-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathoption.yml
68 lines (59 loc) · 1.89 KB
/
option.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#
# @Author: wjm
# @Date: 2019-10-13 21:45:10
# @LastEditTime: 2019-10-13 21:46:06
# @Description: file content
#
name: Net
algorithm: msddn #maunetv4_ns #ugcn_s4nba0 pan_unfolding_v4
nEpochs: 500
gpu_mode: True
save_best: True
gpus: [1]
threads: 4 #num_works
log_dir: /home/manman/xuanhua/newpan/log/
seed: 123 #123
checkpoint: /home/your_folder/your_folder/newpan/checkpoint
data_dir_train: /media/your_folder/data_disk/yaogan/WV3_data/train128
data_dir_eval: /media/your_folder/data_disk/yaogan/WV3_data/test128
#data_dir_train: /media/your_folder/data_disk/yaogan/GF2_data/train128
#data_dir_eval: /media/your_folder/data_disk/yaogan/GF2_data/test128
#data_dir_train: /media/your_folder/data_disk/yaogan/WV3_data/train128
#data_dir_eval: /media/your_folder/data_disk/yaogan/WV3_data/test128
source_ms: ms
source_pan: pan
pretrain:
pretrained: False
pre_sr: msddn_4_1670917477/bestSSIM.pth #unet_pan_4_1669425995/best.pth
pre_folder: /home/your_folder/your_folder/newpan/checkpoint/
test: #用于指标测试的代码
algorithm: msddn #pannetffft
type: test #[test, eval]
data_dir: /media/your_folder/data_disk/yaogan/WV3_data/test128
source_ms: ms
source_pan: pan
model: you_folder/bestSSIM.pth #unet_pan_4_1669431831/best.pth #unet_pan_4_1669425995/best.pth #MAUNetV3_4_1638761339/best.pth #ugcn_s4nb_4_1630230918/best.pth latest
#model: ugcn_s4nb_4_1630368984/best.pth
save_dir: /home/your_folder/your_folder/result/net_WV3
data:
upsacle: 4
batch_size: 4 #4
patch_size: 32
data_augmentation: False
n_colors: 4
rgb_range: 255
normalize : False
schedule:
lr: 5e-4 #5e-6 #1e-2
decay: 1000
gamma: 0.1
optimizer: ADAM #[ADAM, SGD, RMSprop]
momentum: 0.9 #SGD momentum
beta1: 0.9 #ADAM beta
beta2: 0.999 #ADAM beta
epsilon: 1e-8 #ADAM epsilon
alpha: 0.9 #RMSprop alpha
weight_dency: 0
gclip: 40 #0.4 #0.4 0.04
loss: L1 #[MSE, L1]
use_YCbCr: False