-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
256 lines (179 loc) · 8.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Code for training TransSAR on synthetic images
# Author: Malsha Perera
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.nn.functional as F
from torchvision import transforms as T
import os
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.init as init
from utils import BSD_SAR
from transform_main import TransSAR, TransSARV2, TransSARV3
parser = argparse.ArgumentParser(description='TransSAR')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run(default: 1)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch_size', default=1, type=int,
metavar='N', help='batch size (default: 8)')
parser.add_argument('--learning_rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate (default: 0.01)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--lfw_path', default='../lfw', type=str, metavar='PATH',
help='path to root path of lfw dataset (default: ../lfw)')
parser.add_argument('--train_dataset', required=True, type=str)
parser.add_argument('--val_dataset', required=True, type=str)
parser.add_argument('--modelname', default='off', type=str,
help='turn on img augmentation (default: False)')
parser.add_argument('--cuda', default="on", type=str,
help='switch on/off cuda option (default: off)')
parser.add_argument('--aug', default='off', type=str,
help='turn on img augmentation (default: False)')
parser.add_argument('--load', default='default', type=str,
help='turn on img augmentation (default: default)')
parser.add_argument('--save', default='default', type=str,
help='turn on img augmentation (default: default)')
parser.add_argument('--model', default='TransSARV2', type=str,
help='model name')
parser.add_argument('--direc', required=True , type=str,
help='directory to save')
parser.add_argument('--crop', type=int ,default=256)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--lambda_loss', default=0.04, type=float)
args = parser.parse_args()
aug = args.aug
direc = args.direc
num_epochs = args.epochs
modelname = args.modelname
crop_size = (args.crop, args.crop)
lambda_loss = args.lambda_loss
def total_variation(image_in):
tv_h = torch.sum(torch.abs(image_in[ :, :-1] - image_in[ :, 1:]))
tv_w = torch.sum(torch.abs(image_in[ :-1, :] - image_in[ 1:, :]))
tv_loss = tv_h + tv_w
return tv_loss
def TV_loss(im_batch, weight):
TV_L = 0.0
for tv_idx in range(len(im_batch)):
TV_L = TV_L + total_variation(im_batch[tv_idx,0,:,:])
TV_L = TV_L/len(im_batch)
return weight*TV_L
def weight_init(m):
'''
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
train_dataset = BSD_SAR(args.train_dataset, crop_size, training_set=True)
val_dataset = BSD_SAR(args.val_dataset, crop_size, training_set=False)
dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valloader = DataLoader(val_dataset, 1, shuffle=True)
device = torch.device("cuda")
model = TransSARV2()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model,device_ids=[0,1]).cuda()
model.to(device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(list(model.parameters()), lr=args.learning_rate,
weight_decay=1e-5)
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total_params: {}".format(pytorch_total_params))
def train_model(model, criterion, optimizer, dataloader, valloader, direc, num_epochs=400):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 1000
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
running_loss = 0.0
running_loss_tv = 0.0
for batch_idx, (X_batch, y_batch, *rest) in enumerate(dataloader):
X_batch = Variable(X_batch.to(device ='cuda'))
y_batch = Variable(y_batch.to(device='cuda'))
output = model(X_batch)
# print(output.size())
loss = criterion(output, y_batch)
loss = loss + TV_loss(output,0.0000005)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / (batch_idx+1)
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
fulldir = direc+ "/all/" +"/{}/".format(epoch)
if not os.path.isdir(fulldir):
os.makedirs(fulldir)
torch.save(model.state_dict(), fulldir+args.model+".pth")
else:
model.eval() # Set model to evaluate model
running_loss = 0.0
for batch_idx, (X_batch, y_batch, *rest) in enumerate(valloader):
X_batch = Variable(X_batch.to(device='cuda'))
y_batch = Variable(y_batch.to(device='cuda'))
output = model(X_batch)
loss = criterion(output, y_batch)
optimizer.zero_grad()
running_loss += loss.item()
epoch_loss = running_loss / (batch_idx+1)
print('{} Loss (MSE): {:.4f}'.format(phase, epoch_loss))
if epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model.state_dict(), direc+"model.pth")
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f}'.format(best_loss))
model.load_state_dict(best_model_wts)
return model
model_ft = train_model(model, criterion, optimizer, dataloader, valloader, direc, num_epochs)