forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_job_workflow.py
208 lines (178 loc) · 6.72 KB
/
single_job_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Sample Cloud Dataproc inline workflow to run a pyspark job on an ephermeral
cluster.
Example Usage to run the inline workflow on a managed cluster:
python single_job_workflow.py --project_id=$PROJECT --gcs_bucket=$BUCKET \
--cluster_name=$CLUSTER --zone=$ZONE
Example Usage to run the inline workflow on a global region managed cluster:
python submit_job_to_cluster.py --project_id=$PROJECT --gcs_bucket=$BUCKET \
--cluster_name=$CLUSTER --zone=$ZONE --global_region
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
from google.cloud import dataproc_v1
from google.cloud.dataproc_v1.gapic.transports import (
workflow_template_service_grpc_transport)
from google.cloud import storage
DEFAULT_FILENAME = "pyspark_sort.py"
waiting_callback = False
def get_pyspark_file(pyspark_file=None):
if pyspark_file:
f = open(pyspark_file, "rb")
return f, os.path.basename(pyspark_file)
else:
"""Gets the PySpark file from current directory."""
current_dir = os.path.dirname(os.path.abspath(__file__))
f = open(os.path.join(current_dir, DEFAULT_FILENAME), "rb")
return f, DEFAULT_FILENAME
def get_region_from_zone(zone):
try:
region_as_list = zone.split("-")[:-1]
return "-".join(region_as_list)
except (AttributeError, IndexError, ValueError):
raise ValueError("Invalid zone provided, please check your input.")
def upload_pyspark_file(project, bucket_name, filename, spark_file):
"""Uploads the PySpark file in this directory to the configured input
bucket."""
print("Uploading pyspark file to Cloud Storage.")
client = storage.Client(project=project)
bucket = client.get_bucket(bucket_name)
blob = bucket.blob(filename)
blob.upload_from_file(spark_file)
def run_workflow(dataproc, project, region, zone, bucket_name, filename,
cluster_name):
parent = "projects/{}/regions/{}".format(project, region)
zone_uri = ("https://www.googleapis.com/compute/v1/projects/{}/zones/{}"
.format(project, zone))
workflow_data = {
"placement": {
"managed_cluster": {
"cluster_name": cluster_name,
"config": {
"gce_cluster_config": {"zone_uri": zone_uri},
"master_config": {
"num_instances": 1,
"machine_type_uri": "n1-standard-1",
},
"worker_config": {
"num_instances": 2,
"machine_type_uri": "n1-standard-1",
},
},
}
},
"jobs": [
{
"pyspark_job": {
"main_python_file_uri": "gs://{}/{}".format(
bucket_name, filename)
},
"step_id": "pyspark-job",
}
],
}
workflow = dataproc.instantiate_inline_workflow_template(parent,
workflow_data)
workflow.add_done_callback(callback)
global waiting_callback
waiting_callback = True
def callback(operation_future):
# Reset global when callback returns.
global waiting_callback
waiting_callback = False
def wait_for_workflow_end():
"""Wait for cluster creation."""
print("Waiting for workflow completion ...")
print("Workflow and job progress, and job driver output available from: "
"https://console.cloud.google.com/dataproc/workflows/")
while True:
if not waiting_callback:
print("Workflow completed.")
break
def main(
project_id,
zone,
cluster_name,
bucket_name,
pyspark_file=None,
create_new_cluster=True,
global_region=True,
):
# [START dataproc_get_workflow_template_client]
if global_region:
region = "global"
# Use the default gRPC global endpoints.
dataproc_workflow_client = dataproc_v1.WorkflowTemplateServiceClient()
else:
region = get_region_from_zone(zone)
# Use a regional gRPC endpoint. See:
# https://cloud.google.com/dataproc/docs/concepts/regional-endpoints
client_transport = (workflow_template_service_grpc_transport
.WorkflowTemplateServiceGrpcTransport(
address="{}-dataproc.googleapis.com:443"
.format(region)))
dataproc_workflow_client = dataproc_v1.WorkflowTemplateServiceClient(
client_transport
)
# [END dataproc_get_workflow_template_client]
try:
spark_file, spark_filename = get_pyspark_file(pyspark_file)
upload_pyspark_file(project_id, bucket_name, spark_filename,
spark_file)
run_workflow(
dataproc_workflow_client,
project_id,
region,
zone,
bucket_name,
spark_filename,
cluster_name
)
wait_for_workflow_end()
finally:
spark_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=(argparse
.RawDescriptionHelpFormatter))
parser.add_argument(
"--project_id", help="Project ID you want to access.", required=True
)
parser.add_argument(
"--zone", help="Zone to create clusters in/connect to", required=True
)
parser.add_argument(
"--cluster_name", help="Name of the cluster to create/connect to",
required=True
)
parser.add_argument(
"--gcs_bucket", help="Bucket to upload Pyspark file to", required=True
)
parser.add_argument(
"--pyspark_file", help="Pyspark filename. Defaults to pyspark_sort.py"
)
parser.add_argument("--global_region",
action="store_true",
help="If cluster is in the global region")
args = parser.parse_args()
main(
args.project_id,
args.zone,
args.cluster_name,
args.gcs_bucket,
args.pyspark_file,
)