-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
159 lines (122 loc) · 5.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import random
import argparse
import numpy as np
import torch
import os
from scipy.io import loadmat, savemat
from models import get_beta_schedule, GaussianDiffusion, Network
from noise_fn import generate_pseudo_background_noise
from anomaly_detector import run_rx
from utils import normalize, false_alarm_rate, channel_align
def get_args() -> argparse.Namespace:
"""parser args"""
parser = argparse.ArgumentParser(description='BSDM training', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Dataset options
parser.add_argument('--data_dir', type=str, default='./datasets/', help='Folder to datasets')
parser.add_argument('--train_data', type=str, default='SanDiego', help='Name of train set.')
parser.add_argument('--test_data', type=str, default='None', help='Name of test set.')
# The path of files to save
parser.add_argument('--save_result', action='store_true', default=False, help='Save background suppression result.')
parser.add_argument('--result_save_dir', type=str, default='./results/', help='Folder to save background suppression results.')
# Training options
parser.add_argument('--epochs', type=int, default=500, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.0001, help='The Initial Learning Rate.')
parser.add_argument('--diffusion_mode', type=str, default='gamma', choices=['gamma', 'alpha'], help='Methods of noise diffusion.')
parser.add_argument('--T', type=int, default=1000, help='Maximum time step.')
parser.add_argument('--t', type=int, default=500, help='Time step.')
parser.add_argument('--K', type=int, default=10, help='Number of inference.')
parser.add_argument('--RX', action='store_true', default=True, help='Verification with RX detector.')
# Model options
parser.add_argument('--pre_embed_dim', type=int, default=128, help='Number of pre-embedded channels of de-noising network.')
parser.add_argument('--hidden_dim', type=list, default=[200, 100, 50], help='Number of hidden channels of de-noising network.')
# Random seed
parser.add_argument('--seed', type=int, default=None, help='Manual seed.')
# Device to use
parser.add_argument('--device', type=str, default='gpu', choices=['cpu', 'gpu'], help='Device to use.')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU to use.')
return parser.parse_args()
def set_seed(seed=None):
if seed is None:
set_seed(random.randint(0, 2 ** 30))
else:
print('===>>> Seed = {} <<<==='.format(seed))
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def training(d_model, model, x, opt, scheduler):
model.train()
for e in range(args.epochs):
loss, _, _, _ = d_model.p_loss(model, x)
loss.backward()
opt.step()
opt.zero_grad()
scheduler.step()
print('Epoch-{}: loss = {}'.format(e+1, loss.item()))
def test(d_model, model, x, train_channels, k):
x_new = channel_align(x, train_channels)
x = np.concatenate(x_new, axis=-1)
n = len(x_new)
for i in range(n):
pre_x_0 = torch.tensor(np.expand_dims(np.transpose(x_new[i], [2, 0, 1]), 0)).to(device)
for _ in range(k):
_, pre_x_0 = d_model.test(model, pre_x_0)
pre_x_0 = np.transpose(pre_x_0.squeeze().cpu().numpy(), [1, 2, 0])
x_new[i] = pre_x_0
x_new = np.concatenate(x_new, axis=-1)
return x_new, x
if __name__ == '__main__':
# ger args
args = get_args()
# set device
device = args.device
if device == 'gpu':
device = args.gpu_id
# set seed
set_seed(args.seed)
# load data
train_data_path = args.data_dir + args.train_data + '.mat'
train_set = loadmat(train_data_path)
train_data = train_set['data'].astype(np.float32)
train_map = train_set['map']
# normalize and translation to tensor
x = normalize(train_data)
x = torch.tensor(np.expand_dims(np.transpose(x, [2, 0, 1]), 0)).to(device)
# build model
beta = get_beta_schedule(args.T)
noise = generate_pseudo_background_noise(x, t=args.t)
model = Network({'in_channels': x.shape[1], 'pre_embed_dim': args.pre_embed_dim, 'hidden_dim': args.hidden_dim}).to(device)
d_model = GaussianDiffusion(beta, noise=noise, diffusion_mode='gamma', t=args.t).to(device)
opt = torch.optim.AdamW(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, args.epochs, args.lr/10)
# training
training(d_model, model, x, opt, scheduler)
# test
train_channels = x.shape[1]
if args.test_data == 'None':
test_data_path = train_data_path
else:
test_data_path = args.data_dir + args.test_data + '.mat'
test_set = loadmat(test_data_path)
test_data = test_set['data'].astype(np.float32)
test_map = test_set['map']
x = normalize(test_data)
result, x = test(d_model, model, x, train_channels, args.K)
# verification
if args.RX:
file_name = os.path.splitext(os.path.split(test_data_path)[-1])[0]
rx_result = run_rx(x)
auc, fpr = false_alarm_rate(test_map.reshape([-1]), rx_result.reshape([-1]))
print('RX_detector | ' + file_name + ' | AUC: {}, FPR: {}'.format(auc, fpr))
if args.save_result:
save_path = args.result_save_dir + 'result-t{}-K0'.format(args.t) + file_name + '.mat'
savemat(save_path, {'res': rx_result, 'map': test_map})
rx_result_bs = run_rx(result)
auc, fpr = false_alarm_rate(test_map.reshape([-1]), rx_result_bs.reshape([-1]))
print('RX_detector | with BSDM | ' + file_name + ' | AUC: {}, FPR: {}'.format(auc, fpr))
if args.save_result:
save_path = args.result_save_dir + 'result-t{}-K{}'.format(args.t, args.K) + file_name + '.mat'
savemat(save_path, {'res': rx_result, 'map': test_map})