You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I use my the stanford dogs dataset to fine tuning , but get acc always 0 until 10000 steps. And the acc are nearly 1.0 or 0.99. What is the suitable config for new dataset?
使用casia数据集训练,无预训模型。
使用config_ms1m_res50.yaml配置项acc会一直为0吗?
model params
backbone_type: resnet_v2_50
loss_type: arcface
out_type: E
image_size: 112
embd_size: 512
class_num: 10572
hyper params
bn_decay: 0.9
keep_prob: 0.4
weight_decay: !!float 5e-4
logits_scale: 64.0
logits_margin: 0.5
momentum: 0.9
run params
val_bn_train: False
augment_flag: True
augment_margin: 16
gpu_num: 1
batch_size: 256
epoch_num: 20
step_per_epoch: 10000
val_freq: 2000
lr_steps: [40000, 60000, 80000]
lr_values: [0.004, 0.002, 0.0012, 0.0004]
paths
pretrained_model: ''
train_data: ['/opt/gpu/z/InsightFace-tensorflow-master/data/casia.tfrecord']
The text was updated successfully, but these errors were encountered: