forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit_job_to_cluster.py
287 lines (241 loc) · 10.4 KB
/
submit_job_to_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Sample command-line program to run a pyspark job on a new or existing
cluster.
Global region clusters are supported with --global_region flag.
Example Usage to run the pyspark job on a new cluster:
python submit_job_to_cluster.py --project_id=$PROJECT --gcs_bucket=$BUCKET \
--create_new_cluster --cluster_name=$CLUSTER --zone=$ZONE
Example Usage to run the pyspark job on an existing global region cluster:
python submit_job_to_cluster.py --project_id=$PROJECT --gcs_bucket=$BUCKET \
--global_region --cluster_name=$CLUSTER --zone=$ZONE
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
from google.cloud import dataproc_v1
from google.cloud.dataproc_v1.gapic.transports import (
cluster_controller_grpc_transport)
from google.cloud.dataproc_v1.gapic.transports import (
job_controller_grpc_transport)
from google.cloud import storage
DEFAULT_FILENAME = 'pyspark_sort.py'
waiting_callback = False
def get_pyspark_file(pyspark_file=None):
if pyspark_file:
f = open(pyspark_file, "rb")
return f, os.path.basename(pyspark_file)
else:
"""Gets the PySpark file from current directory."""
current_dir = os.path.dirname(os.path.abspath(__file__))
f = open(os.path.join(current_dir, DEFAULT_FILENAME), "rb")
return f, DEFAULT_FILENAME
def get_region_from_zone(zone):
try:
region_as_list = zone.split('-')[:-1]
return '-'.join(region_as_list)
except (AttributeError, IndexError, ValueError):
raise ValueError('Invalid zone provided, please check your input.')
def upload_pyspark_file(project, bucket_name, filename, spark_file):
"""Uploads the PySpark file in this directory to the configured input
bucket."""
print('Uploading pyspark file to Cloud Storage.')
client = storage.Client(project=project)
bucket = client.get_bucket(bucket_name)
blob = bucket.blob(filename)
blob.upload_from_file(spark_file)
def download_output(project, cluster_id, output_bucket, job_id):
"""Downloads the output file from Cloud Storage and returns it as a
string."""
print('Downloading output file.')
client = storage.Client(project=project)
bucket = client.get_bucket(output_bucket)
output_blob = (
('google-cloud-dataproc-metainfo/{}/jobs/{}/driveroutput.000000000'.
format(cluster_id, job_id)))
return bucket.blob(output_blob).download_as_string()
# [START dataproc_create_cluster]
def create_cluster(dataproc, project, zone, region, cluster_name):
"""Create the cluster."""
print('Creating cluster...')
zone_uri = \
'https://www.googleapis.com/compute/v1/projects/{}/zones/{}'.format(
project, zone)
cluster_data = {
'project_id': project,
'cluster_name': cluster_name,
'config': {
'gce_cluster_config': {
'zone_uri': zone_uri
},
'master_config': {
'num_instances': 1,
'machine_type_uri': 'n1-standard-1'
},
'worker_config': {
'num_instances': 2,
'machine_type_uri': 'n1-standard-1'
}
}
}
cluster = dataproc.create_cluster(project, region, cluster_data)
cluster.add_done_callback(callback)
global waiting_callback
waiting_callback = True
# [END dataproc_create_cluster]
def callback(operation_future):
# Reset global when callback returns.
global waiting_callback
waiting_callback = False
def wait_for_cluster_creation():
"""Wait for cluster creation."""
print('Waiting for cluster creation...')
while True:
if not waiting_callback:
print("Cluster created.")
break
# [START dataproc_list_clusters_with_detail]
def list_clusters_with_details(dataproc, project, region):
"""List the details of clusters in the region."""
for cluster in dataproc.list_clusters(project, region):
print(('{} - {}'.format(cluster.cluster_name,
cluster.status.State.Name(
cluster.status.state))))
# [END dataproc_list_clusters_with_detail]
def get_cluster_id_by_name(dataproc, project_id, region, cluster_name):
"""Helper function to retrieve the ID and output bucket of a cluster by
name."""
for cluster in dataproc.list_clusters(project_id, region):
if cluster.cluster_name == cluster_name:
return cluster.cluster_uuid, cluster.config.config_bucket
# [START dataproc_submit_pyspark_job]
def submit_pyspark_job(dataproc, project, region, cluster_name, bucket_name,
filename):
"""Submit the Pyspark job to the cluster (assumes `filename` was uploaded
to `bucket_name."""
job_details = {
'placement': {
'cluster_name': cluster_name
},
'pyspark_job': {
'main_python_file_uri': 'gs://{}/{}'.format(bucket_name, filename)
}
}
result = dataproc.submit_job(
project_id=project, region=region, job=job_details)
job_id = result.reference.job_id
print('Submitted job ID {}.'.format(job_id))
return job_id
# [END dataproc_submit_pyspark_job]
# [START dataproc_delete]
def delete_cluster(dataproc, project, region, cluster):
"""Delete the cluster."""
print('Tearing down cluster.')
result = dataproc.delete_cluster(
project_id=project, region=region, cluster_name=cluster)
return result
# [END dataproc_delete]
# [START dataproc_wait]
def wait_for_job(dataproc, project, region, job_id):
"""Wait for job to complete or error out."""
print('Waiting for job to finish...')
while True:
job = dataproc.get_job(project, region, job_id)
# Handle exceptions
if job.status.State.Name(job.status.state) == 'ERROR':
raise Exception(job.status.details)
elif job.status.State.Name(job.status.state) == 'DONE':
print('Job finished.')
return job
# [END dataproc_wait]
def main(project_id,
zone,
cluster_name,
bucket_name,
pyspark_file=None,
create_new_cluster=True,
global_region=True):
# [START dataproc_get_client]
if global_region:
region = 'global'
# Use the default gRPC global endpoints.
dataproc_cluster_client = dataproc_v1.ClusterControllerClient()
dataproc_job_client = dataproc_v1.JobControllerClient()
else:
region = get_region_from_zone(zone)
# Use a regional gRPC endpoint. See:
# https://cloud.google.com/dataproc/docs/concepts/regional-endpoints
client_transport = (
cluster_controller_grpc_transport.ClusterControllerGrpcTransport(
address='{}-dataproc.googleapis.com:443'.format(region)))
job_transport = (
job_controller_grpc_transport.JobControllerGrpcTransport(
address='{}-dataproc.googleapis.com:443'.format(region)))
dataproc_cluster_client = dataproc_v1.ClusterControllerClient(
client_transport)
dataproc_job_client = dataproc_v1.JobControllerClient(job_transport)
# [END dataproc_get_client]
try:
spark_file, spark_filename = get_pyspark_file(pyspark_file)
if create_new_cluster:
create_cluster(dataproc_cluster_client, project_id, zone, region,
cluster_name)
wait_for_cluster_creation()
upload_pyspark_file(project_id, bucket_name, spark_filename,
spark_file)
list_clusters_with_details(dataproc_cluster_client, project_id,
region)
(cluster_id, output_bucket) = (
get_cluster_id_by_name(dataproc_cluster_client, project_id,
region, cluster_name))
# [START dataproc_call_submit_pyspark_job]
job_id = submit_pyspark_job(dataproc_job_client, project_id, region,
cluster_name, bucket_name, spark_filename)
# [END dataproc_call_submit_pyspark_job]
wait_for_job(dataproc_job_client, project_id, region, job_id)
output = download_output(project_id, cluster_id, output_bucket, job_id)
print('Received job output {}'.format(output))
return output
finally:
if create_new_cluster:
delete_cluster(dataproc_cluster_client, project_id, region,
cluster_name)
spark_file.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.
RawDescriptionHelpFormatter)
parser.add_argument(
'--project_id', help='Project ID you want to access.', required=True)
parser.add_argument('--zone',
help='Zone to create clusters in/connect to',
required=True)
parser.add_argument('--cluster_name',
help='Name of the cluster to create/connect to',
required=True)
parser.add_argument('--gcs_bucket',
help='Bucket to upload Pyspark file to',
required=True)
parser.add_argument('--pyspark_file',
help='Pyspark filename. Defaults to pyspark_sort.py')
parser.add_argument('--create_new_cluster',
action='store_true',
help='States if the cluster should be created')
parser.add_argument('--global_region',
action='store_true',
help='If cluster is in the global region')
args = parser.parse_args()
main(args.project_id, args.zone, args.cluster_name, args.gcs_bucket,
args.pyspark_file, args.create_new_cluster, args.global_region)