-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstartup.py
584 lines (487 loc) · 20.1 KB
/
startup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import sys
import os
import asyncio
# 启动FastChat的Controller
from fastchat.serve.controller import app, Controller
import uvicorn
from typing import List, Dict
from fastchat.serve.controller import logger
from configs.basic_config import LOG_FORMAT, LOG_PATH
from configs.model_config import LLM_MODELS
from configs.server_config import (FSCHAT_MODEL_WORKERS, FSCHAT_CONTROLLER, FSCHAT_OPENAI_API, HTTPX_DEFAULT_TIMEOUT,
API_SERVER, DEFAULT_BIND_HOST)
# 构建多进程
import multiprocessing as mp
from multiprocessing import Process
import argparse
# 获取大模型实例配置
from server.utils import get_model_worker_config, fschat_controller_address, fschat_model_worker_address, \
fschat_openai_api_address
from fastapi import FastAPI
from server.api_router import create_app
from fastapi import FastAPI
def parse_args() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model-worker",
action="store_true",
help="run fastchat's model_worker server with specified model name. "
"specify --model-name if not using default LLM_MODELS",
dest="model_worker",
)
parser.add_argument(
"-n",
"--model-name",
type=str,
nargs="+",
default=LLM_MODELS,
help="specify model name for model worker. "
"add addition names with space seperated to start multiple model workers.",
dest="model_name",
)
parser.add_argument(
"-c",
"--controller",
type=str,
help="specify controller address the worker is registered to. default is FSCHAT_CONTROLLER",
dest="controller_address",
)
args = parser.parse_args()
return args, parser
def create_controller_app(
dispatch_method: str,
log_level: str = "INFO",
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.controller import app, Controller, logger
logger.setLevel(log_level)
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
app.title = "FastChat Controller"
app._controller = controller
return app
def run_controller(log_level: str = "INFO", started_event: mp.Event = None):
import uvicorn
import httpx
from fastapi import Body
import time
import sys
from server.utils import set_httpx_config
set_httpx_config()
app = create_controller_app(
dispatch_method=FSCHAT_CONTROLLER.get("dispatch_method"),
log_level=log_level,
)
_set_app_event(app, started_event)
# add interface to release and load model worker
@app.post("/release_worker")
def release_worker(
model_name: str = Body(..., description="要释放模型的名称", samples=["chatglm-6b"]),
# worker_address: str = Body(None, description="要释放模型的地址,与名称二选一", samples=[FSCHAT_CONTROLLER_address()]),
new_model_name: str = Body(None, description="释放后加载该模型"),
keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
) -> Dict:
available_models = app._controller.list_models()
if new_model_name in available_models:
msg = f"要切换的LLM模型 {new_model_name} 已经存在"
logger.info(msg)
return {"code": 500, "msg": msg}
if new_model_name:
logger.info(f"开始切换LLM模型:从 {model_name} 到 {new_model_name}")
else:
logger.info(f"即将停止LLM模型: {model_name}")
if model_name not in available_models:
msg = f"the model {model_name} is not available"
logger.error(msg)
return {"code": 500, "msg": msg}
worker_address = app._controller.get_worker_address(model_name)
if not worker_address:
msg = f"can not find model_worker address for {model_name}"
logger.error(msg)
return {"code": 500, "msg": msg}
with get_httpx_client() as client:
r = client.post(worker_address + "/release",
json={"new_model_name": new_model_name, "keep_origin": keep_origin})
if r.status_code != 200:
msg = f"failed to release model: {model_name}"
logger.error(msg)
return {"code": 500, "msg": msg}
if new_model_name:
timer = HTTPX_DEFAULT_TIMEOUT # wait for new model_worker register
while timer > 0:
models = app._controller.list_models()
if new_model_name in models:
break
time.sleep(1)
timer -= 1
if timer > 0:
msg = f"sucess change model from {model_name} to {new_model_name}"
logger.info(msg)
return {"code": 200, "msg": msg}
else:
msg = f"failed change model from {model_name} to {new_model_name}"
logger.error(msg)
return {"code": 500, "msg": msg}
else:
msg = f"sucess to release model: {model_name}"
logger.info(msg)
return {"code": 200, "msg": msg}
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def run_openai_api(log_level: str = "INFO", started_event: mp.Event = None):
import uvicorn
import sys
from server.utils import set_httpx_config
set_httpx_config()
controller_addr = fschat_controller_address()
app = create_openai_api_app(controller_addr, log_level=log_level)
_set_app_event(app, started_event)
host = FSCHAT_OPENAI_API["host"]
port = FSCHAT_OPENAI_API["port"]
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port)
def create_openai_api_app(
controller_address: str,
api_keys: List = [],
log_level: str = "INFO",
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
from fastchat.utils import build_logger
logger = build_logger("openai_api", "openai_api.log")
logger.setLevel(log_level)
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
sys.modules["fastchat.serve.openai_api_server"].logger = logger
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
app.title = "FastChat OpeanAI API Server"
return app
def run_model_worker(
model_name: str = LLM_MODELS[0],
controller_address: str = "",
log_level: str = "INFO",
q: mp.Queue = None,
started_event: mp.Event = None,
):
import uvicorn
from fastapi import Body
import sys
from server.utils import set_httpx_config
set_httpx_config()
kwargs = get_model_worker_config(model_name)
host = kwargs.pop("host")
port = kwargs.pop("port")
kwargs["model_names"] = [model_name]
kwargs["controller_address"] = controller_address or fschat_controller_address()
kwargs["worker_address"] = fschat_model_worker_address(model_name)
model_path = kwargs.get("model_path", "")
kwargs["model_path"] = model_path
app = create_model_worker_app(log_level=log_level, **kwargs)
_set_app_event(app, started_event)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
# add interface to release and load model
@app.post("/release")
def release_model(
new_model_name: str = Body(None, description="释放后加载该模型"),
keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
) -> Dict:
if keep_origin:
if new_model_name:
q.put([model_name, "start", new_model_name])
else:
if new_model_name:
q.put([model_name, "replace", new_model_name])
else:
q.put([model_name, "stop", None])
return {"code": 200, "msg": "done"}
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
"""
kwargs包含的字段如下:
host:
port:
model_names:[`model_name`]
controller_address:
worker_address:
"""
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args([])
for k, v in kwargs.items():
setattr(args, k, v)
if worker_class := kwargs.get("langchain_model"):
from fastchat.serve.base_model_worker import app
worker = ""
# 在线模型API
elif worker_class := kwargs.get("worker_class"):
from fastchat.serve.base_model_worker import app
worker = worker_class(model_names=args.model_names,
controller_addr=args.controller_address,
worker_addr=args.worker_address)
sys.modules["fastchat.serve.base_model_worker"].logger.setLevel(log_level)
# 本地模型
else:
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id
args.gpus = "0" # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3"
args.max_gpu_memory = "22GiB"
args.num_gpus = 1 # model worker的切分是model并行,这里填写显卡的数量
args.load_8bit = False
args.cpu_offloading = None
args.model_names = [""]
args.conv_template = None
args.limit_worker_concurrency = 5
args.stream_interval = 2
args.no_register = False
args.embed_in_truncate = False
for k, v in kwargs.items():
setattr(args, k, v)
if args.gpus:
if args.num_gpus is None:
args.num_gpus = len(args.gpus.split(','))
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
worker = ModelWorker(
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
)
sys.modules["fastchat.serve.model_worker"].args = args
sys.modules["fastchat.serve.model_worker"].logger.setLevel(log_level)
app.title = f"FastChat LLM Server ({args.model_names[0]})"
app._worker = worker
return app
def run_api_server(started_event: mp.Event = None, run_mode: str = None):
from server.api_router import create_app
import uvicorn
app = create_app()
_set_app_event(app, started_event)
host = API_SERVER["host"]
port = API_SERVER["port"]
uvicorn.run(app, host=host, port=port)
def _set_app_event(app: FastAPI, started_event: mp.Event = None):
@app.on_event("startup")
async def on_startup():
if started_event is not None:
started_event.set()
def start_main_server():
import time
import signal
def handler(signalname):
def f(signal_received, frame):
raise KeyboardInterrupt(f"{signalname} received")
return f
signal.signal(signal.SIGINT, handler("SIGINT"))
signal.signal(signal.SIGTERM, handler("SIGTERM"))
# https://docs.python.org/zh-cn/3/library/multiprocessing.html#contexts-and-start-methods
mp.set_start_method("spawn")
manager = mp.Manager()
# https://docs.python.org/zh-cn/3/library/multiprocessing.html#pipes-and-queues
queue = manager.Queue()
args, parser = parse_args()
logger.info(f"正在启动服务:")
logger.info(f"如需查看 服务日志 日志,请前往 {LOG_PATH}")
log_level = "INFO"
# 构建进程初始化信息
processes = {"online_api": {}, "model_worker": {}}
# 开始启动控制器
controller_started = manager.Event()
process = Process(
target=run_controller,
name=f"controller",
kwargs=dict(log_level=log_level, started_event=controller_started),
daemon=True,
)
processes["controller"] = process
process = Process(
target=run_openai_api,
name=f"openai_api",
daemon=True,
)
processes["openai_api"] = process
# 开始启动模型引擎
model_worker_started = []
for model_name in args.model_name:
# 启动本地模型,
config = get_model_worker_config(model_name)
if not config.get("online_api"):
e = manager.Event()
model_worker_started.append(e)
process = Process(
target=run_model_worker,
name=f"model_worker - {model_name}",
kwargs=dict(model_name=model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
processes["model_worker"][model_name] = process
# 启动在线API模型
for model_name in args.model_name:
config = get_model_worker_config(model_name)
if (config.get("online_api")
and config.get("worker_class")
and model_name in FSCHAT_MODEL_WORKERS):
e = manager.Event()
model_worker_started.append(e)
process = Process(
target=run_model_worker,
name=f"api_worker - {model_name}",
kwargs=dict(model_name=model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
processes["online_api"][model_name] = process
api_started = manager.Event()
process = Process(
target=run_api_server,
name=f"API Server",
kwargs=dict(started_event=api_started),
daemon=True,
)
processes["api"] = process
def process_count():
return len(processes) + len(processes["online_api"]) + len(processes["model_worker"]) - 2
if process_count() == 0:
parser.print_help()
else:
try:
# 保证任务收到SIGINT后,能够正常退出
if p := processes.get("controller"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait() # 等待controller启动完成
if p := processes.get("openai_api"):
p.start()
p.name = f"{p.name} ({p.pid})"
for n, p in processes.get("model_worker", {}).items():
p.start()
p.name = f"{p.name} ({p.pid})"
for n, p in processes.get("online_api", []).items():
p.start()
p.name = f"{p.name} ({p.pid})"
for e in model_worker_started:
e.wait()
if p := processes.get("api"):
p.start()
p.name = f"{p.name} ({p.pid})"
api_started.wait()
while True:
cmd = queue.get()
e = manager.Event()
if isinstance(cmd, list):
model_name, cmd, new_model_name = cmd
if cmd == "start": # 运行新模型
logger.info(f"准备启动新模型进程:{new_model_name}")
process = Process(
target=run_model_worker,
name=f"model_worker - {new_model_name}",
kwargs=dict(model_name=new_model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
process.start()
process.name = f"{process.name} ({process.pid})"
processes["model_worker"][new_model_name] = process
e.wait()
logger.info(f"成功启动新模型进程:{new_model_name}")
elif cmd == "stop":
if process := processes["model_worker"].get(model_name):
time.sleep(1)
process.terminate()
process.join()
logger.info(f"停止模型进程:{model_name}")
else:
logger.error(f"未找到模型进程:{model_name}")
elif cmd == "replace":
if process := processes["model_worker"].pop(model_name, None):
logger.info(f"停止模型进程:{model_name}")
start_time = datetime.now()
time.sleep(1)
process.terminate()
process.join()
process = Process(
target=run_model_worker,
name=f"model_worker - {new_model_name}",
kwargs=dict(model_name=new_model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
process.start()
process.name = f"{process.name} ({process.pid})"
processes["model_worker"][new_model_name] = process
e.wait()
timing = datetime.now() - start_time
logger.info(f"成功启动新模型进程:{new_model_name}。用时:{timing}。")
else:
logger.error(f"未找到模型进程:{model_name}")
except Exception as e:
logger.error(e)
logger.warning("Caught KeyboardInterrupt! Setting stop event...")
finally:
for p in processes.values():
logger.warning("Sending SIGKILL to %s", p)
# Queues and other inter-process communication primitives can break when
# process is killed, but we don't care here
if isinstance(p, dict):
for process in p.values():
process.kill()
else:
p.kill()
for p in processes.values():
logger.info("Process status: %s", p)
if __name__ == '__main__':
# 运行一个异步事件循环,启动一个主服务器
if sys.version_info < (3, 10):
loop = asyncio.get_event_loop()
else:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(start_main_server())