forked from gcorso/DiffDock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
340 lines (299 loc) · 17.9 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import copy
import numpy as np
from rdkit.Chem import RemoveAllHs
from torch_geometric.loader import DataLoader
from tqdm import tqdm
import torch
from confidence.dataset import ListDataset
from utils import so3, torus
from utils.molecules_utils import get_symmetry_rmsd
from utils.sampling import randomize_position, sampling
from utils.diffusion_utils import get_t_schedule
def loss_function(tr_pred, rot_pred, tor_pred, sidechain_pred, data, t_to_sigma, device, tr_weight=1, rot_weight=1,
tor_weight=1, backbone_weight=0, sidechain_weight=0, apply_mean=True, no_torsion=False):
tr_sigma, rot_sigma, tor_sigma = t_to_sigma(
*[torch.cat([d.complex_t[noise_type] for d in data]) if device.type == 'cuda' else data.complex_t[noise_type]
for noise_type in ['tr', 'rot', 'tor']])
mean_dims = (0, 1) if apply_mean else 1
# translation component
tr_score = torch.cat([d.tr_score for d in data], dim=0) if device.type == 'cuda' else data.tr_score
tr_sigma = tr_sigma.unsqueeze(-1)
tr_loss = ((tr_pred.cpu() - tr_score.cpu()) ** 2 * tr_sigma.cpu() ** 2).mean(dim=mean_dims)
tr_base_loss = (tr_score ** 2 * tr_sigma ** 2).mean(dim=mean_dims).detach()
# rotation component
rot_score = torch.cat([d.rot_score for d in data], dim=0) if device.type == 'cuda' else data.rot_score
rot_score_norm = so3.score_norm(rot_sigma.cpu()).unsqueeze(-1)
rot_loss = (((rot_pred.cpu() - rot_score.cpu()) / rot_score_norm) ** 2).mean(dim=mean_dims)
rot_base_loss = ((rot_score.cpu() / rot_score_norm) ** 2).mean(dim=mean_dims).detach()
# torsion component
if not no_torsion:
edge_tor_sigma = torch.from_numpy(
np.concatenate([d.tor_sigma_edge for d in data] if device.type == 'cuda' else data.tor_sigma_edge))
tor_score = torch.cat([d.tor_score for d in data], dim=0) if device.type == 'cuda' else data.tor_score
tor_score_norm2 = torch.tensor(torus.score_norm(edge_tor_sigma.cpu().numpy())).float()
tor_loss = ((tor_pred.cpu() - tor_score.cpu()) ** 2 / tor_score_norm2)
tor_base_loss = ((tor_score.cpu() ** 2 / tor_score_norm2)).detach()
if apply_mean:
tor_loss, tor_base_loss = tor_loss.mean() * torch.ones(1, dtype=torch.float), tor_base_loss.mean() * torch.ones(1, dtype=torch.float)
else:
index = torch.cat([torch.ones(d['ligand'].edge_mask.sum()) * i for i, d in
enumerate(data)]).long() if device.type == 'cuda' else data['ligand'].batch[
data['ligand', 'ligand'].edge_index[0][data['ligand'].edge_mask]]
num_graphs = len(data) if device.type == 'cuda' else data.num_graphs
t_l, t_b_l, c = torch.zeros(num_graphs), torch.zeros(num_graphs), torch.zeros(num_graphs)
c.index_add_(0, index, torch.ones(tor_loss.shape))
c = c + 0.0001
t_l.index_add_(0, index, tor_loss)
t_b_l.index_add_(0, index, tor_base_loss)
tor_loss, tor_base_loss = t_l / c, t_b_l / c
else:
if apply_mean:
tor_loss, tor_base_loss = torch.zeros(1, dtype=torch.float), torch.zeros(1, dtype=torch.float)
else:
tor_loss, tor_base_loss = torch.zeros(len(rot_loss), dtype=torch.float), torch.zeros(len(rot_loss), dtype=torch.float)
if backbone_weight > 0:
backbone_vecs = torch.cat([d['receptor'].side_chain_vecs.cpu() for d in data], dim=0) if device.type == 'cuda' else data['receptor'].side_chain_vecs
backbone_vecs = backbone_vecs[:, 4:]
backbone_pred = sidechain_pred[:, 4:]
backbone_base_loss = (backbone_vecs ** 2).detach().mean(dim=1) + 0.0001
backbone_loss = ((backbone_pred.cpu() - backbone_vecs) ** 2).mean(dim=1) / backbone_base_loss.mean()
backbone_base_loss = backbone_base_loss / backbone_base_loss.mean()
if apply_mean:
backbone_loss, backbone_base_loss = backbone_loss.mean() * torch.ones(1, dtype=torch.float), backbone_base_loss.mean() * torch.ones(1, dtype=torch.float)
else:
index = torch.cat([torch.ones((d['receptor'].pos.shape[0])) * i for i, d in enumerate(data)], dim=0).long() if device.type == 'cuda' else data['receptor'].batch
num_graphs = len(data) if device.type == 'cuda' else data.num_graphs
s_l, s_b_l, c = torch.zeros(num_graphs), torch.zeros(num_graphs), torch.zeros(num_graphs)
c.index_add_(0, index, torch.ones(backbone_loss.shape[0]))
c = c + 0.0001
s_l.index_add_(0, index, backbone_loss)
s_b_l.index_add_(0, index, backbone_base_loss)
backbone_loss, backbone_base_loss = s_l / c, s_b_l / c
else:
if apply_mean:
backbone_loss, backbone_base_loss = torch.zeros(1, dtype=torch.float), torch.zeros(1, dtype=torch.float)
else:
backbone_loss, backbone_base_loss = torch.zeros(len(rot_loss), dtype=torch.float), torch.zeros(len(rot_loss), dtype=torch.float)
if sidechain_weight > 0:
sidechain_vecs = torch.cat([d['receptor'].side_chain_vecs.cpu() for d in data],
dim=0) if device.type == 'cuda' else data['receptor'].side_chain_vecs
chi_angles = sidechain_vecs[:, :4].to(device)
chi_pred = sidechain_pred[:, :4].to(device)
chi_pred = torch.where(torch.isnan(chi_angles), torch.zeros_like(chi_angles, device=device), chi_pred)
chi_angles = torch.where(torch.isnan(chi_angles), torch.zeros_like(chi_angles, device=device), chi_angles)
difference = torch.abs(chi_pred - chi_angles)
difference = torch.min(difference, 1 - difference) # angles are circular and 360 degrees = 1
sidechain_base_loss = (chi_angles ** 2).detach().mean(dim=1) + 0.0001
sidechain_loss = (difference ** 2).mean(dim=1) / sidechain_base_loss.mean()
sidechain_base_loss = sidechain_base_loss / sidechain_base_loss.mean()
if apply_mean:
sidechain_loss, sidechain_base_loss = \
sidechain_loss.mean().cpu() * torch.ones(1, dtype=torch.float), \
sidechain_base_loss.mean().cpu() * torch.ones(1, dtype=torch.float)
else:
index = torch.cat([torch.ones((d['receptor'].pos.shape[0])) * i for i, d in enumerate(data)],
dim=0).long() if device.type == 'cuda' else data['receptor'].batch
num_graphs = len(data) if device.type == 'cuda' else data.num_graphs
s_l, s_b_l, c = torch.zeros(num_graphs), torch.zeros(num_graphs), torch.zeros(num_graphs)
c.index_add_(0, index, torch.ones(sidechain_loss.shape[0]))
c = c + 0.0001
s_l.index_add_(0, index, sidechain_loss.cpu())
s_b_l.index_add_(0, index, sidechain_base_loss.cpu())
sidechain_loss, sidechain_base_loss = s_l / c, s_b_l / c
else:
if apply_mean:
sidechain_loss, sidechain_base_loss = torch.zeros(1, dtype=torch.float), torch.zeros(1, dtype=torch.float)
else:
sidechain_loss, sidechain_base_loss = torch.zeros(len(rot_loss), dtype=torch.float), torch.zeros(
len(rot_loss), dtype=torch.float)
loss = tr_loss * tr_weight + rot_loss * rot_weight + tor_loss * tor_weight + sidechain_loss * sidechain_weight + backbone_loss * backbone_weight
return loss, tr_loss.detach(), rot_loss.detach(), tor_loss.detach(), backbone_loss.detach(), sidechain_loss.detach(), \
tr_base_loss, rot_base_loss, tor_base_loss, backbone_base_loss, sidechain_base_loss
class AverageMeter():
def __init__(self, types, unpooled_metrics=False, intervals=1):
self.types = types
self.intervals = intervals
self.count = 0 if intervals == 1 else torch.zeros(len(types), intervals)
self.acc = {t: torch.zeros(intervals) for t in types}
self.unpooled_metrics = unpooled_metrics
def add(self, vals, interval_idx=None):
if self.intervals == 1:
self.count += 1 if vals[0].dim() == 0 else len(vals[0])
for type_idx, v in enumerate(vals):
self.acc[self.types[type_idx]] += v.sum().cpu() if self.unpooled_metrics else v.cpu()
else:
for type_idx, v in enumerate(vals):
self.count[type_idx].index_add_(0, interval_idx[type_idx], torch.ones(len(v)))
if not torch.allclose(v, torch.tensor(0.0)):
self.acc[self.types[type_idx]].index_add_(0, interval_idx[type_idx], v)
def summary(self):
if self.intervals == 1:
out = {k: v.item() / self.count for k, v in self.acc.items()}
return out
else:
out = {}
for i in range(self.intervals):
for type_idx, k in enumerate(self.types):
out['int' + str(i) + '_' + k] = (
list(self.acc.values())[type_idx][i] / self.count[type_idx][i]).item()
return out
def train_epoch(model, loader, optimizer, device, t_to_sigma, loss_fn, ema_weights):
model.train()
meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'backbone_loss', 'sidechain_loss',
'tr_base_loss', 'rot_base_loss', 'tor_base_loss', 'backbone_base_loss', 'sidechain_base_loss'])
for data in tqdm(loader, total=len(loader)):
if device.type == 'cuda' and len(data) == 1 or device.type == 'cpu' and data.num_graphs == 1:
print("Skipping batch of size 1 since otherwise batchnorm would not work.")
continue
optimizer.zero_grad()
data = [d.to(device) for d in data] if device.type == 'cuda' else data
try:
tr_pred, rot_pred, tor_pred, sidechain_pred = model(data)
loss_tuple = loss_fn(tr_pred, rot_pred, tor_pred, sidechain_pred, data=data, t_to_sigma=t_to_sigma, device=device)
if loss_tuple is None:
print("None loss tuple, skipping")
continue
loss = loss_tuple[0]
if torch.any(torch.isnan(loss)):
names = data.name if device.type == 'cpu' else [d.name for d in data]
print("Nan loss, skipping batch with complexes", names)
continue
loss.backward()
optimizer.step()
if ema_weights is not None: ema_weights.update(model.parameters())
meter.add([loss.cpu().detach(), *loss_tuple[1:]])
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory, skipping batch')
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
continue
elif 'Input mismatch' in str(e):
print('| WARNING: weird torch_cluster error, skipping batch')
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
continue
else:
#raise e
print(e)
continue
return meter.summary()
def test_epoch(model, loader, device, t_to_sigma, loss_fn, test_sigma_intervals=False):
model.eval()
meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'backbone_loss', 'sidechain_loss',
'tr_base_loss', 'rot_base_loss', 'tor_base_loss', 'backbone_base_loss', 'sidechain_base_loss'],
unpooled_metrics=True)
if test_sigma_intervals:
meter_all = AverageMeter(
['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'backbone_loss', 'sidechain_loss',
'tr_base_loss', 'rot_base_loss', 'tor_base_loss', 'backbone_base_loss', 'sidechain_base_loss'],
unpooled_metrics=True, intervals=10)
for data in tqdm(loader, total=len(loader)):
try:
with torch.no_grad():
tr_pred, rot_pred, tor_pred, sidechain_pred = model(data)
loss_tuple = loss_fn(tr_pred, rot_pred, tor_pred, sidechain_pred, data=data, t_to_sigma=t_to_sigma, apply_mean=False, device=device)
if loss_tuple is None: continue
meter.add([loss_tuple[0].cpu().detach(), *loss_tuple[1:]])
if test_sigma_intervals > 0:
complex_t_tr, complex_t_rot, complex_t_tor = [torch.cat([data[i].complex_t[noise_type] for i in range(len(data))]) for
noise_type in ['tr', 'rot', 'tor']]
sigma_index_tr = torch.round(complex_t_tr.cpu() * (10 - 1)).long()
sigma_index_rot = torch.round(complex_t_rot.cpu() * (10 - 1)).long()
sigma_index_tor = torch.round(complex_t_tor.cpu() * (10 - 1)).long()
meter_all.add([loss_tuple[0].cpu().detach(), *loss_tuple[1:]],
[sigma_index_tr, sigma_index_tr, sigma_index_rot, sigma_index_tor, sigma_index_tr, sigma_index_tr,
sigma_index_tr, sigma_index_rot, sigma_index_tor, sigma_index_tr, sigma_index_tr])
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory, skipping batch')
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
continue
elif 'Input mismatch' in str(e):
print('| WARNING: weird torch_cluster error, skipping batch')
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
continue
else:
raise e
print(e)
continue
out = meter.summary()
if test_sigma_intervals > 0: out.update(meter_all.summary())
return out
def inference_epoch_fix(model, complex_graphs, device, t_to_sigma, args):
t_schedule = get_t_schedule(sigma_schedule='expbeta', inference_steps=args.inference_steps,
inf_sched_alpha=1, inf_sched_beta=1)
tr_schedule, rot_schedule, tor_schedule = t_schedule, t_schedule, t_schedule
dataset = ListDataset(complex_graphs)
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False)
rmsds, min_rmsds = [], []
for orig_complex_graph in tqdm(loader):
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(args.inference_samples)]
randomize_position(data_list, args.no_torsion, False, args.tr_sigma_max)
predictions_list = None
failed_convergence_counter = 0
while predictions_list == None:
try:
predictions_list, confidences = sampling(data_list=data_list, model=model.module if device.type == 'cuda' else model,
inference_steps=args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=args,
t_schedule=t_schedule)
except Exception as e:
failed_convergence_counter += 1
if failed_convergence_counter > 5:
print('failed 5 times - skipping the complex')
break
print("Exception while running inference on complex:", e)
if failed_convergence_counter > 5:
rmsds.extend([100] * args.inference_samples)
min_rmsds.append(100)
continue
if args.no_torsion:
orig_complex_graph['ligand'].orig_pos = (orig_complex_graph[
'ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())
filterHs = torch.not_equal(predictions_list[0]['ligand'].x[:, 0], 0).cpu().numpy()
if isinstance(orig_complex_graph['ligand'].orig_pos, list):
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]
# if len(orig_complex_graph['ligand'].orig_pos.shape) == 3:
# orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in predictions_list])
if len(orig_complex_graph['ligand'].orig_pos.shape) == 2:
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[None, :, :]
try:
orig_ligand_pos = orig_complex_graph['ligand'].orig_pos[:, filterHs] - orig_complex_graph.original_center.cpu().numpy()
except Exception as e:
print("problem with orig_pos which is of shape:", orig_complex_graph['ligand'].orig_pos.shape, e)
continue
mol = RemoveAllHs(orig_complex_graph.mol[0])
complex_rmsds = []
for i in range(len(orig_ligand_pos)):
try:
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[i], [l for l in ligand_pos])
except Exception as e:
print("Using non corrected RMSD because of the error:", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos[i]) ** 2).sum(axis=2).mean(axis=1))
complex_rmsds.append(rmsd)
complex_rmsds = np.asarray(complex_rmsds)
rmsd = np.min(complex_rmsds, axis=0)
rmsds.extend([r for r in rmsd])
min_rmsds.append(rmsd.min(axis=0))
rmsds = np.array(rmsds)
min_rmsds = np.array(min_rmsds)
losses = {'rmsds_lt2': (100 * (rmsds < 2).sum() / len(rmsds)),
'rmsds_lt5': (100 * (rmsds < 5).sum() / len(rmsds)),
'min_rmsds_lt2': (100 * (min_rmsds < 2).sum() / len(min_rmsds)),
'min_rmsds_lt5': (100 * (min_rmsds < 5).sum() / len(min_rmsds)),}
return losses