-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_nshot.py
229 lines (200 loc) · 10.3 KB
/
train_nshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# to view performance, tensorboard --logdir='./logs/resnet50/tsboard' --port=9000
# to run, CUDA_VISIBLE_DEVICES=0,1 python train_gsm.py
import torch
import pickle
import os.path
import torchvision
import torch.nn.functional as F
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
import numpy as np
import argparse
import subprocess
import collections
from collections import OrderedDict
args = collections.namedtuple
import sys
srcFolder = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'src')
sys.path.append(srcFolder)
# import gem
# import regressor_din
from metrics import (nss, auc, cc)
from utils import *
from losses import *
from models import *
from training_scheme import *
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Saliency Training')
parser.add_argument('--lr', default=0.0005, type=float,
help='learning rate')
parser.add_argument('--lr_decay_epoch', default=2, type=float,
help='every n epochs to decay learning rate')
parser.add_argument('--lr_coef', default=.1, type=float,
help='lr coefficient to change learning rates')
parser.add_argument('--weight_decay', default=0.0, type=float,
help='weight decay')
parser.add_argument('--momentum', default=0.0, type=float,
help='momentum')
parser.add_argument('--epochs', default=10, type=int,
help='number of epochs')
parser.add_argument('--batch_size', default=8, type=int,
help='batch size for training')
parser.add_argument('--val_batch_size', default=1, type=int,
help='batch size for validation')
parser.add_argument('--model', default='resnet50', type=str,
help='backbone network: resnet50, din50')
parser.add_argument('--pretrainedModel', default='', type=str,
help='pretrained saliency model')
parser.add_argument('--pretrainedModel_head', default='', type=str,
help='pretrained saliency model head')
parser.add_argument('--eval_mode', default='synchronous', type=str,
help='eval mode: synchronous|asynchronous')
parser.add_argument('--train_img_dir', nargs='+', default=[],
help='training images path')
parser.add_argument('--train_gt_dir', nargs='+', default=[],
help='training human fixation maps path')
parser.add_argument('--val_img_dir', nargs='+', default=[],
help='validation images path')
parser.add_argument('--val_gt_dir', nargs='+', default=[],
help='validation human fixation maps path')
parser.add_argument('--image_size', nargs='+', type=int,
help='resized image resolution for training: (600, 800) | (480, 640) | (320, 640)')
parser.add_argument('--tr_fxt_size', nargs='+', type=int,
help='resized training fixation resolution: (600, 800) | (480, 640) | (320, 640)')
parser.add_argument('--val_fxt_size', nargs='+', type=int,
help='resized validation fixation resolution: (600, 800) | (480, 640) | (320, 640)')
parser.add_argument('--out_dir', default='logs/salicon_dinet_websal',
type=str,
help='validation saliency maps path')
parser.add_argument('--num_shots', default=5, type=int,
help='number of shots')
parser.add_argument('--split_file', default='',
type=str,
help='split file for n-shot learning, i.e., n samples are taken for training samples while the rest are taken for validating')
parser.add_argument('--fxt_loc_name', type=str, default='fixationPts', help='fixationPts|fixLocs')
parser.add_argument('--ref_split_layer', default=1, type=int,
help='number of the split layers')
parser.add_argument('--random_seed', default=0, type=int,
help='random seed')
args = parser.parse_args()
args.start_epoch = 0
pretrained = True
useMultiGPU = True
n_output = 256 # just for DINet
args.experiment_name = '{}'.format(args.model)
out_folder = args.out_dir
ensure_dir(out_folder)
args.save_path = '{}/snapshots'.format(out_folder)
args.sal_path = '{}/salmap_val'.format(out_folder)
split_file = '{}/split_data.npz'.format(out_folder) if args.split_file == '' else args.split_file
if args.image_size is None:
args.image_size = (480,640)
else:
args.image_size = (args.image_size[0], args.image_size[1])
modelzoo = {
'densenet169': models.densenet169,
'vgg16': models.vgg16,
'resnet101': models.resnet101,
'resnet50': models.resnet50,
'resnet34': models.resnet34,
'resnet18': models.resnet18,
}
print(vars(args))
criterion = TVdist
# create the model and optimizer
if args.model == 'din50':
model = Saliency_DIN(args.model,modelzoo,pretrained,n_output=n_output)
elif args.model == 'resnet50':
model = Saliency_ResNet50(args.model,modelzoo,pretrained)
if args.pretrainedModel != '' and args.pretrainedModel_head == '':
model.load_state_dict(torch.load(args.pretrainedModel))
elif args.pretrainedModel != '' and args.pretrainedModel_head != '':
model_body, model_head = split_model_din(model, split_layer=args.ref_split_layer)
model_head = Referencer(model_head)
model_body.load_state_dict(torch.load(args.pretrainedModel))
model_head.load_state_dict(torch.load(args.pretrainedModel_head))
layers_body = list(model_body.children())
layers_head = list(model_head.children())
model = nn.Sequential(*layers_body, *layers_head)
if not useMultiGPU:
model = model.cuda()
elif useMultiGPU:
model = nn.DataParallel(model).cuda()
# As the output of saliency prediction is a saliency map,
# whose size depends on the input size, we do a test here
# to quickly acquire the output size.
testImgs = load_allimages(args.val_img_dir[0])
oneimage = testImgs[0][0]
oneimage = datasets.folder.default_loader(oneimage)
oneimage = transforms.Resize(args.image_size)(oneimage)
oneimage = transforms.ToTensor()(oneimage)
oneimage = oneimage.view([1]+list(oneimage.size()))
oneimage = Variable(oneimage).cuda()
output = model(oneimage)
# Due to n-shot learning setting, we split the validation set into the n samples for training
# and the rest of samples are for testing. So trFxtSize is the same as valFxtSize.
train_loader, val_loader, print_str = create_nshotsplit_loaders(args,
outSize=tuple(output.size()[2:]),
imgSize=args.image_size,
trFxtSize=args.val_fxt_size,
valFxtSize=args.val_fxt_size,
split_file=split_file,
num_shots=args.num_shots,
flip=False)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
#print total number of parameters
number_of_params = sum(p.numel() for p in model.parameters())
snapshot_dir = args.save_path
ensure_dir(snapshot_dir)
pickle.dump(vars(args), open(snapshot_dir + 'args.pkl', 'wb'))
txtlogger = open('{}/log.txt'.format(out_folder), 'w')
print(vars(args),file=txtlogger, flush=True)
print(criterion,file=txtlogger, flush=True)
print(print_str)
print(print_str,file=txtlogger, flush=True)
print('===Total parameters number: {}'.format(number_of_params))
print('===Total parameters number: {}'.format(number_of_params), file=txtlogger, flush=True)
stat_file = os.path.join(out_folder, 'stat_training.csv')
with open(stat_file, 'w') as f:
f.write('nss, auc, cc, ep, tr_loss, val_loss, tr_batchtime, tr_datatime, val_batchtime, val_datatime\n')
if args.model in ['resnext50_din_cond', 'resnext50_din_sep', 'resnext50_din_sep1']:
stat_cond_file = os.path.join(out_folder, 'stat_rec.csv')
with open(stat_cond_file, 'w') as f:
f.write('nss, auc, cc, ep, tr_loss, val_loss, tr_batchtime, tr_datatime, val_batchtime, val_datatime\n')
train_loss_list, val_loss_list, train_batchtime_list, train_datatime_list, val_batchtime_list, val_datatime_list = [], [], [], [], [], []
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(args.lr, optimizer, epoch,
basenum=args.lr_decay_epoch, coef=args.lr_coef)
cur_lr = optimizer.param_groups[0]['lr']
sal_paths = ['{}/ep{}'.format(args.sal_path, epoch+1)]
train_loss, val_loss, train_batchtime, train_datatime, val_batchtime, val_datatime = train_val_nshot(
model, criterion, optimizer, epoch,
train_loader, val_loader, sal_paths, txtlogger)
train_loss_list.append(train_loss)
val_loss_list.append(val_loss)
train_batchtime_list.append(train_batchtime)
train_datatime_list.append(train_datatime)
val_batchtime_list.append(val_batchtime)
val_datatime_list.append(val_datatime)
save_filename = os.path.join(snapshot_dir, 'model_ep{epoch}.pth'.format(epoch=epoch+1))
save_checkpoint(model, save_filename)
if args.eval_mode == 'synchronous':
sal_path = sal_paths[0]
isnotify = 0 if epoch < args.epochs-1 else 1
appendix = ', {}, {:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(epoch+1, train_loss, val_loss, train_batchtime, train_datatime, val_batchtime, val_datatime)
evalCmd = 'python src/eval_command.py --output "{}" --fixation_folder "{}" --fxt_size "{} {}" --fxt_loc_name "{}" --salmap_folder "{}" --appendix "{}" --split_file "{}"'.format(stat_file, args.val_gt_dir[0], args.val_fxt_size[0], args.val_fxt_size[1], args.fxt_loc_name, sal_path, appendix, split_file)
sproc = subprocess.Popen(evalCmd, shell=True)
txtlogger.close()
if args.eval_mode == 'asynchronous':
for epoch in range(args.start_epoch, args.epochs):
sal_path = '{}/ep{}'.format(args.sal_path, epoch+1)
isnotify = 0 if epoch < args.epochs-1 else 1
appendix = ', {}, {:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(
epoch+1, train_loss_list, val_loss_list, train_batchtime_list, train_datatime_list, val_batchtime_list, val_datatime_list)
evalCmd = 'python src/eval_command.py --output "{}" --fixation_folder "{}" --salmap_folder "{}" --appendix "{}"'.format(
stat_file, args.val_gt_dir, sal_path, appendix)
sproc = subprocess.Popen(evalCmd, shell=True)
sproc.wait()