-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_vanilla.py
40 lines (33 loc) · 1.48 KB
/
run_vanilla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import os
from graphcut_utils import *
from run_generative_photomontage import inference_gpm
BASE_MODEL_PATH = "runwayml/stable-diffusion-v1-5"
NUM_INFERENCE_STEPS = 20
def run_vanilla_batch(
model_type,
shape,
prompts,
seeds):
cond_img_file = "./data/{}-{}.png".format(shape, model_type)
output_qkv_dir = os.path.join(shape, model_type) # Save QKV features to this folder.
if len(prompts) == 1:
prompts = prompts * len(seeds)
for i, seed in enumerate(seeds):
inference_gpm(model_type,
os.path.join(VANILLA_DIR, shape),
cond_img_file,
prompts[i],
seed,
1,
inject_self=False,
qkv_save_folder=output_qkv_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run Vanilla ControlNet and save QKV features.')
parser.add_argument("--cond", type=str, required=True, default="data/applelogo-canny.png", help="Input condition image with the format {NAME}-{MODEL}.png")
parser.add_argument("--prompts", type=str, nargs="+", default="A rock on grass", help="One or more prompts for each image")
parser.add_argument("--seeds", type=int, nargs="+", default=0, help="List of seeds, one for each image")
args = parser.parse_args()
basename = os.path.basename(args.cond).split(".")[0]
name, model = basename.split("-")
run_vanilla_batch(model, name, args.prompts, args.seeds)