-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayers.py
85 lines (72 loc) · 2.86 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
# in_feature: the dimension of the input feature vector.
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(max(self.weight.size(1),1)) / 2
self.weight.data.normal_(0.02, stdv)
if self.bias is not None:
self.bias.data.uniform_(0.000002, stdv)
def forward(self, input, adj):
# if self.weight.size(1) == 0:
# return self.bias
support = torch.matmul(input, self.weight)
output = torch.bmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GraphConvolution_transformer(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution_transformer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
# in_feature: the dimension of the input feature vector.
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(max(self.weight.size(1),1)) / 2
self.weight.data.normal_(0.02, stdv)
if self.bias is not None:
self.bias.data.uniform_(0.02, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
print("support:", support.size()) # [2048, 8, 3, 20]
print("adj:", adj.shape) # [2048, 8, 3, 3]
# output = torch.bmm(adj, support)
output = torch.matmul(adj, support)
print("output:", output.shape)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'