-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathAwA1_RN.py
297 lines (213 loc) · 10.7 KB
/
AwA1_RN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader,TensorDataset
import numpy as np
import scipy.io as sio
import math
import argparse
import random
import os
from sklearn.metrics import accuracy_score
import pdb
# '/home/lz/Workspace/ZSL/data/Animals_with_Attributes2',
parser = argparse.ArgumentParser(description="Zero Shot Learning")
parser.add_argument("-b","--batch_size",type = int, default = 32)
parser.add_argument("-e","--episode",type = int, default= 500000)
parser.add_argument("-t","--test_episode", type = int, default = 1000)
parser.add_argument("-l","--learning_rate", type = float, default = 1e-5)
parser.add_argument("-g","--gpu",type=int, default=0)
args = parser.parse_args()
# Hyper Parameters
BATCH_SIZE = args.batch_size
EPISODE = args.episode
TEST_EPISODE = args.test_episode
LEARNING_RATE = args.learning_rate
GPU = args.gpu
class AttributeNetwork(nn.Module):
"""docstring for RelationNetwork"""
def __init__(self,input_size,hidden_size,output_size):
super(AttributeNetwork, self).__init__()
self.fc1 = nn.Linear(input_size,hidden_size)
self.fc2 = nn.Linear(hidden_size,output_size)
def forward(self,x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return x
class RelationNetwork(nn.Module):
"""docstring for RelationNetwork"""
def __init__(self,input_size,hidden_size,):
super(RelationNetwork, self).__init__()
self.fc1 = nn.Linear(input_size,hidden_size)
self.fc2 = nn.Linear(hidden_size,1)
def forward(self,x):
x = F.relu(self.fc1(x))
x = F.sigmoid(self.fc2(x))
return x
def main():
# step 1: init dataset
print("init dataset")
dataroot = './data'
dataset = 'AwA1_data'
image_embedding = 'res101'
class_embedding = 'original_att'
matcontent = sio.loadmat(dataroot + "/" + dataset + "/" + image_embedding + ".mat")
feature = matcontent['features'].T
label = matcontent['labels'].astype(int).squeeze() - 1
matcontent = sio.loadmat(dataroot + "/" + dataset + "/" + class_embedding + "_splits.mat")
# numpy array index starts from 0, matlab starts from 1
trainval_loc = matcontent['trainval_loc'].squeeze() - 1
test_seen_loc = matcontent['test_seen_loc'].squeeze() - 1
test_unseen_loc = matcontent['test_unseen_loc'].squeeze() - 1
attribute = matcontent['att'].T
x = feature[trainval_loc] # train_features
train_label = label[trainval_loc].astype(int) # train_label
att = attribute[train_label] # train attributes
x_test = feature[test_unseen_loc] # test_feature
test_label = label[test_unseen_loc].astype(int) # test_label
x_test_seen = feature[test_seen_loc] #test_seen_feature
test_label_seen = label[test_seen_loc].astype(int) # test_seen_label
test_id = np.unique(test_label) # test_id
att_pro = attribute[test_id] # test_attribute
# train set
train_features=torch.from_numpy(x)
print(train_features.shape)
train_label=torch.from_numpy(train_label).unsqueeze(1)
print(train_label.shape)
# attributes
all_attributes=np.array(attribute)
print(all_attributes.shape)
attributes = torch.from_numpy(attribute)
# test set
test_features=torch.from_numpy(x_test)
print(test_features.shape)
test_label=torch.from_numpy(test_label).unsqueeze(1)
print(test_label.shape)
testclasses_id = np.array(test_id)
print(testclasses_id.shape)
test_attributes = torch.from_numpy(att_pro).float()
print(test_attributes.shape)
test_seen_features = torch.from_numpy(x_test_seen)
print(test_seen_features.shape)
test_seen_label = torch.from_numpy(test_label_seen)
train_data = TensorDataset(train_features,train_label)
# init network
print("init networks")
attribute_network = AttributeNetwork(85,1024,2048)
relation_network = RelationNetwork(4096,400)
attribute_network.cuda(GPU)
relation_network.cuda(GPU)
attribute_network_optim = torch.optim.Adam(attribute_network.parameters(),lr=LEARNING_RATE,weight_decay=1e-5)
attribute_network_scheduler = StepLR(attribute_network_optim,step_size=200000,gamma=0.5)
relation_network_optim = torch.optim.Adam(relation_network.parameters(),lr=LEARNING_RATE)
relation_network_scheduler = StepLR(relation_network_optim,step_size=200000,gamma=0.5)
print("training...")
last_accuracy = 0.0
for episode in range(EPISODE):
attribute_network_scheduler.step(episode)
relation_network_scheduler.step(episode)
train_loader = DataLoader(train_data,batch_size=BATCH_SIZE,shuffle=True)
batch_features,batch_labels = train_loader.__iter__().next()
sample_labels = []
for label in batch_labels.numpy():
if label not in sample_labels:
sample_labels.append(label)
# pdb.set_trace()
sample_attributes = torch.Tensor([all_attributes[i] for i in sample_labels]).squeeze(1)
class_num = sample_attributes.shape[0]
batch_features = Variable(batch_features).cuda(GPU).float() # 32*1024
sample_features = attribute_network(Variable(sample_attributes).cuda(GPU)) #k*312
sample_features_ext = sample_features.unsqueeze(0).repeat(BATCH_SIZE,1,1)
batch_features_ext = batch_features.unsqueeze(0).repeat(class_num,1,1)
batch_features_ext = torch.transpose(batch_features_ext,0,1)
#print(sample_features_ext)
#print(batch_features_ext)
relation_pairs = torch.cat((sample_features_ext,batch_features_ext),2).view(-1,4096)
# pdb.set_trace()
relations = relation_network(relation_pairs).view(-1,class_num)
#print(relations)
# re-build batch_labels according to sample_labels
sample_labels = np.array(sample_labels)
re_batch_labels = []
for label in batch_labels.numpy():
index = np.argwhere(sample_labels==label)
re_batch_labels.append(index[0][0])
re_batch_labels = torch.LongTensor(re_batch_labels)
# pdb.set_trace()
# loss
mse = nn.MSELoss().cuda(GPU)
one_hot_labels = Variable(torch.zeros(BATCH_SIZE, class_num).scatter_(1, re_batch_labels.view(-1,1), 1)).cuda(GPU)
loss = mse(relations,one_hot_labels)
# pdb.set_trace()
# update
attribute_network.zero_grad()
relation_network.zero_grad()
loss.backward()
attribute_network_optim.step()
relation_network_optim.step()
if (episode+1)%100 == 0:
print("episode:",episode+1,"loss",loss.data[0])
if (episode+1)%2000 == 0:
# test
print("Testing...")
def compute_accuracy(test_features,test_label,test_id,test_attributes):
test_data = TensorDataset(test_features,test_label)
test_batch = 32
test_loader = DataLoader(test_data,batch_size=test_batch,shuffle=False)
total_rewards = 0
# fetch attributes
# pdb.set_trace()
sample_labels = test_id
sample_attributes = test_attributes
class_num = sample_attributes.shape[0]
test_size = test_features.shape[0]
print("class num:",class_num)
predict_labels_total = []
re_batch_labels_total = []
for batch_features,batch_labels in test_loader:
batch_size = batch_labels.shape[0]
batch_features = Variable(batch_features).cuda(GPU).float() # 32*1024
sample_features = attribute_network(Variable(sample_attributes).cuda(GPU).float())
sample_features_ext = sample_features.unsqueeze(0).repeat(batch_size,1,1)
batch_features_ext = batch_features.unsqueeze(0).repeat(class_num,1,1)
batch_features_ext = torch.transpose(batch_features_ext,0,1)
relation_pairs = torch.cat((sample_features_ext,batch_features_ext),2).view(-1,4096)
relations = relation_network(relation_pairs).view(-1,class_num)
# re-build batch_labels according to sample_labels
re_batch_labels = []
for label in batch_labels.numpy():
index = np.argwhere(sample_labels==label)
re_batch_labels.append(index[0][0])
re_batch_labels = torch.LongTensor(re_batch_labels)
# pdb.set_trace()
_,predict_labels = torch.max(relations.data,1)
predict_labels = predict_labels.cpu().numpy()
re_batch_labels = re_batch_labels.cpu().numpy()
predict_labels_total = np.append(predict_labels_total, predict_labels)
re_batch_labels_total = np.append(re_batch_labels_total, re_batch_labels)
# compute averaged per class accuracy
predict_labels_total = np.array(predict_labels_total, dtype='int')
re_batch_labels_total = np.array(re_batch_labels_total, dtype='int')
unique_labels = np.unique(re_batch_labels_total)
acc = 0
for l in unique_labels:
idx = np.nonzero(re_batch_labels_total == l)[0]
acc += accuracy_score(re_batch_labels_total[idx], predict_labels_total[idx])
acc = acc / unique_labels.shape[0]
return acc
zsl_accuracy = compute_accuracy(test_features,test_label,test_id,test_attributes)
gzsl_unseen_accuracy = compute_accuracy(test_features,test_label,np.arange(50),attributes)
gzsl_seen_accuracy = compute_accuracy(test_seen_features,test_seen_label,np.arange(50),attributes)
H = 2 * gzsl_seen_accuracy * gzsl_unseen_accuracy / (gzsl_unseen_accuracy + gzsl_seen_accuracy)
print('zsl:', zsl_accuracy)
print('gzsl: seen=%.4f, unseen=%.4f, h=%.4f' % (gzsl_seen_accuracy, gzsl_unseen_accuracy, H))
if zsl_accuracy > last_accuracy:
# save networks
torch.save(attribute_network.state_dict(),"./models/zsl_awa1_attribute_network_v33.pkl")
torch.save(relation_network.state_dict(),"./models/zsl_awa1_relation_network_v33.pkl")
print("save networks for episode:",episode)
last_accuracy = zsl_accuracy
if __name__ == '__main__':
main()