-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmain.py
97 lines (79 loc) · 3.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2022 Luping Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import yaml
import sys
import os
import numpy as np
import torch as th
from runner.schedule import Schedule
from runner.runner import Runner
def args_and_config():
parser = argparse.ArgumentParser()
parser.add_argument("--runner", type=str, default='sample',
help="Choose the mode of runner")
parser.add_argument("--config", type=str, default='ddim_cifar10.yml',
help="Choose the config file")
parser.add_argument("--model", type=str, default='DDIM',
help="Choose the model's structure (DDIM, iDDPM, PF)")
parser.add_argument("--method", type=str, default='F-PNDM',
help="Choose the numerical methods (DDIM, FON, S-PNDM, F-PNDM, PF)")
parser.add_argument("--sample_speed", type=int, default=50,
help="Control the total generation step")
parser.add_argument("--device", type=str, default='cuda',
help="Choose the device to use")
parser.add_argument("--image_path", type=str, default='temp/sample',
help="Choose the path to save images")
parser.add_argument("--model_path", type=str, default='temp/models/ddim/ema_cifar10.ckpt',
help="Choose the path of model")
parser.add_argument("--restart", action="store_true",
help="Restart a previous training process")
parser.add_argument("--train_path", type=str, default='temp/train',
help="Choose the path to save training status")
args = parser.parse_args()
work_dir = os.getcwd()
with open(f'{work_dir}/config/{args.config}', 'r') as f:
config = yaml.safe_load(f)
return args, config
def check_config():
# image_size, total_step
pass
if __name__ == "__main__":
args, config = args_and_config()
if args.runner == 'sample' and config['Sample']['mpi4py']:
from mpi4py import MPI
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
os.environ['CUDA_VISIBLE_DEVICES'] = str(mpi_rank)
device = th.device(args.device)
schedule = Schedule(args, config['Schedule'])
if config['Model']['struc'] == 'DDIM':
from model.ddim import Model
model = Model(args, config['Model']).to(device)
elif config['Model']['struc'] == 'iDDPM':
from model.iDDPM.unet import UNetModel
model = UNetModel(args, config['Model']).to(device)
elif config['Model']['struc'] == 'PF':
from model.scoresde.ddpm import DDPM
model = DDPM(args, config['Model']).to(device)
elif config['Model']['struc'] == 'PF_deep':
from model.scoresde.ncsnpp import NCSNpp
model = NCSNpp(args, config['Model']).to(device)
else:
model = None
runner = Runner(args, config, schedule, model)
if args.runner == 'train':
runner.train()
elif args.runner == 'sample':
runner.sample_fid()