m;
} else {
r = m;
}
}
return l;
}
fn upperBound(comptime T: type, items: []T, value: T, lessThan: fn(l: T, r: T) bool) usize {
std.debug.assert(items.len != 0);
if (items.len < 2)
return 0;
var l : usize = 0;
var r : usize = items.len;
while (l < r) {
const m = (l + r) / 2;
if (lessThan({}, items[m], value)) {//we want l to be _past_ the value (for sorting purpose)
l = m + 1;
} else {
r = m;
}
}
return l;
}
//mergeSort assumes items1 follows right before items2 in memory
//merge sort allocates to can return an error
fn mergeSortLeft(comptime T: type, items1: []T, items2: []T, lessThan: fn(context: void, l: T, r: T) bool, allocator : *std.mem.Allocator) ![]T {
const tmp = try allocator.alloc(T, items1.len);
defer allocator.free(tmp);
std.mem.copy(T, tmp, items1);
// const startSrc1 = binarySearch(T, items1, items2[0], lessThan);
// warn("{} {} {} {}\n", items1.len, startSrc1, items2[0], items1[0]);
var src1Ptr = tmp.ptr;
const src1End = tmp.ptr + tmp.len;
var src2Ptr = items2.ptr;
const src2End = items2.ptr + items2.len;
var targetPtr = items1.ptr;
while (true) {
if (lessThan({}, src1Ptr[0], src2Ptr[0])) {
targetPtr[0] = src1Ptr[0];
src1Ptr += 1;
} else {
targetPtr[0] = src2Ptr[0];
src2Ptr += 1;
}
targetPtr += 1;
if (src1Ptr == src1End) {//no need to copy, it's already there
break;
}
if (src2Ptr == src2End) { //copy rest of the tmp data to the end
const leftBytes = @ptrToInt(src1End) - @ptrToInt(src1Ptr);
@memcpy(@ptrCast([*]u8, targetPtr), @ptrCast([*]u8, src1Ptr), leftBytes);
break;
}
}
return items1.ptr[0..items1.len + items2.len];
}
fn mergeSortRight(comptime T: type, items1: []T, items2: []T, lessThan: fn(context: void, l: T, r: T) bool, allocator : *std.mem.Allocator) ![]T {
const tmp = try allocator.alloc(T, items2.len);
defer allocator.free(tmp);
std.mem.copy(T, tmp, items2);
// const startSrc1 = binarySearch(T, items1, items2[0], lessThan);
//We will walk backwards
var src1Ptr = items1.ptr + items1.len - 1;
const src1Start = items1.ptr;
var src2Ptr = tmp.ptr + tmp.len - 1;
const src2Start = tmp.ptr;
var targetPtr = items2.ptr + tmp.len - 1;
while (true) {
if (!lessThan({}, src2Ptr[0], src1Ptr[0])) {
targetPtr[0] = src2Ptr[0];
src2Ptr -= 1;
} else {
targetPtr[0] = src1Ptr[0];
src1Ptr -= 1;
}
targetPtr -= 1;
if (src2Ptr + 1 == src2Start) {//no need to copy, it's already there
break;
}
if (src1Ptr + 1 == src1Start) { //copy rest of the tmp data to the end
const leftBytes = @ptrToInt(src2Ptr + 1) - @ptrToInt(src2Start);
@memcpy(@ptrCast([*]u8, src1Start), @ptrCast([*]u8, src2Start), leftBytes);
break;
}
}
return items1.ptr[0..items1.len + items2.len];
}
fn mergeSort(comptime T: type, items1: []T, items2: []T, lessThan: fn(context: void, l: T, r: T) bool, allocator : *std.mem.Allocator) ![]T {
if (items1.len == 0)
return items2;
if (items2.len == 0)
return items1;
const full_array = items1.ptr[0..items1.len + items2.len];
const start_items1 = 0;//lowerBound(T, items1, items2[0], lessThan);
const end_items2 = items2.len;//upperBound(T, items2, items1[items1.len - 1], lessThan);
const sort_items1 = items1[start_items1..];
const sort_items2 = items2[0..end_items2];
if (sort_items1.len == 0 or
sort_items2.len == 0)
return full_array;
if (sort_items1.len < sort_items2.len) {
_ = try mergeSortLeft(T, sort_items1, sort_items2, lessThan, allocator);
} else {
_ = try mergeSortRight(T, sort_items1, sort_items2, lessThan, allocator);
}
return full_array;
}
fn timSortNextRun(comptime T: type, items: []T, lessThan: fn(context: void, l: T, r: T) bool, min_run : usize) []T {
if (items.len < 2)
return items;
var cur = items.ptr;
var next = items.ptr + 1;
var len : usize = 1;
const seq_len = items.len;
//find natural run
if (lessThan({}, cur[0], next[0])) { //non-descending
while (true) {
cur += 1;
next += 1;
len += 1;
if (! (len < seq_len and lessThan({}, cur[0], next[0])))
break;
}
} else { //descending
while (true) {
cur += 1;
next += 1;
len += 1;
if (! (len < seq_len and lessThan({}, next[0], cur[0])))
break;
}
std.mem.reverse(T, items[0..len]);
}
//extent run if needed, and insertion sort it
if (len < min_run and len < seq_len) {
const extent = std.math.min(min_run, seq_len);
// std.sort.insertionSort(T, items[0..extent], lessThan);
binarySort(T, items[0..extent], lessThan);
return items[0..extent];
}
//return run slice
return items[0..len];
}
fn calculateMinRun(len: usize) usize {
var r : usize = 0;
var n = len;
while (n >= 32) {
r |= n & 1;
n >>= 1;
}
return r + n;
}
fn timSort(comptime T: type, items: []T, lessThan: fn(context: void, l: T, r: T) bool) !void {
var allocator = std.heap.page_allocator;
const min_run = calculateMinRun(items.len);
//we know the max size of the Run stack, since every run is at least min_run in size, and we know that number of items
//we estimate the size and double it since ArrayList might use a doubling allocation approach
const stack_size = 2 * @sizeOf([]T) * (items.len / min_run + 1);
// allocate the buffer for the run stack
var stack_buf = try allocator.alloc(u8, stack_size);
defer allocator.free(stack_buf);
var run_stack_alloc = &std.heap.FixedBufferAllocator.init(stack_buf).allocator;
var stack = std.ArrayList([]T).init(run_stack_alloc);
// var stack = std.ArrayList([]T).init(&allocator);
// To perform the mergeSort, we need to make allocations to temporarily store the values
// Instead of using slow direct allocators, we use a stack allocator that keeps memory mapped
// And grows it only if needed, to save on kernel calls
var sa = StackedAllocator.init(allocator);
defer sa.deinit();
var merging_allocator = &sa.allocator;
const first_run = timSortNextRun(T, items, lessThan, min_run);
try stack.append(first_run);
var whats_left = items[first_run.len..];
while (true) {
if (whats_left.len == 0)
break;
if (stack.items.len < 3) {
const next_run = timSortNextRun(T, whats_left, lessThan, min_run);
try stack.append(next_run);
whats_left = whats_left[next_run.len..];
continue;
}
const stack_n = stack.items.len;
if (stack_n >= 3) {
const X = stack.items[stack_n - 1]; //most recent in stack, comes after r2
const Y = stack.items[stack_n - 2];
const Z = stack.items[stack_n - 3];
if (Z.len <= Y.len + X.len) {
const new_slice = try mergeSort(T, Z, Y, lessThan, merging_allocator);
_ = stack.pop();
_ = stack.pop();
stack.items[stack.items.len - 1] = new_slice;
try stack.append(X);
} else if (Y.len <= X.len) {
const new_slice = try mergeSort(T, Y, X, lessThan, merging_allocator);
_ = stack.pop();
stack.items[stack.items.len - 1] = new_slice;
} else {
const next_run = timSortNextRun(T, whats_left, lessThan, min_run);
try stack.append(next_run);
whats_left = whats_left[next_run.len..];
continue;
}
}
}
while (stack.items.len > 1) {
const stack_n = stack.items.len;
const r1 = stack.items[stack_n - 1];
const r2 = stack.items[stack_n - 2];
stack.items[stack_n - 2] = try mergeSort(T, r2, r1, lessThan, merging_allocator);
_ = stack.pop();
}
}
test "Test Sequential" {
var allocator = std.heap.page_allocator;
const len = 20;
var values = try allocator.alloc(f64, len);
const seq_1 = values[0..15];
const seq_2 = values[15..];
for (seq_1) |*v, n| {
v.* = @intToFloat(f64, n);
}
for (seq_2) |*v, n| {
v.* = @intToFloat(f64, n);
}
const sorted_values = mergeSortLeftInPlace(f64, seq_1, seq_2, std.sort.asc(f64));
// for (sorted_values) |v| {
// warn("{}\n", v);
// }
}
const asc_f64 = std.sort.asc(f64);
pub fn main() anyerror!void {
const N = 40000000;
std.debug.warn("allocating\n", .{});
var allocator = std.heap.page_allocator;
// const f64 = f64;
var values = try allocator.alloc(f64, N);
var values2 = try allocator.alloc(f64, N);
for (values) |_, n| {
const val = @intToFloat(f64, rng.random.intRangeLessThan(i64, -1000, 1000)); //fully random
// const val = @intToFloat(f64, @intCast(i64, n) + rng.random.range(i64, -10, 10)); //slightly random, mostly ascending
// const val = @intToFloat(f64, -@intCast(i64, n) + rng.random.range(i64, -10, 10)); //slightly random, mostly descending
// warn("{} ", val);
values[n] = val;
values2[n] = val;
}
//Run default sort
std.debug.warn("Running default sort\n", .{});
const start_time_default = std.time.milliTimestamp();
std.sort.sort(f64, values, {}, asc_f64);
warn("Default sort took: {}\n", .{std.time.milliTimestamp() - start_time_default});
//Run TimSort
std.debug.warn("Running TimSort sort\n", .{});
const start_time_time = std.time.milliTimestamp();
try timSort(f64, values2, asc_f64);
warn("Tim sort took: {}\n", .{std.time.milliTimestamp() - start_time_time});
//Check if values correspond
std.debug.warn("Comparing all items\n", .{});
for (values) |_, n| {
if (values[n] != values2[n]) {
std.debug.panic("Failed, valued #{} doesn't compare: {} != {}\n", .{n, values[n], values2[n]});
}
}
std.debug.warn("Done\n", .{});
}