-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathContractionWave.py
8441 lines (7433 loc) · 403 KB
/
ContractionWave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#imports of tkinter
import tkinter as tk # python 3
from ttkthemes import themed_tk as tk1
from tkinter import font as tkfont # python 3
from tkinter import filedialog
from tkinter import ttk
#import ttk2 #this one has Spinbox in ttk2
from tkinter import messagebox
import scipy.ndimage as ndimage
#
#imports of external libs
from PIL import ImageTk
from PIL import Image
# from PIL import ImageSequence
# from skimage.io import MultiImage
# from skimage.util import img_as_ubyte
import multiprocessing
from multiprocessing import Process, Manager, active_children#, Queue
from collections import deque
import os, pickle, cv2, psutil, time, copy, locale, math, sys, shutil
import datetime as dt
from sys import platform as _platform
import warnings
# from sklearn.preprocessing import minmax_scale
warnings.filterwarnings("ignore", "(?s).*MATPLOTLIBDATA.*",category=UserWarning)
import xlsxwriter
#if _platform == "win32" or _platform == "win64":
# import pkg_resources.py2_warn
#import pandas as pd
import matplotlib as mpl
#AXES
mpl.rcParams['axes.titlepad'] = 10
mpl.rcParams["axes.facecolor"]='white'
mpl.rcParams['axes.edgecolor']='black'
mpl.rcParams['axes.linewidth']= 1
mpl.rcParams['axes.labelcolor'] = 'black'
mpl.rcParams['axes.labelsize'] = 10
#FONT
mpl.rcParams['font.family'] ='Helvetica'
mpl.rcParams['font.weight'] = 'normal'
#TICK
mpl.rcParams['xtick.labelsize'] = 10
mpl.rcParams['ytick.labelsize'] = 10
mpl.rcParams['xtick.color'] = 'black'
mpl.rcParams['ytick.color'] = 'black'
#FIGURE
mpl.rcParams['figure.titlesize'] = 12
mpl.rcParams['figure.figsize'] = [8.0, 6.0]
#Legend
mpl.rcParams['legend.fancybox'] = False
mpl.rcParams['legend.loc'] = 'upper right'
mpl.rcParams['legend.numpoints'] = 3
mpl.rcParams['legend.fontsize'] = 10
mpl.rcParams['legend.framealpha'] = None
mpl.rcParams['legend.scatterpoints'] = 3
mpl.rcParams['legend.edgecolor'] = 'inherit'
import matplotlib.pyplot as plt
# plt.style.use('ggplot')
import matplotlib.gridspec as gridspec
import matplotlib.colors as colors
import matplotlib.cm as cm
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk)
#from matplotlib.backend_bases import key_press_handler
from matplotlib.patches import Rectangle
from matplotlib.lines import Line2D
from matplotlib.quiver import Quiver
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.transforms import Bbox
# import seaborn as sns
# sns.set()
from scipy.signal import savgol_filter
import numpy as np
np.set_printoptions(precision=4, suppress=True)
import io
#imports of custom written classes and functions
from customframe import ttkScrollFrame
from draghandlers import PeaksObj, MoveDragHandler#,PeakObj
from customdialogs import ReferenceDefinitionDialog, CustomYesNo,NewCellLengthDialog, DiffComparisionDialog, ProgressBarDialog, AboutDialog, FolderSelectDialog, CoreAskDialog, SelectMenuItem, AddPresetDialog, DotChangeDialog, SelectPresetDialog, PlotSettingsProgress, QuiverJetSettings, AdjustNoiseDetectDialog, AdjustWaveEndDialog, AdjustDeltaFFTDialog, SaveFigureVideoDialog, SaveFigureDialog, SaveTableDialog, SavGolDialog, NpConvDialog, FourierConvDialog, SummarizeTablesDialog, QuiverJetMaximize, WaitDialogProgress, SaveLegendDialog
from smoothregress import exponential_fit, noise_detection, peak_detection, peak_detection_threshold, peak_detection_decay, smooth_scipy, noise_definition#, smooth_data, _1gaussian, _2gaussian
from tooltip import CreateToolTip
used_separator = "/"
img_opencv = (".bmp", ".dib", ".jpeg", ".jpg", ".jpe", ".jp2", ".png", ".pbm", ".pgm", ".ppm", ".sr", ".ras", ".tiff", ".tif")
# formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
# def setup_logger(name, log_file, level=logging.INFO):
# """To setup as many loggers as you want"""
# handler = logging.FileHandler(log_file)
# handler.setFormatter(formatter)
# logger = logging.getLogger(name)
# logger.setLevel(level)
# logger.addHandler(handler)
# return logger
# Nova janela com gŕafico comparando e rodando no background
# 2 eixos y com cada medida, linhas cores diferentes
# cinco pontos
# opções exportação
# zoom matlab ver exportação
class MultiTiffReader(object):
#https://stackoverflow.com/questions/18602525/python-pil-for-loop-to-work-with-multi-image-tiff
def __init__(self, path):
self.img = Image.open(r'%s' % path)
def __len__(self):
return self.img.n_frames
def __getitem__(self, num):
self.img.seek(num)
return np.array(self.img.convert('RGB'))
def full_extent(ax, pad=0.0):
"""Get the full extent of an axes, including axes labels, tick labels, and
titles."""
# For text objects, we need to draw the figure first, otherwise the extents
# are undefined.
ax.figure.canvas.draw()
items = ax.get_xticklabels() + ax.get_yticklabels()
# items += [ax, ax.title]
items += [ax, ax.title, ax.xaxis.label, ax.yaxis.label]
bbox = Bbox.union([item.get_window_extent() for item in items])
return bbox.expanded(1.0 + pad, 1.0 + pad)
def filter_by_ang2(ang, angledifference=5.0):
ang_swapped_right = ang.copy()
#remove first column
ang_swapped_right = np.delete(ang_swapped_right, 0, axis=1)
#duplicate last column
ang_swapped_right = np.insert(ang_swapped_right, -1, values=ang_swapped_right[:,-1], axis=1)
#subtract
ang_right_sub = np.abs(ang - ang_swapped_right)
#transform into logic array
ang_right_logic = ang_right_sub >= angledifference
#last column of logic is false (cant diff right index of last)
ang_right_logic[:, -1] = False
#second step measure with left neighbours
ang_swapped_left = ang.copy()
#remove last column
ang_swapped_left = np.delete(ang_swapped_left, -1, axis=1)
#duplicate first column
ang_swapped_left = np.insert(ang_swapped_left, 0, values=ang_swapped_left[:,0], axis=1)
#subtract
ang_left_sub = np.abs(ang - ang_swapped_left)
#transform into logic array
ang_left_logic = ang_left_sub >= angledifference
#first column of logic is false (cant diff left index of 0)
ang_left_logic[:, 0] = False
#third step measure with up neighbours
ang_swapped_up = ang.copy()
#remove last row
ang_swapped_up = np.delete(ang_swapped_up, -1, axis=0)
#duplicate first row
ang_swapped_up = np.insert(ang_swapped_up, 0, values=ang_swapped_up[0,:], axis=0)
#subtract
ang_up_sub = np.abs(ang - ang_swapped_up)
#transform into logic array
ang_up_logic = ang_up_sub >= angledifference
#first row of logic is false (cant diff up index of 0)
ang_up_logic[0, :] = False
#fourth step measure with down neighbours
ang_swapped_down = ang.copy()
#remove first row
ang_swapped_down = np.delete(ang_swapped_down, 0, axis=0)
#duplicate last row
ang_swapped_down = np.insert(ang_swapped_down, -1, values=ang_swapped_down[-1,:], axis=0)
#subtract
ang_down_sub = np.abs(ang - ang_swapped_down)
#transform into logic array
ang_down_logic = ang_down_sub >= angledifference
#last row of logic is false (cant diff down index of last)
ang_down_logic[-1, :] = False
#fifth step measure with up-right neighbours
ang_swapped_up_right = ang.copy()
#remove first row and last column
ang_swapped_up_right = ang_swapped_up_right[1:,:-1]
#duplicate first column and last row
ang_swapped_up_right = np.insert(ang_swapped_up_right, -1, values=ang_swapped_up_right[-1,:], axis=0)
ang_swapped_up_right = np.insert(ang_swapped_up_right, 0, values=ang_swapped_up_right[:,0], axis=1)
#subtract
ang_up_right_sub = np.abs(ang - ang_swapped_up_right)
#transform into logic array
ang_up_right_logic = ang_up_right_sub >= angledifference
#last row of logic is false
ang_up_right_logic[-1, :] = False
#first column of logic is false
ang_up_right_logic[:, 0] = False
#sixth step measure with up-left neighbours
ang_swapped_up_left = ang.copy()
#remove first row and first column
ang_swapped_up_left = ang_swapped_up_left[1:,1:]
#duplicate last column and last row
ang_swapped_up_left = np.insert(ang_swapped_up_left, -1, values=ang_swapped_up_left[-1,:], axis=0)
ang_swapped_up_left = np.insert(ang_swapped_up_left, -1, values=ang_swapped_up_left[:,-1], axis=1)
#subtract
ang_up_left_sub = np.abs(ang - ang_swapped_up_left)
#transform into logic array
ang_up_left_logic = ang_up_left_sub >= angledifference
#last row of logic is false
ang_up_left_logic[-1, :] = False
#last column of logic is false
ang_up_left_logic[:, -1] = False
#seventh step measure with down-right neighbours
ang_swapped_down_right = ang.copy()
#remove first row and first column
ang_swapped_down_right = ang_swapped_down_right[:-1,:-1]
#duplicate first column and first row
ang_swapped_down_right = np.insert(ang_swapped_down_right, 0, values=ang_swapped_down_right[0,:], axis=0)
ang_swapped_down_right = np.insert(ang_swapped_down_right, 0, values=ang_swapped_down_right[:,0], axis=1)
#subtract
ang_down_right_sub = np.abs(ang - ang_swapped_down_right)
#transform into logic array
ang_down_right_logic = ang_down_right_sub >= angledifference
#first row of logic is false
ang_down_right_logic[0, :] = False
#first column of logic is false
ang_down_right_logic[:, 0] = False
#eighth step measure with down-left neighbours
ang_swapped_down_left = ang.copy()
#remove last row and first column
ang_swapped_down_left = ang_swapped_down_left[:-1,1:]
#duplicate last column and first row
ang_swapped_down_left = np.insert(ang_swapped_down_left, 0, values=ang_swapped_down_left[0,:], axis=0)
ang_swapped_down_left = np.insert(ang_swapped_down_left, -1, values=ang_swapped_down_left[:,-1], axis=1)
#subtract
ang_down_left_sub = np.abs(ang - ang_swapped_down_left)
#transform into logic array
ang_down_left_logic = ang_down_left_sub >= angledifference
#first row of logic is false
ang_down_left_logic[0, :] = False
#last column of logic is false
ang_down_left_logic[:, -1] = False
return ang_right_logic | ang_left_logic | ang_up_logic | ang_down_logic | ang_up_right_logic | ang_up_left_logic | ang_down_right_logic | ang_down_left_logic
# def pixeldifferencecalc3(queueobj, object_to_diff, f_indexes, start_ind, end_ind, stamp):
def pixeldifferencecalc3(queueobj, object_to_diff, f_indexes, start_ind, end_ind, shift_ref, stamp):
nf_indexes = []
for a in f_indexes:
# if a-2 > 0:
if a-shift_ref > 0:
# nf_indexes.append(a-2)
nf_indexes.append(a-shift_ref)
else:
nf_indexes.append(a)
f_indexes = nf_indexes.copy()
f_point = f_indexes[0]
if object_to_diff.gtype == "Folder":
global img_opencv
files_grabbed = [x for x in os.listdir(object_to_diff.gpath) if os.path.isdir(x) == False and str(x).lower().endswith(img_opencv)]
files_grabbed = sorted(files_grabbed)
files_grabbed = [object_to_diff.gpath + "/" + a for a in files_grabbed]
files_grabbed = files_grabbed[start_ind:end_ind]
f_frame = cv2.imread(r'%s' % files_grabbed[f_point], -1)
f_frame = f_frame.astype('uint8')
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
for j in range(len(files_grabbed)-1):
frame1 = cv2.imread(r'%s' % files_grabbed[0+j], -1)
frame1 = frame1.astype('uint8')
# prvs = frame1
prvs = None
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
# # diff_prvs_min_mean2 = np.mean(np.abs(diff_prvs_min2))
# if diff_prvs_min_mean2 != 0:
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(files_grabbed)-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
elif object_to_diff.gtype == "Video":
print("f_point")
print(f_point)
print("start_ind")
print(start_ind)
print("end_ind")
print(end_ind)
vid_cap_frame_s = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
vid_cap_frame_s.set(1, f_point+start_ind)
_, f_frame = vid_cap_frame_s.read()
f_frame = f_frame.astype('uint8')
print("f_frame")
print(f_frame)
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
print("prvs_f_frame")
print(prvs_f_frame)
vid_cap_frame_s.release()
vc_p = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
vc_p.set(1, start_ind)
total_frames = end_ind - start_ind
print("total_frames")
print(total_frames)
j = start_ind
jj = 0
# while(vc_p.isOpened() and j < total_frames -1):
while(vc_p.isOpened() and j < end_ind):
print("j, total_frames -1")
print(j, total_frames -1)
_, frame1 = vc_p.read()
frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
# if diff_prvs_min_mean2 != 0:
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
# print(stamp+" PDIFF_VALUE "+ str(j-start_ind) +" " +str(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(jj) +" " +str(diff_prvs_min_mean2))
# queueobj.put(stamp+" PDIFF_VALUE "+ str(j-start_ind) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(jj) +" " +str(diff_prvs_min_mean2))
# queueobj.put(stamp+" PROGRESS "+str((j-start_ind+1) / (total_frames-1)))
# queueobj.put(stamp+" PROGRESS "+str((j+1) / (total_frames-1)))
queueobj.put(stamp+" PROGRESS "+str((jj+1) / (total_frames-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
j += 1
jj += 1
vc_p.release()
elif object_to_diff.gtype == "Tiff Directory":
# _, images = cv2.imreadmulti(r'%s' % object_to_diff.gpath, None, cv2.IMREAD_COLOR)
# images = images[start_ind:end_ind]
# f_frame = images[f_point]
# images = MultiImage(r'%s' % object_to_diff.gpath)
# f_frame = images[start_ind+f_point]
# f_frame = img_as_ubyte(f_frame)
# f_frame = cv2.cvtColor(f_frame, cv2.COLOR_RGB2BGR)
# f_frame = f_frame.astype('uint8')
images = MultiTiffReader(object_to_diff.gpath)
f_frame = images[start_ind+f_point]
prvs_f_frame = None
if len(f_frame.shape) >= 3:
# prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_RGB2GRAY)
else:
prvs_f_frame = f_frame
for j in range(len(images)-1):
# for j in range(start_ind, end_ind-1):
frame1 = images[0+j]
# frame1 = img_as_ubyte(frame1)
# frame1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2BGR)
frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
# prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs = cv2.cvtColor(frame1,cv2.COLOR_RGB2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
# if diff_prvs_min_mean2 != 0:
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
# queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(images)-1)))
queueobj.put(stamp+" PROGRESS "+str((j+1) / ((end_ind-start_ind)-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
def pixeldifferencecalc2(queueobj, object_to_diff, min_indexes, start_ind, end_ind, stamp):
f_point = min_indexes[0]
if object_to_diff.gtype == "Folder":
global img_opencv
files_grabbed = [x for x in os.listdir(object_to_diff.gpath) if os.path.isdir(x) == False and str(x).lower().endswith(img_opencv)]
files_grabbed = sorted(files_grabbed)
files_grabbed = [object_to_diff.gpath + "/" + a for a in files_grabbed]
files_grabbed = files_grabbed[start_ind:end_ind]
f_frame = cv2.imread(r'%s' % files_grabbed[f_point], -1)
f_frame = f_frame.astype('uint8')
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
for j in range(len(files_grabbed)-1):
frame1 = cv2.imread(r'%s' % files_grabbed[0+j], -1)
frame1 = frame1.astype('uint8')
# prvs = frame1
prvs = None
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
# diff_prvs_min_mean2 = np.mean(np.abs(diff_prvs_min2))
if diff_prvs_min_mean2 != 0:
diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(files_grabbed)-1)))
if j in min_indexes:
prvs_f_frame = prvs.copy()
elif object_to_diff.gtype == "Video":
print("f_point")
print(f_point)
print("start_ind")
print(start_ind)
print("end_ind")
print(end_ind)
vid_cap_frame_s = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
vid_cap_frame_s.set(1, f_point+start_ind)
_, f_frame = vid_cap_frame_s.read()
f_frame = f_frame.astype('uint8')
print("f_frame")
print(f_frame)
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
print("prvs_f_frame")
print(prvs_f_frame)
vid_cap_frame_s.release()
vc_p = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
vc_p.set(1, start_ind)
total_frames = end_ind - start_ind
print("total_frames")
print(total_frames)
j = start_ind
jj = 0
# while(vc_p.isOpened() and j < total_frames -1):
while(vc_p.isOpened() and j < end_ind):
print("j, total_frames -1")
print(j, total_frames -1)
_, frame1 = vc_p.read()
frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
if diff_prvs_min_mean2 != 0:
diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
# print(stamp+" PDIFF_VALUE "+ str(j-start_ind) +" " +str(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(jj) +" " +str(diff_prvs_min_mean2))
# queueobj.put(stamp+" PDIFF_VALUE "+ str(j-start_ind) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(jj) +" " +str(diff_prvs_min_mean2))
# queueobj.put(stamp+" PROGRESS "+str((j-start_ind+1) / (total_frames-1)))
# queueobj.put(stamp+" PROGRESS "+str((j+1) / (total_frames-1)))
queueobj.put(stamp+" PROGRESS "+str((jj+1) / (total_frames-1)))
if j in min_indexes:
prvs_f_frame = prvs.copy()
j += 1
jj += 1
vc_p.release()
elif object_to_diff.gtype == "Tiff Directory":
# _, images = cv2.imreadmulti(r'%s' % object_to_diff.gpath, None, cv2.IMREAD_COLOR)
# images = images[start_ind:end_ind]
# f_frame = images[f_point]
# images = MultiImage(r'%s' % object_to_diff.gpath)
# f_frame = images[start_ind+f_point]
# f_frame = img_as_ubyte(f_frame)
# f_frame = cv2.cvtColor(f_frame, cv2.COLOR_RGB2BGR)
# f_frame = f_frame.astype('uint8')
images = MultiTiffReader(object_to_diff.gpath)
f_frame = images[start_ind+f_point]
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
for j in range(len(images)-1):
# for j in range(start_ind, end_ind-1):
frame1 = images[0+j]
# frame1 = img_as_ubyte(frame1)
# frame1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2BGR)
# frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
# prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs = cv2.cvtColor(frame1,cv2.COLOR_RGB2GRAY)
else:
prvs = frame1
diff_prvs_min2 = cv2.subtract(prvs, prvs_f_frame)
# diff_prvs_min2 = np.array(diff_prvs_min2)
diff_prvs_min_mean2 = np.mean(diff_prvs_min2)
if diff_prvs_min_mean2 != 0:
diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
# diff_prvs_min_mean2 = 1/diff_prvs_min_mean2
diff_prvs_min_mean2 = float("{:.3f}".format(diff_prvs_min_mean2))
print(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_min_mean2))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(images)-1)))
if j in min_indexes:
prvs_f_frame = prvs.copy()
def pixeldifferencecalc(queueobj, object_to_diff, f_indexes, start_ind, end_ind, stamp):
print("start_ind")
print(start_ind)
print("end_ind")
print(end_ind)
#TODO:
#Write function to send here checking free cores first and yes/no
#Link listening function on checkTheQueue to Progressbar if open progressbar
#Write resulting screen
#get group first points
# f_indexes = [a-2 for a in f_indexes if a-2 > 0]
nf_indexes = []
for a in f_indexes:
# if a-2 > 0:
# nf_indexes.append(a-2)
if a-4 > 0:
nf_indexes.append(a-4)
else:
nf_indexes.append(a)
f_indexes = nf_indexes.copy()
print("f_indexes")
print(f_indexes)
# if len()
f_point = f_indexes[0]
if object_to_diff.gtype == "Folder":
global img_opencv
files_grabbed = [x for x in os.listdir(object_to_diff.gpath) if os.path.isdir(x) == False and str(x).lower().endswith(img_opencv)]
files_grabbed = sorted(files_grabbed)
files_grabbed = [object_to_diff.gpath + "/" + a for a in files_grabbed]
files_grabbed = files_grabbed[start_ind:end_ind]
print('len(files_grabbed)')
print(len(files_grabbed))
# start_ind
# end_ind
f_frame = cv2.imread(r'%s' % files_grabbed[f_point], -1)
f_frame = f_frame.astype('uint8')
# prvs_f_frame = f_frame
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
for j in range(len(files_grabbed)-1):
frame1 = cv2.imread(r'%s' % files_grabbed[0+j], -1)
frame1 = frame1.astype('uint8')
# prvs = frame1
prvs = None
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs_m = np.mean(prvs_f_frame)
if j == f_point or j in f_indexes:
# prvs_f_frame = 0.0
# diff_prvs = prvs
diff_prvs = 0.0
# prvs_m = 0.0
else:
# diff_prvs = prvs - prvs_f_frame
diff_prvs = cv2.subtract(prvs, prvs_f_frame)
# prvs_m = np.mean(prvs_f_frame)
#pixel wise difference
# diff_prvs = prvs - prvs_f_frame
# diff_prvs_mean = np.mean(diff_prvs) - prvs_m
#pixel wise difference
diff_prvs_mean = np.mean(diff_prvs)
# diff_prvs = prvs - prvs_f_frame
# diff_prvs_mean = diff_prvs.mean()
diff_prvs_mean = float("{:.3f}".format(diff_prvs_mean))
#convert to unit
#send results to queue #PDIFF_VALUE
print(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_mean))
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_mean))
#progress_tasks needs to be update by QUEUE:
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(files_grabbed)-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
elif object_to_diff.gtype == "Video":
vid_cap_frame_s = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
# vid_cap_frame_s.set(1, f_point)
vid_cap_frame_s.set(1, f_point+start_ind)
_, f_frame = vid_cap_frame_s.read()
f_frame = f_frame.astype('uint8')
prvs_f_frame = None
if len(f_frame.shape) >= 3:
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
else:
prvs_f_frame = f_frame
vid_cap_frame_s.release()
# files_grabbed = files_grabbed[start_ind:end_ind]
vc_p = cv2.VideoCapture(r'%s' % object_to_diff.gpath)
#
vc_p.set(1, start_ind)
# total_frames = int(object_to_diff.framenumber)
total_frames = end_ind - start_ind
# j = 0
j = start_ind
while(vc_p.isOpened() and j < total_frames -1):
_, frame1 = vc_p.read()
frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
# if j == f_point:
# prvs_m = None
if j == f_point or j in f_indexes:
# prvs_m = 0.0
# prvs_f_frame = 0.0
# diff_prvs = prvs
diff_prvs = 0.0
else:
# diff_prvs = prvs - prvs_f_frame
diff_prvs = cv2.subtract(prvs, prvs_f_frame)
# prvs_m = np.mean(prvs_f_frame)
#pixel wise difference
# diff_prvs = prvs - prvs_f_frame
# diff_prvs_mean = np.mean(diff_prvs) - prvs_m
diff_prvs_mean = np.mean(diff_prvs)
diff_prvs_mean = float("{:.3f}".format(diff_prvs_mean))
#convert to unit
#send results to queue #PDIFF_VALUE
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_mean))
# queueobj.put(stamp+" PDIFF_VALUE "+ str(j+start_ind) +" " +str(diff_prvs_mean))
#progress_tasks needs to be update by QUEUE:
queueobj.put(stamp+" PROGRESS "+str((j+1) / (total_frames-1)))
# queueobj.put(stamp+" PROGRESS "+str((j+start_ind+1) / (total_frames-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
j += 1
vc_p.release()
elif object_to_diff.gtype == "Tiff Directory":
# _, images = cv2.imreadmulti(r'%s' % object_to_diff.gpath, None, cv2.IMREAD_COLOR)
# images = images[start_ind:end_ind]
# f_frame = images[f_point]
# images = MultiImage(r'%s' % object_to_diff.gpath)
# f_frame = images[start_ind+f_point]
# f_frame = img_as_ubyte(f_frame)
# f_frame = cv2.cvtColor(f_frame, cv2.COLOR_RGB2BGR)
# f_frame = f_frame.astype('uint8')
images = MultiTiffReader(object_to_diff.gpath)
f_frame = images[start_ind+f_point]
prvs_f_frame = None
if len(f_frame.shape) >= 3:
# prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_BGR2GRAY)
prvs_f_frame = cv2.cvtColor(f_frame,cv2.COLOR_RGB2GRAY)
else:
prvs_f_frame = f_frame
for j in range(start_ind, end_ind-1):
# for j in range(len(images)-1):
frame1 = images[0+j]
# frame1 = img_as_ubyte(frame1)
# frame1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2BGR)
frame1 = frame1.astype('uint8')
if len(frame1.shape) >= 3:
# prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs = cv2.cvtColor(frame1,cv2.COLOR_RGB2GRAY)
else:
prvs = frame1
# if j == f_point:
if j == f_point or j in f_indexes:
# prvs_f_frame = 0.0
# diff_prvs = prvs
diff_prvs = 0.0
else:
# diff_prvs = prvs - prvs_f_frame
diff_prvs = cv2.subtract(prvs, prvs_f_frame)
#pixel wise difference
diff_prvs_mean = np.mean(diff_prvs)
# diff_prvs_mean = diff_prvs.mean()
diff_prvs_mean = float("{:.3f}".format(diff_prvs_mean))
#convert to unit
#send results to queue #PDIFF_VALUE
queueobj.put(stamp+" PDIFF_VALUE "+ str(j) +" " +str(diff_prvs_mean))
# queueobj.put(stamp+" PDIFF_VALUE "+ str(j+start_ind) +" " +str(diff_prvs_mean))
#progress_tasks needs to be update by QUEUE:
# queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(images)-1)))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(images)-1)))
if j in f_indexes:
prvs_f_frame = prvs.copy()
def opticalflowfolder(queueobj, object_to_flow, stamp):
print("start opticalflowfolder for stamp: " + stamp)
pyr_scale = object_to_flow.pyr_scale
levels = object_to_flow.levels
winsize = object_to_flow.winsize
iterations = object_to_flow.iterations
poly_n = object_to_flow.poly_n
poly_sigma = object_to_flow.poly_sigma
fps = object_to_flow.FPS
pixel_val = object_to_flow.pixelsize
segmentationtype = object_to_flow.segmentationtype
print("loaded opticalflowfolder configs for stamp: " + stamp)
# magnitudethreshold = object_to_flow.magnitudethreshold
#Pre process groups
smallest_ncc = float("inf")
smallest_ncc_i = -1
biggest_ncc = float("-inf")
biggest_ncc_i = -1
avg_bigncc_means = -1.0
pyr_scale = default_values["pyr_scale"]
levels = default_values["levels"]
winsize = default_values["winsize"]
iterations = default_values["iterations"]
poly_n = default_values["poly_n"]
poly_sigma = default_values["poly_sigma"]
ncc_mean = 0.0
magnitudethreshold = None
angledifference = object_to_flow.angledifference
global filter_by_ang
# global filesprocessed
queueobj.put(stamp+" TIME "+ " ".join(["--", "---", "--:--:--"]) )
print("#PROCESSING "+stamp+" "+object_to_flow.name+" TIME "+ " ".join(["--", "---", "--:--:--"]) + " " + str(dt.datetime.now()) +"\n" )
if object_to_flow.gtype == "Folder":
global img_opencv
files_grabbed = [x for x in os.listdir(object_to_flow.gpath) if os.path.isdir(x) == False and str(x).lower().endswith(img_opencv)]
files_grabbed = sorted(files_grabbed)
files_grabbed = [object_to_flow.gpath + "/" + a for a in files_grabbed]
starttime = time.time()
#Pre process and send flow to queue if magnitude threshold
if segmentationtype == 0: #by magnitude threshold
for j in range(len(files_grabbed)-1):
#Dense Optical Flow in OpenCV (Gunner Farneback's algorithm)
frame1 = cv2.imread(r'%s' % files_grabbed[0+j], -1)
frame1 = frame1.astype('uint8')
frame2 = cv2.imread(r'%s' % files_grabbed[1+j], -1)
frame2 = frame2.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
ncc_norm = np.sum( (prvs - prvs.mean() ) * (prvs2 - prvs2.mean() ) ) / ( (prvs.size - 1) * np.std(prvs) * np.std(prvs2) )
cur_ncc_means = np.abs(prvs.mean() - prvs2.mean())
if ncc_norm < smallest_ncc:
smallest_ncc = ncc_norm
smallest_ncc_i = j
# if ncc_norm > biggest_ncc:
if ncc_norm > biggest_ncc:
biggest_ncc = ncc_norm
biggest_ncc_i = j
telapsed = time.time() - starttime
queueobj.put(stamp+" TIME "+ " ".join([str(int(telapsed)), "Wait...", "--:--:--"]) )
frame1 = cv2.imread(r'%s' %files_grabbed[0+biggest_ncc_i])
frame2 = cv2.imread(r'%s' %files_grabbed[1+biggest_ncc_i])
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
flow = cv2.calcOpticalFlowFarneback(prvs, prvs2, None, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, 0)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
ncc_mean = np.abs(mag).mean()
magnitudethreshold = ncc_mean
mag = np.ma.masked_where(mag < magnitudethreshold, mag)
ncc_mean = np.abs(mag).mean()
magnitudethreshold_C = ncc_mean * fps * pixel_val
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PREMAG "+ str(magnitudethreshold) +" " +str(stamp) + " " + str(dt.datetime.now()) +"\n")
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PREMAGC "+ str(magnitudethreshold_C) +" " +str(stamp) + " " + str(dt.datetime.now()) +"\n")
queueobj.put(stamp+" PREMAG "+ str(magnitudethreshold))
queueobj.put(stamp+" PREMAGC "+str(magnitudethreshold_C))
for j in range(len(files_grabbed)-1):
#Dense Optical Flow in OpenCV (Gunner Farneback's algorithm)
frame1 = cv2.imread(r'%s' % files_grabbed[0+j], -1)
frame1 = frame1.astype('uint8')
frame2 = cv2.imread(r'%s' %files_grabbed[1+j], -1)
frame2 = frame2.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
flow = cv2.calcOpticalFlowFarneback(prvs, prvs2, None, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, 0)
#file equals: obj_name+stamp+flow+j
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
#Optional magnitude segmentation algorithm
if segmentationtype == 0: #by magnitude threshold
mag = np.ma.masked_where(mag < magnitudethreshold, mag)
if segmentationtype == 1: #by angle difference clustering
maskAng = np.ones((3, 3))
ang_filter = filter_by_ang2(ang, angledifference=angledifference)
#first step measure with right neighbours
mag = np.ma.masked_where(ang_filter, mag)
meanval = abs(mag.mean() * fps * pixel_val)
meanval = float("{:.3f}".format(meanval))
print("#PROCESSING "+stamp+" "+object_to_flow.name+" MEANS "+ str(j) +" " +str(meanval) + " " + str(dt.datetime.now()) +"\n")
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PROGRESS "+str((j+1) / (len(files_grabbed)-1)) + " " + str(dt.datetime.now()) +"\n")
queueobj.put(stamp+" MEANS "+ str(j) +" " +str(meanval))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (len(files_grabbed)-1)))
telapsed = time.time() - starttime
testimated = (telapsed/(j+1))*(len(files_grabbed))
finishtime = starttime + testimated
finishtime = dt.datetime.fromtimestamp(finishtime).strftime("%H:%M:%S") # in time
lefttime = testimated-telapsed # in seconds
queueobj.put(stamp+" TIME "+ " ".join([str(int(telapsed)), str(int(lefttime)), str(finishtime)]) )
print("#PROCESSING "+stamp+" "+object_to_flow.name+" TIME "+ " ".join([str(int(telapsed)), str(int(lefttime)), str(finishtime)]) +"\n")
# print("files_grabbed")
# print(files_grabbed)
elif object_to_flow.gtype == "Video":
#Pre process and send flow to queue
starttime = time.time()
if segmentationtype == 0: #by magnitude threshold
vc_p = cv2.VideoCapture(r'%s' % object_to_flow.gpath)
_, frame1 = vc_p.read()
frame1 = frame1.astype('uint8')
total_frames = int(object_to_flow.framenumber)
j = 0
print("start video read 1")
while(vc_p.isOpened() and j < total_frames -1):
_, frame2 = vc_p.read()
frame2 = frame2.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
ncc_norm = np.sum( (prvs - prvs.mean() ) * (prvs2 - prvs2.mean() ) ) / ( (prvs.size - 1) * np.std(prvs) * np.std(prvs2) )
if ncc_norm < smallest_ncc:
smallest_ncc = ncc_norm
smallest_ncc_i = j
if ncc_norm > biggest_ncc:
biggest_ncc = ncc_norm
biggest_ncc_i = j
telapsed = time.time() - starttime
queueobj.put(stamp+" TIME "+ " ".join([str(int(telapsed)), "Wait...", "--:--:--"]) )
frame1 = frame2.copy()
j += 1
vc_p.release()
vc_p2 = cv2.VideoCapture(r'%s' % object_to_flow.gpath)
vc_p2.set(1, biggest_ncc_i-1)
_, frame1 = vc_p2.read()
frame1 = frame1.astype('uint8')
_, frame2 = vc_p2.read()
frame2 = frame2.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
flow = cv2.calcOpticalFlowFarneback(prvs, prvs2, None, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, 0)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
ncc_mean = np.abs(mag).mean()
magnitudethreshold = ncc_mean
mag = np.ma.masked_where(mag < magnitudethreshold, mag)
ncc_mean = np.abs(mag).mean()
vc_p2.release()
magnitudethreshold = ncc_mean
magnitudethreshold_C = ncc_mean * fps * pixel_val
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PREMAG "+ str(magnitudethreshold) +" " +str(stamp) + " " + str(dt.datetime.now()) +"\n")
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PREMAGC "+ str(magnitudethreshold_C) +" " +str(stamp) + " " + str(dt.datetime.now()) +"\n")
queueobj.put(stamp+" PREMAG "+ str(magnitudethreshold))
queueobj.put(stamp+" PREMAGC "+str(magnitudethreshold_C))
vc = cv2.VideoCapture(r'%s' % object_to_flow.gpath)
_, frame1 = vc.read()
frame1 = frame1.astype('uint8')
total_frames = int(object_to_flow.framenumber)
starttime = time.time()
j = 0
while(vc.isOpened() and j < total_frames -1):
_, frame2 = vc.read()
frame2 = frame2.astype('uint8')
if len(frame1.shape) >= 3:
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
prvs2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
else:
prvs = frame1
prvs2 = frame2
flow = cv2.calcOpticalFlowFarneback(prvs, prvs2, None, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, 0)
#file equals: obj_name+stamp+flow+j
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
#Optional magnitude segmentation algorithm
if segmentationtype == 0: #by magnitude threshold
mag = np.ma.masked_where(mag < magnitudethreshold, mag)
if segmentationtype == 1: #by angle difference clustering
maskAng = np.ones((3, 3))
ang_filter = filter_by_ang2(ang, angledifference=angledifference)
mag = np.ma.masked_where(ang_filter, mag)
meanval = abs(mag.mean() * fps * pixel_val)
meanval = float("{:.3f}".format(meanval))
queueobj.put(stamp+" MEANS "+ str(j) +" " +str(meanval))
queueobj.put(stamp+" PROGRESS "+str((j+1) / (total_frames-1)))
print("#PROCESSING "+stamp+" "+object_to_flow.name+" MEANS "+ str(j) +" " +str(meanval) + " " + str(dt.datetime.now()) +"\n")
print("#PROCESSING "+stamp+" "+object_to_flow.name+" PROGRESS "+str((j+1) / (total_frames-1)) + " " + str(dt.datetime.now()) +"\n")
telapsed = time.time() - starttime
testimated = (telapsed/(j+1))*(total_frames)
finishtime = starttime + testimated
finishtime = dt.datetime.fromtimestamp(finishtime).strftime("%H:%M:%S") # in time
lefttime = testimated-telapsed # in seconds
queueobj.put(stamp+" TIME "+ " ".join([str(int(telapsed)), str(int(lefttime)), str(finishtime)]) )
print("#PROCESSING "+stamp+" "+object_to_flow.name+" TIME "+ " ".join([str(int(telapsed)), str(int(lefttime)), str(finishtime)]) + " " + str(dt.datetime.now()) +"\n")
frame1 = frame2.copy()