-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfasttext_nsmc.py
32 lines (25 loc) · 972 Bytes
/
fasttext_nsmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import fasttext
import prenlp
from prenlp.data import Normalizer
from prenlp.tokenizer import Mecab
normalizer = Normalizer(emoji_repl=None)
# Data preparation
nsmc_train, nsmc_test = prenlp.data.NSMC()
# Preprocessing
tokenizer = Mecab()
for dataset in [nsmc_train, nsmc_test]:
for i, (text, label) in enumerate(dataset):
dataset[i][0] = ' '.join(tokenizer(normalizer.normalize(text.strip()))) # both
# dataset[i][0] = text.strip() # original
# dataset[i][0] = normalizer.normalize(text.strip()) # only normalization
# dataset[i][0] = ' '.join(tokenizer(text.strip())) # only tokenization
prenlp.data.fasttext_transform(nsmc_train, 'nsmc.train')
prenlp.data.fasttext_transform(nsmc_test, 'nsmc.test')
# Train
model = fasttext.train_supervised(input='nsmc.train', epoch=25)
# Evaluate
print(model.test('nsmc.train'))
print(model.test('nsmc.test'))
# Inference
print(nsmc_test[0][0])
print(model.predict(nsmc_test[0][0]))