From 5f631a77eb20c2d2fffc6164f9db21cecda68348 Mon Sep 17 00:00:00 2001
From: mlv42 <109242388+mlv42@users.noreply.github.com>
Date: Mon, 4 Nov 2024 10:24:50 +0000
Subject: [PATCH] Add files via upload
---
nas_UPDATE.ipynb | 1324 ++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 1324 insertions(+)
create mode 100644 nas_UPDATE.ipynb
diff --git a/nas_UPDATE.ipynb b/nas_UPDATE.ipynb
new file mode 100644
index 0000000..4d8122a
--- /dev/null
+++ b/nas_UPDATE.ipynb
@@ -0,0 +1,1324 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "c0f84710-fa07-4ae7-a37f-f933992a5183",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "fea5d599-883a-41b7-9084-a2c54697cd6d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2024-11-04 10:19:49.248914: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
+ "2024-11-04 10:19:49.546504: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
+ "2024-11-04 10:19:49.548861: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
+ "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
+ "2024-11-04 10:19:50.437993: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import numpy.random as rnd\n",
+ "import numpy.linalg as la\n",
+ "import polars as pl\n",
+ "import pandas as pd\n",
+ "import datetime as dt\n",
+ "import os\n",
+ "from pathlib import Path\n",
+ "from dask.distributed import Client, LocalCluster, as_completed\n",
+ "from dask import delayed\n",
+ "from runpy import run_path\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from tqdm.notebook import tqdm\n",
+ "import networkx as nx\n",
+ "import raphtory as rp\n",
+ "import umap.umap_ as umap\n",
+ "import streamlit as st\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "import local2global as l2g # ADDED\n",
+ "\n",
+ "import torch\n",
+ "import torch_geometric as tg\n",
+ "from torch_geometric.data import Data\n",
+ "from torch_geometric.utils.convert import from_networkx\n",
+ "from torch_geometric.transforms import LargestConnectedComponents\n",
+ "from torch_geometric.utils import to_networkx, from_networkx, one_hot\n",
+ "from torch_geometric.nn import Node2Vec, GCNConv, VGAE\n",
+ "import torch.nn.functional as F"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "41105a8c-205f-4c34-a8d9-142290acf71a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from datasets import DataLoader"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7acfe164-880a-4aa5-8ffb-db702e78898f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "PATH = \"./datasets/data/nas/\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "148e6778-b3bc-437a-b023-db0d538c05ff",
+ "metadata": {},
+ "source": [
+ "# $\\quad$ Example use: New Autonomous Systems dataset \n",
+ "\n",
+ "$\\newcommand{\\vct}[1]{\\mathbf{#1}}$\n",
+ "$\\newcommand{\\mtx}[1]{\\mathbf{#1}}$\n",
+ "$\\newcommand{\\e}{\\varepsilon}$\n",
+ "$\\newcommand{\\norm}[1]{\\|#1\\|}$\n",
+ "$\\newcommand{\\minimize}{\\mathrm{minimize}\\quad}$\n",
+ "$\\newcommand{\\maximize}{\\mathrm{maximize}\\quad}$\n",
+ "$\\newcommand{\\subjto}{\\quad\\text{subject to}\\quad}$\n",
+ "$\\newcommand{\\R}{\\mathbb{R}}$\n",
+ "$\\newcommand{\\C}{\\mathbb{C}}$\n",
+ "$\\newcommand{\\N}{\\mathbb{N}}$\n",
+ "$\\newcommand{\\Z}{\\mathbb{Z}}$\n",
+ "$\\newcommand{Prob}{\\mathbb{P}}$\n",
+ "$\\newcommand{Expect}{\\mathbb{E}}$\n",
+ "$\\newcommand{Cov}{\\mathrm{Cov}}$\n",
+ "$\\newcommand{Var}{\\mathrm{Var}}$\n",
+ "$\\newcommand{\\trans}{T}$\n",
+ "$\\newcommand{\\ip}[2]{\\langle {#1}, {#2} \\rangle}$\n",
+ "$\\newcommand{\\zerovct}{\\vct{0}}$\n",
+ "$\\newcommand{\\diff}[1]{\\mathrm{d}{#1}}$\n",
+ "$\\newcommand{\\conv}{\\operatorname{conv}}$\n",
+ "$\\newcommand{\\inter}{{\\operatorname{int}}}$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ffc356df-39f0-4f1d-b98d-d4dcfe4665db",
+ "metadata": {},
+ "source": [
+ "The purpose of this notebook is to walk through the graph embedding and alignment process in a self-contained way. The full existing Local2Global package is available [here](https://github.com/LJeub/Local2Global_embedding) and the expectation is to pick parts from it as a starting point. It is also available in on this repository in the Local2Global_embedding folder for reference."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0e4208fd-da21-4181-ae65-1fa8c152ea2c",
+ "metadata": {},
+ "source": [
+ "### Table of Contents\n",
+ "\n",
+ "1. #### Data\n",
+ "2. #### Embedding\n",
+ "3. #### Visualisation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6d903eb7-22ad-4900-8720-f79d3eb44790",
+ "metadata": {},
+ "source": [
+ "### 1. Data "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7d25865e-21a9-4e34-bf80-125bb3d22ca5",
+ "metadata": {},
+ "source": [
+ "The data can be accessed via the dataloader. It is saved in the datasets/data/nas directory in two parquet files. There are many alternative ways of doing this. One option to explore is to have the datasets available as in [torch_geometric datasets](https://pytorch-geometric.readthedocs.io/en/2.6.0/modules/datasets.html)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "38fcc940-390a-4039-aa4b-c136185c16d2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dl = DataLoader(source='nAS')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7dcfd3ee-0e5d-4a5e-aa09-30e0dc958132",
+ "metadata": {},
+ "source": [
+ "The data is stored in one dataframe for the nodes (including all the features) and one for the edges (including edge weights)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f9273655-0c7c-4f2f-b40a-574d38773307",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
shape: (5, 5)timestamp | nodes | nodetype | country | asname |
---|
datetime[μs] | str | str | str | str |
2024-09-14 00:00:00 | "AS7029" | "asn" | "US" | "WINDSTREAM" |
2024-09-14 00:00:00 | "AS32984" | "asn" | "US" | "RUELALA-INC" |
2024-09-14 00:00:00 | "AS136106" | "asn" | "ID" | "FIBERSTAR-AS-I" |
2024-09-14 00:00:00 | "AS58495" | "asn" | "ID" | "HSPNET-AS-I" |
2024-09-14 00:00:00 | "AS3491" | "asn" | "US" | "BTN-ASN" |
"
+ ],
+ "text/plain": [
+ "shape: (5, 5)\n",
+ "┌─────────────────────┬──────────┬──────────┬─────────┬────────────────┐\n",
+ "│ timestamp ┆ nodes ┆ nodetype ┆ country ┆ asname │\n",
+ "│ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
+ "│ datetime[μs] ┆ str ┆ str ┆ str ┆ str │\n",
+ "╞═════════════════════╪══════════╪══════════╪═════════╪════════════════╡\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ asn ┆ US ┆ WINDSTREAM │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS32984 ┆ asn ┆ US ┆ RUELALA-INC │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS136106 ┆ asn ┆ ID ┆ FIBERSTAR-AS-I │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS58495 ┆ asn ┆ ID ┆ HSPNET-AS-I │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS3491 ┆ asn ┆ US ┆ BTN-ASN │\n",
+ "└─────────────────────┴──────────┴──────────┴─────────┴────────────────┘"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Get the nodes\n",
+ "node_df = dl.get_nodes()\n",
+ "node_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "149a77d9-d83c-45ff-a933-a774c50da54b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
shape: (5, 4)timestamp | source | dest | weight |
---|
datetime[μs] | str | str | i64 |
2024-09-14 00:00:00 | "AS7029" | "AS32984" | 1 |
2024-09-14 00:00:00 | "AS7029" | "AS19692" | 1 |
2024-09-14 00:00:00 | "AS7029" | "AS55037" | 1 |
2024-09-14 00:00:00 | "AS7029" | "AS1820" | 1 |
2024-09-14 00:00:00 | "AS7029" | "AS16265" | 1 |
"
+ ],
+ "text/plain": [
+ "shape: (5, 4)\n",
+ "┌─────────────────────┬────────┬─────────┬────────┐\n",
+ "│ timestamp ┆ source ┆ dest ┆ weight │\n",
+ "│ --- ┆ --- ┆ --- ┆ --- │\n",
+ "│ datetime[μs] ┆ str ┆ str ┆ i64 │\n",
+ "╞═════════════════════╪════════╪═════════╪════════╡\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ AS32984 ┆ 1 │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ AS19692 ┆ 1 │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ AS55037 ┆ 1 │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ AS1820 ┆ 1 │\n",
+ "│ 2024-09-14 00:00:00 ┆ AS7029 ┆ AS16265 ┆ 1 │\n",
+ "└─────────────────────┴────────┴─────────┴────────┘"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "edge_df = dl.get_edges()\n",
+ "edge_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e47ee1fa-6bd2-41ae-bd74-36d3af72bdbe",
+ "metadata": {},
+ "source": [
+ "Ultimately, working with the people at Pometry, we want to use the [Raphtory](https://www.raphtory.com/) graph format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "c87a8252-ff89-4fe2-8a37-fd4e9cb0154f",
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "TypeError",
+ "evalue": "Graph.load_edges_from_pandas() got an unexpected keyword argument 'properties'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[8], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Raphtory format\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m g \u001b[38;5;241m=\u001b[39m \u001b[43mdl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_graph\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/pytorch_env/Local2Global_private-master/doc/git/mltz/L2Gv2/datasets/_base.py:101\u001b[0m, in \u001b[0;36mDataLoader.get_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_graph\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 100\u001b[0m g \u001b[38;5;241m=\u001b[39m rGraph()\n\u001b[0;32m--> 101\u001b[0m \u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_edges_from_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 102\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43medges\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 103\u001b[0m \u001b[43m \u001b[49m\u001b[43mtime\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtimestamp\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 104\u001b[0m \u001b[43m \u001b[49m\u001b[43msrc\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msource\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 105\u001b[0m \u001b[43m \u001b[49m\u001b[43mdst\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdest\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 106\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperties\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43medge_features\u001b[49m\n\u001b[1;32m 107\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 108\u001b[0m g\u001b[38;5;241m.\u001b[39mload_nodes_from_pandas(\n\u001b[1;32m 109\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnodes\u001b[38;5;241m.\u001b[39mto_pandas(),\n\u001b[1;32m 110\u001b[0m time \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtimestamp\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28mid\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnodes\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 112\u001b[0m properties \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnode_features\n\u001b[1;32m 113\u001b[0m )\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m g\n",
+ "\u001b[0;31mTypeError\u001b[0m: Graph.load_edges_from_pandas() got an unexpected keyword argument 'properties'"
+ ]
+ }
+ ],
+ "source": [
+ "# Raphtory format\n",
+ "g = dl.get_graph()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1ca43c1c-c500-4597-b07e-61e751c6aa66",
+ "metadata": {},
+ "source": [
+ "The Raphtory formal is still work in progress but one can contribute to their code (based in Rust), contribute to the discussion on their Slack (linked on their page) or directly get in touch with [Lucas Jeub](https://github.com/LJeub) and/or Ben Steer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d399ac6b-0eb2-40ea-bb32-37d6b0f0892d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(\"Stats on the graph structure:\")\n",
+ "\n",
+ "number_of_nodes = g.count_nodes()\n",
+ "number_of_edges = g.count_edges()\n",
+ "total_interactions = g.count_temporal_edges()\n",
+ "\n",
+ "print(\"Number of nodes (AS nodes):\", number_of_nodes)\n",
+ "print(\"Number of unique edges (src,dst):\", number_of_edges)\n",
+ "print(\"Total interactions (edge updates):\", total_interactions)\n",
+ "\n",
+ "print(\"Stats on the graphs time range:\")\n",
+ "\n",
+ "earliest_datetime = g.earliest_date_time\n",
+ "latest_datetime = g.latest_date_time\n",
+ "\n",
+ "print(\"Earliest datetime:\", earliest_datetime)\n",
+ "print(\"Latest datetime:\", latest_datetime)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "15a91cb9-ff6a-4fcd-8fbc-aecde67fee67",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(\"The node features are: \", g.nodes.properties.keys())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2cf8afc9-aaa4-4bfc-a99a-4dcda9795f0b",
+ "metadata": {},
+ "source": [
+ "The graphs we are dealing are **temporal**, meaning that nodes and edges have timestamps. One can interpret this as having one graph for each point in time, with a possible overlap of nodes and edges."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "994cb72f-23c6-4151-b0fd-bf4b30340a7c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dates = dl.get_dates()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "839cff93-80cf-42f4-bfe4-ed4234e88a4d",
+ "metadata": {},
+ "source": [
+ "For this particular dataset, the graph for each day represents a patch. In order to apply graph neural networks to each patch, we need to process these into the Data format used by pytorch-geometric, described [here](https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html). In particular, for each patch we need to enumerate the nodes and use these indices to designate the nodes. We need a dictionary that maps the nodes in each patch to their names and we need to encode the node and edge features."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "1ad726d0-98c2-4e50-b173-b4a81b4e547e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Encode nodes present at each date\n",
+ "nodes = {}\n",
+ "node_dict = {}\n",
+ "for d in dates:\n",
+ " nodes[d] = dl.get_node_list(ts=d)\n",
+ " node_dict[d] = dict(zip(nodes[d],range(len(nodes[d]))))\n",
+ "all_nodes = dl.get_node_list()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "e51fabc9-a781-4512-adf4-dcb15276a250",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "numbering_nodes= {x : i for i, x in enumerate(all_nodes)}\n",
+ "list_nodes=list(nodes.values())\n",
+ "\n",
+ "list_nodes_renumbered=[]\n",
+ "for l in list_nodes:\n",
+ " list_nodes_renumbered.append( [numbering_nodes[i] for i in l])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "b82e628b-08e8-4aa0-aa62-6b25d2c1e9b8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Encode country codes\n",
+ "cc = pl.read_csv(PATH+'country_codes.csv')\n",
+ "countrycode_dict = dict(zip(cc[\"alpha-2\"].to_list(), range(cc.shape[0])))\n",
+ "#cc_one_hot = one_hot(torch.tensor(list(countrycode_dict.values()), dtype=torch.int64))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "f9d614f4-7a6f-4b24-b743-e4591a1ec16b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Assign country code index to each node. The way this is done is a bit convoluted, as some nodes are assigned to both a country and to 'ZZ'\n",
+ "# in the database, so we need to fix that. This should be done in pre-processing\n",
+ "df = dl.get_nodes().with_columns(\n",
+ " pl.col(\"country\").replace(old=pl.Series(countrycode_dict.keys()), new=pl.Series(countrycode_dict.values())).cast(pl.Int64).alias('cc')\n",
+ ").select([\"nodes\", \"cc\"]).group_by(\"nodes\").agg(pl.col(\"cc\").min().cast(pl.Int64).alias(\"cc\")).sort([\"cc\",\"nodes\"])\n",
+ "node_cc_dict = dict(zip(df[\"nodes\"].to_list(), df[\"cc\"].to_list()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "4f87d7aa-70de-4bdc-b54e-4ba41b655c6f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# For every day, create a list of node features\n",
+ "features = {}\n",
+ "for d in dates:\n",
+ " features[d] = one_hot(torch.tensor(dl.get_nodes(ts=d).select(\n",
+ " pl.col(\"country\").replace(old=pl.Series(countrycode_dict.keys()), new=pl.Series(countrycode_dict.values())).cast(pl.Int64)\n",
+ " ).to_numpy().flatten()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "1470fe0a-a8b6-4151-8e1e-2fcd210b13d6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([84575, 250])"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "features[dates[3]].shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "3dccedc3-6521-4158-90bf-aba33f2d902e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "ff6e30e1d612492c9b10bb586c8065fe",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/30 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Create pytorch-geometric Data object\n",
+ "tg_graphs = {}\n",
+ "for d in tqdm(dates):\n",
+ " edges = dl.edges.filter(pl.col('timestamp')==d).select(\n",
+ " pl.col('source').replace(old=pl.Series(node_dict[d].keys()), new=pl.Series(node_dict[d].values())).cast(pl.Int64),\n",
+ " pl.col('dest').replace(old=pl.Series(node_dict[d].keys()), new=pl.Series(node_dict[d].values())).cast(pl.Int64)\n",
+ " ).to_numpy()\n",
+ " edge_index = torch.tensor([tuple(x) for x in edges], dtype=torch.long).t().contiguous()\n",
+ " tgraph = Data(edge_index=edge_index)\n",
+ " # Add features - problem is that for the embedding we only want those present at a given time\n",
+ " tgraph.x = features[d]\n",
+ " tg_graphs[d] = tgraph"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "692f927b-87d3-4ca3-885b-fab11ee7e71a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i, d in enumerate(dates):\n",
+ " tg_graphs[d].nodes=torch.tensor(list_nodes_renumbered[i])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "1f3c578c-6df9-4437-9121-ef9d1e675235",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Select one date to test embedding\n",
+ "data = tg_graphs[dates[0]]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "762d7280-9de2-4f2d-8e5d-daf738cf928f",
+ "metadata": {},
+ "source": [
+ "### 2. Embedding "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "faab9f1c-2fd1-4f6f-bd65-8d8ce24185ab",
+ "metadata": {},
+ "source": [
+ "For the embedding, we use the architecture of a Variational Graph Autoencoder. Given a graph $G=(V,E)$ with $|V|=n$ nodes and node features $\\vct{x}_i\\in \\R^d$, $i\\in [n]$, denote by $\\vct{X}=[\\vct{x}_1,\\dots,\\vct{x}_n]^T\\in \\R^{n\\times d}$ the features matrix and by $A=(a_{ij})\\in \\{0,1\\}^{n\\times n}$ the adjacency matrix of the graph. The **encoder** produces latent representations $\\vct{z}_i\\in \\R^k$ for $i\\in [n]$, which are sampled from the inference model\n",
+ "\\begin{equation*}\n",
+ " q(\\vct{z}_i \\ | \\ \\vct{X},\\vct{A}) = \\mathcal{N}(\\vct{z}_i \\ | \\ \\vct{\\mu}_i,\\mathrm{diag}(\\vct{\\sigma}_i)).\n",
+ "\\end{equation*}\n",
+ "The means $\\mu_i$ and variances $\\mathrm{diag}(\\vct{\\sigma}_i)$ are parametrized using an encoder network, for example, a graph convolutional neural network (GCN). Denoting by $\\vct{Z}=[\\vct{z}_1,\\dots,\\vct{z}_n]^T$ the matrix of latent represenations and by $\\vct{\\mu}$ and $\\vct{\\sigma}$ the matrices representing the means and variances, we have\n",
+ "\\begin{equation*}\n",
+ " \\vct{\\mu} = \\mathrm{GCN}_{\\mu}(\\vct{X},\\vct{A}), \\quad \\quad \\log \\vct{\\sigma} = \\mathrm{GCN}_{\\sigma}(\\vct{X},\\vct{A}).\n",
+ "\\end{equation*}\n",
+ "The **generative model** is a distribution on the adjacency matrix,\n",
+ "\\begin{equation*}\n",
+ " p(\\mtx{A}\\ | \\ \\vct{Z}) = \\prod_{i,j} p(a_{ij} \\ | \\ \\vct{z}_i,\\vct{z}_j).\n",
+ "\\end{equation*}\n",
+ "It is convenient to use\n",
+ "\\begin{equation*}\n",
+ " p(a_{ij}=1 \\ | \\ \\vct{z}_i,\\vct{z}_j) = \\sigma(\\vct{z}_i^T\\vct{z}_j),\n",
+ "\\end{equation*}\n",
+ "where $\\sigma$ is the logistic sigmoid. In order to train the model, we optimize the evidence lower bound\n",
+ "\\begin{equation*}\n",
+ " \\mathcal{L} = \\Expect_{q(\\vct{Z}\\ | \\ \\vct{X},\\vct{A})}[\\log p(\\mtx{A}\\ | \\ \\mtx{Z})]-\\mathrm{D}_{\\mathrm{KL}}(q(\\mtx{Z}\\ | \\ \\mtx{X},\\mtx{A}) \\ \\| \\ p(\\mtx{Z})).\n",
+ "\\end{equation*}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "60438f44-f829-4cd8-9099-11dbda0ab78a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Encoder(torch.nn.Module):\n",
+ " \"\"\"\n",
+ " Implement a Graph Convolutional Network (GCN) as encoder\n",
+ " \"\"\"\n",
+ " def __init__(self, dim, num_node_features, hidden_dim=128, cached=True, bias=True, add_self_loops=True, normalize=True):\n",
+ " super().__init__()\n",
+ " self.x_conv = tg.nn.GCNConv(num_node_features, \n",
+ " hidden_dim, \n",
+ " cached=cached, \n",
+ " bias=bias, \n",
+ " add_self_loops=add_self_loops,\n",
+ " normalize=normalize)\n",
+ " self.mean_conv = tg.nn.GCNConv(hidden_dim, \n",
+ " dim, \n",
+ " cached=cached,\n",
+ " bias=bias, \n",
+ " add_self_loops=add_self_loops,\n",
+ " normalize=normalize)\n",
+ " self.var_conv = tg.nn.GCNConv(hidden_dim, \n",
+ " dim, \n",
+ " cached=cached, \n",
+ " bias=bias, add_self_loops=add_self_loops,\n",
+ " normalize=normalize)\n",
+ "\n",
+ " def forward(self, data):\n",
+ " x = data.x\n",
+ " edge_index = data.edge_index\n",
+ "\n",
+ " x = self.x_conv(x, edge_index)\n",
+ " x = F.relu(x)\n",
+ "\n",
+ " mu = self.mean_conv(x, edge_index)\n",
+ " sigma = self.var_conv(x, edge_index)\n",
+ " return mu, sigma"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "1e2060dc-6804-49eb-aa5b-0a74b568d3f8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = VGAE(encoder=Encoder(64, data.num_node_features))\n",
+ "#model = VGAE(encoder=VGAEconv(2, test_data.num_node_features))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "f8bdd17a-0950-4842-bf10-198448ba843a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def VGAE_loss(model, data):\n",
+ " return model.recon_loss(model.encode(data), data.edge_index) + model.kl_loss() / data.num_nodes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "5952dc3e-2d6d-4070-8e68-09e827820147",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def train(data, model, loss_fun, num_epochs=100, verbose=True, lr=0.01, logger=lambda loss: None):\n",
+ " losses = []\n",
+ " optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n",
+ " # optimizer = torch.optim.SGD(model.parameters(), lr=0.01)\n",
+ " # schedule = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)\n",
+ " for e in tqdm(range(num_epochs)):\n",
+ " optimizer.zero_grad()\n",
+ " loss = loss_fun(model, data)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ " losses.append(float(loss))\n",
+ " if verbose:\n",
+ " if not e % 20:\n",
+ " print(f'epoch {e}: loss={loss.item()}')\n",
+ " # schedule.step()\n",
+ " return model, losses"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 203,
+ "id": "613527ab-a063-4283-bd62-5ee3b58121a5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9e76d3e58f604cbbaaa12799e212a0fc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/100 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.6624908447265625\n",
+ "epoch 20: loss=1.0028409957885742\n",
+ "epoch 40: loss=0.914311945438385\n",
+ "epoch 60: loss=0.8888797760009766\n",
+ "epoch 80: loss=0.8734592795372009\n"
+ ]
+ }
+ ],
+ "source": [
+ "model, losses = train(data, model, VGAE_loss, num_epochs=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 204,
+ "id": "2ab6bc1b-7f0b-440e-bb1e-193136cecac5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsAklEQVR4nO3de3zU9Z3v8fdvLplcZ0gCIYQEiKKiXBQBXS+rotY9Vm3dWltdtdSePY9DH6hYT7tqu+do29XQPY/10e12SyvHg3VdS49bsfZGi1awriIIonipgNxCuEPI5DqZy/f8MZckkEAm+c38kpnX8/GYR2Dym5kP36b5vf1eLWOMEQAAgA1cThcAAAByB8ECAADYhmABAABsQ7AAAAC2IVgAAADbECwAAIBtCBYAAMA2BAsAAGAbT7Y/MBaLad++fSorK5NlWdn+eAAAMATGGLW2tqqmpkYu18D9ElkPFvv27VNdXV22PxYAANigsbFRtbW1A34/68GirKxMUrwwv9+f7Y8HAABDEAwGVVdXl7qPDyTrwSI5/OH3+wkWAACMMqebxsDkTQAAYBuCBQAAsA3BAgAA2IZgAQAAbEOwAAAAtiFYAAAA2xAsAACAbQgWAADANgQLAABgG4IFAACwDcECAADYhmABAABskzPB4vsvb9VDv3hPze3dTpcCAEDeyplg8ey6PVqxoVFNxzudLgUAgLyVM8GiqswnSTrcFnK4EgAA8lfOBItxyWARJFgAAOCUnAkWyR6LQ61dDlcCAED+yp1g4U8GC3osAABwSu4Ei7JCSdIhhkIAAHBMDgULhkIAAHBa7gQLP6tCAABwWs4Ei3GlPUMhxhiHqwEAID/lTLBI9liEIjEFuyIOVwMAQH7KmWBR6HWrrNAjSTrMPAsAAByRM8FC6jWBk5UhAAA4IseCRXyeBRM4AQBwRk4Fi3H0WAAA4KicChbsZQEAgLNyK1iwrTcAAI7KrWDBtt4AADgqx4IFu28CAOCk3AoWyaGQIHMsAABwQk4Fi+S23sGuiLrCUYerAQAg/+RUsPAXeVTgif+TDjOBEwCArMupYGFZFktOAQBwUE4FC6nXBE56LAAAyLocDBaJJacECwAAsi73goWfbb0BAHBKzgWLcaXMsQAAwCk5FyzY1hsAAOfkXrBIHp1OsAAAIOtyLlikjk4nWAAAkHU5FyySQyFH20KKxozD1QAAkF9yLlhUlvjksqSYiYcLAACQPTkXLNwuS5WlDIcAAOCEnAsWErtvAgDglJwOFuxlAQBAduVosEhs683umwAAZFXawaKpqUl33nmnKisrVVxcrAsuuEAbN27MRG1DxiZZAAA4w5POxc3Nzbrssss0f/58/e53v1NVVZU++eQTjRkzJkPlDc04hkIAAHBEWsHie9/7nurq6rR8+fLUc1OmTLG7pmFj8iYAAM5IayjkpZde0ty5c3XrrbeqqqpKs2fP1rJly075mlAopGAw2OeRaeM4Oh0AAEekFSx27NihpUuX6qyzztLvf/97LVy4UPfdd5+eeeaZAV/T0NCgQCCQetTV1Q276NOp6rWttzHsvgkAQLZYJo07b0FBgebOnas33ngj9dx9992nDRs26M033+z3NaFQSKFQT89BMBhUXV2dWlpa5Pf7h1H6wLrCUU37n6skSe/+r+sUKPZm5HMAAMgXwWBQgUDgtPfvtHosJkyYoPPOO6/Pc+eee6727Nkz4Gt8Pp/8fn+fR6YVet3yF8anjzCBEwCA7EkrWFx22WX6+OOP+zy3detWTZ482dai7FDl5/h0AACyLa1g8bWvfU3r1q3T448/ru3bt+u5557Tk08+qUWLFmWqviGr4vh0AACyLq1gMW/ePK1cuVI/+9nPNGPGDH33u9/V97//fd1xxx2Zqm/I2NYbAIDsS2sfC0m68cYbdeONN2aiFlslh0LY1hsAgOzJybNCJIZCAABwQs4Gi3HsvgkAQNblbLAoLy6QJDV3dDtcCQAA+SPng8XxjrDDlQAAkD9yNliMSey2SY8FAADZk7PBorwk3mMRisTU2R11uBoAAPJDzgaLkgK3vG5LEr0WAABkS84GC8uyNIYJnAAAZFXOBgtJKk/Ms2ACJwAA2ZHTwYIeCwAAsiung0Wyx6K5nWABAEA25HiwSPZYMBQCAEA25HSwYCgEAIDsyulgweRNAACyK7eDRQk9FgAAZFNuBwvmWAAAkFU5HiySQyH0WAAAkA05HSxSkzdZbgoAQFbkdLBI9lgEuyKKRGMOVwMAQO7L6WARKPKm/tzSyTwLAAAyLaeDhcftkr/QI4kJnAAAZENOBwupZ8kpEzgBAMi8nA8WY1hyCgBA1uR8sEgdREaPBQAAGZcHwYKhEAAAsiXng8WYVI8FQyEAAGRazgcLeiwAAMiePAgW8R6LY+y+CQBAxuV8sGBVCAAA2ZPzwYKhEAAAsif3g0UJkzcBAMiW3A8WvXosjDEOVwMAQG7Lm2ARjhq1d0cdrgYAgNyW88GiqMAtnyf+z2xmZQgAABmV88FC6j0cwjwLAAAyKS+CxRjOCwEAICvyIliUp/ayIFgAAJBJ+REsEktOGQoBACCz8iJYjKHHAgCArMiLYJE8L4QeCwAAMitPggU9FgAAZENeBAsOIgMAIDvyIlj0DIXQYwEAQCblRbBg8iYAANmRF8Ei2WPR3M5QCAAAmZQnwSLeY9EWiqg7EnO4GgAAcldeBAt/kVcuK/7n450MhwAAkClpBYtHH31UlmX1eVRXV2eqNtu4XZYCRexlAQBApnnSfcH06dP18ssvp/7udrttLShTyosL1NwR5uh0AAAyKO1g4fF4RkUvxYl6TjilxwIAgExJe47Ftm3bVFNTo/r6et12223asWPHKa8PhUIKBoN9Hk5ITuBkLwsAADInrWBx8cUX65lnntHvf/97LVu2TAcOHNCll16qo0ePDviahoYGBQKB1KOurm7YRQ8Fu28CAJB5aQWL66+/Xrfccotmzpypa6+9Vr/5zW8kST/96U8HfM3DDz+slpaW1KOxsXF4FQ8Ru28CAJB5ac+x6K2kpEQzZ87Utm3bBrzG5/PJ5/MN52NsUV7C7psAAGTasPaxCIVC+uijjzRhwgS76skYJm8CAJB5aQWLr3/961q7dq127typt956S5///OcVDAa1YMGCTNVnGyZvAgCQeWkNhezdu1e33367jhw5onHjxukv/uIvtG7dOk2ePDlT9dmGHgsAADIvrWCxYsWKTNWRcfRYAACQeXlxVojUO1iEZYxxuBoAAHJT3gSL5FBIJGbUGoo4XA0AALkpb4JFodetIm/8XJPj7cyzAAAgE/ImWEhSBXtZAACQUXkVLJLDIccIFgAAZEReBYtUjwVHpwMAkBF5GSyOthEsAADIhPwMFvRYAACQEXkVLCoTweJYe8jhSgAAyE15FSwqSuKnrB6jxwIAgIzIs2DBUAgAAJmUV8GisjQ5FEKwAAAgE/IrWCTnWLAqBACAjMizYBGfY9EaiigUiTpcDQAAuSevgoW/yCOPy5IkNXNeCAAAtsurYGFZlspTEzhZcgoAgN3yKlhIvfeyYJ4FAAB2y7tgUUGwAAAgY/I2WHBeCAAA9su7YFHJHAsAADIm74IF23oDAJA5+RcsShkKAQAgU/IuWLAqBACAzMm7YMGqEAAAMifvgkUlJ5wCAJAxeRcskj0WLZ1hhaMxh6sBACC35F2wGFNcICt+XIiaO+i1AADATnkXLNwuS+XFzLMAACAT8i5YSL0mcLLkFAAAW+VlsGACJwAAmZGfwaKUoRAAADIhL4NFBT0WAABkRJ4Gi+R5IRxEBgCAnfIyWFRydDoAABmRl8GCoRAAADIjL4MFB5EBAJAZeRksKlgVAgBARuRnsEj0WDR3dCsaMw5XAwBA7sjLYJHc0tsY6TjnhQAAYJu8DBZet0uBIq8khkMAALBTXgYLiW29AQDIhLwNFhWsDAEAwHZ5HyzosQAAwD55GyxSB5Gx+yYAALbJ22DRMxTCeSEAANglj4NF/CAyhkIAALBP3gYLDiIDAMB+wwoWDQ0NsixL999/v03lZE8l23oDAGC7IQeLDRs26Mknn9SsWbPsrCdrWBUCAID9hhQs2tradMcdd2jZsmUqLy+3u6asqEzMsWju6FaM80IAALDFkILFokWLdMMNN+jaa6897bWhUEjBYLDPYyQoL4lv6R2NGQW7wg5XAwBAbkg7WKxYsUKbNm1SQ0PDoK5vaGhQIBBIPerq6tIuMhN8HrfKfB5JDIcAAGCXtIJFY2OjFi9erGeffVaFhYWDes3DDz+slpaW1KOxsXFIhWZCBRM4AQCwlSedizdu3KhDhw5pzpw5qeei0ahee+01/fCHP1QoFJLb7e7zGp/PJ5/PZ0+1NqsoKdDuox0sOQUAwCZpBYtrrrlGW7Zs6fPc3XffrWnTpunBBx88KVSMdJUcRAYAgK3SChZlZWWaMWNGn+dKSkpUWVl50vOjAdt6AwBgr7zdeVNiW28AAOyWVo9Ff9asWWNDGc5gKAQAAHvleY8FwQIAADvld7BILDc9wqoQAABskdfBYnJFsSTpk8NtCkWiDlcDAMDol9fBon5sicaWFqg7EtN7e1ucLgcAgFEvr4OFZVmaN6VCkrR+5zGHqwEAYPTL62AhSRfVx4PFWwQLAACGjWCRCBabdjcrEo05XA0AAKNb3geLadV+lRV61BaK6KP9rU6XAwDAqJb3wcLtsjR3crkk6a2dRx2uBgCA0S3vg4UkXVRfKUnasIt5FgAADAfBQj3zLNbvPCZjjMPVAAAwehEsJM2cGFCh16XmjrC2H2pzuhwAAEYtgoWkAo9LF05KzrNgOAQAgKEiWCQkN8pingUAAENHsEi4OLlR1g7mWQAAMFQEi4TZk8rlcVk6EOzS3uZOp8sBAGBUIlgkFBW4Nas2IIlzQwAAGCqCRS/z6jmQDACA4SBY9JKcZ7GeCZwAAAwJwaKXOZMrZFnSziPtOtTa5XQ5AACMOgSLXgJFXp1b7ZckbdjZ7HA1AACMPgSLE5xfN0aS9OcDQWcLAQBgFCJYnGBqVakkadtBtvYGACBdBIsTnJUIFtsPEywAAEgXweIEZ42PB4tdR9rVHYk5XA0AAKMLweIE1f5Clfo8isSMdh9td7ocAABGFYLFCSzL0pnJ4RCOUAcAIC0Ei34k51lsI1gAAJAWgkU/CBYAAAwNwaIfPUtOWx2uBACA0YVg0Y+zqsokSTuOtCsaMw5XAwDA6EGw6MfE8iIVel3qjsTUeKzD6XIAABg1CBb9cLssnTGWeRYAAKSLYDGA5EZZLDkFAGDwCBYD6FkZwgROAAAGi2AxgKmJCZz0WAAAMHgEiwFM7bX7pjGsDAEAYDAIFgOYXFksr9tSR3dU+1q6nC4HAIBRgWAxAK/bpfqxJZLYKAsAgMEiWJzCVA4jAwAgLQSLU2ACJwAA6SFYnAKHkQEAkB6CxSkkN8nadrCVlSEAAAwCweIU6seWyGVJwa6IDreFnC4HAIARj2BxCj6PW5Mr4ytDth9kOAQAgNMhWJzGVOZZAAAwaASL02DJKQAAg5dWsFi6dKlmzZolv98vv9+vSy65RL/73e8yVduIwGFkAAAMXlrBora2VkuWLNHbb7+tt99+W1dffbU++9nP6oMPPshUfY47i70sAAAYNE86F9900019/v7YY49p6dKlWrdunaZPn25rYSPFlLHFkqQjbd1qD0VU4kuryQAAyCtDvktGo1E9//zzam9v1yWXXDLgdaFQSKFQz1LNYDA41I90RFmhV2OKvTreEVZjc4emVfudLgkAgBEr7cmbW7ZsUWlpqXw+nxYuXKiVK1fqvPPOG/D6hoYGBQKB1KOurm5YBTuhrjzea9F4rNPhSgAAGNnSDhbnnHOONm/erHXr1umrX/2qFixYoA8//HDA6x9++GG1tLSkHo2NjcMq2Al1FUWSpMZjHQ5XAgDAyJb2UEhBQYGmTp0qSZo7d642bNigf/7nf9ZPfvKTfq/3+Xzy+XzDq9JhqR6LZoIFAACnMux9LIwxfeZQ5KLaCoZCAAAYjLR6LL75zW/q+uuvV11dnVpbW7VixQqtWbNGq1atylR9I0JdeXwoZC89FgAAnFJaweLgwYO66667tH//fgUCAc2aNUurVq3Spz71qUzVNyLUpXosOmSMkWVZDlcEAMDIlFaweOqppzJVx4g2cUy8x6K9O6rmjrAqSgocrggAgJGJs0IGodDr1nh/fAIqK0MAABgYwWKQWBkCAMDpESwGqbY8uZcFK0MAABgIwWKQUhM46bEAAGBABItB6tnWm2ABAMBACBaDVFuR3MuCoRAAAAZCsBikZI9FU3OnYjHjcDUAAIxMBItBmhAolNtlqTsa08HWLqfLAQBgRCJYDJLH7VLNmEJJrAwBAGAgBIs0MIETAIBTI1ikIRksmMAJAED/CBZpqEusDGEvCwAA+kewSEPvU04BAMDJCBZpqGUoBACAUyJYpCE5FLK/pVPhaMzhagAAGHkIFmkYV+pTodelmJH2HafXAgCAExEs0mBZVmo4hL0sAAA4GcEiTXXlrAwBAGAgBIs0sTIEAICBESzSlNp9k5UhAACchGCRptQmWfRYAABwEoJFmnr2siBYAABwIoJFmpJzLI60daujO+JwNQAAjCwEizQFirzyF3oksQMnAAAnIlgMQS3HpwMA0C+CxRAwgRMAgP4RLIZgcmWJJGnXUYIFAAC9ESyGYOq4UknS9kNtDlcCAMDIQrAYgjOrCBYAAPSHYDEEUxPB4kCwS61dYYerAQBg5CBYDEGgyKtxZT5J0ieH2x2uBgCAkYNgMUTMswAA4GQEiyGayjwLAABOQrAYIoIFAAAnI1gMUTJYfHKYYAEAQBLBYoiSwWL30XZ1haMOVwMAwMhAsBiiqjKfynwexYy06ygrQwAAkAgWQ2ZZlqaOZ54FAAC9ESyGgSWnAAD0RbAYBlaGAADQF8FiGAgWAAD0RbAYhmSw2HGkXdGYcbgaAACcR7AYhtryYhV4XOqOxLS3ucPpcgAAcBzBYhjcLktnjC2RxHAIAAASwWLYmGcBAEAPgsUwJYPFNoIFAADpBYuGhgbNmzdPZWVlqqqq0s0336yPP/44U7WNCvRYAADQI61gsXbtWi1atEjr1q3T6tWrFYlEdN1116m9PX+3tE4dRnaoTcawMgQAkN886Vy8atWqPn9fvny5qqqqtHHjRl1xxRW2FjZa1I8tkcuSWkMRHWoNaby/0OmSAABwzLDmWLS0tEiSKioqbClmNPJ53JpcycoQAACkYQQLY4weeOABXX755ZoxY8aA14VCIQWDwT6PXHMmZ4YAACBpGMHinnvu0Xvvvaef/exnp7yuoaFBgUAg9airqxvqR45YTOAEACBuSMHi3nvv1UsvvaRXX31VtbW1p7z24YcfVktLS+rR2Ng4pEJHMoIFAABxaU3eNMbo3nvv1cqVK7VmzRrV19ef9jU+n08+n2/IBY4GqWBxmGABAMhvaQWLRYsW6bnnntMvf/lLlZWV6cCBA5KkQCCgoqKijBQ4Gpw5Lj5583BrSIdau1RVxsoQAEB+SmsoZOnSpWppadFVV12lCRMmpB4///nPM1XfqFBW6NXMiQFJ0po/H3a4GgAAnJP2UAj6d825VdrS1KKXPzqoL8zLvQmqAAAMBmeF2OTac8dLkv607Yi6wlGHqwEAwBkEC5tMr/FrvN+nznBU63YcdbocAAAcQbCwiWVZunpavNfilY8OOVwNAADOIFjY6NpzqyRJr3x0kPkoAIC8RLCw0WVTx6rQ69K+li59tL/V6XIAAMg6goWNCr1uXT51rKR4rwUAAPmGYGGzaxKrQ175M/MsAAD5h2Bhs2umxedZvLv3uA63hhyuBgCA7CJY2KzKX6hZtQEZI71KrwUAIM8QLDLg6kSvxcvMswAA5BmCRQawCycAIF8RLDJgeo1f1f5CduEEAOQdgkUGWJalqxObZf3o1U/U0R1xuCIAALKDYJEhCy6ZolKfR+t3HdNXnt5AuAAA5AWCRYacU12mZ/7rRSrzebRuxzF9efkGtYcIFwCA3EawyKALJ5WnwsX6ncf05eXr1Ua4AADkMIJFhs2eVK5n//ZilRV6tGFXs/5m2Tr94YMDCkdjTpcGAIDtLJPlYziDwaACgYBaWlrk9/uz+dGOem/vcd35f95SsCveYzG2tECfu7BWt86p1VnjyxyuDgCAUxvs/ZtgkUWNxzr0b+t264VNTTrS1rPd9/UzqvX4X89UeUmBg9UBADAwgsUIFo7GtObjw3r+7Ua98udDisaMqv2FeuIL5+vSxOmoAACMJASLUeL9phbd97N3tONIuyxL+u9XnKkHPnW2CjxMfwEAjByDvX9z93LYjIkB/fq+y3XbvDoZI/147Se69SdvqrUr7HRpAACkjWAxAhQXeLTklllaeseFChR59W7jcf30jV1OlwUAQNoIFiPI9TMn6DufnS5JevqN3RxgBgAYdQgWI8ynZ07QhEChjrSF9MvNTU6XAwBAWggWI4zX7dJXLquXJC37007FYlmdWwsAwLAQLEag2y6qU5nPo+2H2rR262GnywEAYNAIFiNQWaFXt188SZL05Gs7HK4GAIDBI1iMUF++dIo8Lktv7jiqLXtbnC4HAIBBIViMUDVjinTT+TWSpGV/otcCADA6ECxGsL/9y/gkzt9s2a+9zR0OVwMAwOkRLEaw6TUBXTa1UtGY0fL/3OV0OQAAnBbBYoT7b395hiTpubf26GivE1EBABiJCBYj3JVnj9Os2oA6w1FWiAAARjyCxQhnWZbuv/YsSdIzb+7WEXotAAAjGMFiFJh/TpXOp9cCADAKECxGgXivxdmSpGfe3EWvBQBgxCJYjBJXnTNO59eNUVc4pp+s/cTpcgAA6BfBYpToPdfi39bt1uFWei0AACMPwWIUuerscbqAXgsAwAhGsBhFevdaPPvWbh1q7XK4IgAA+iJYjDJXnj1OsyfFey2e+MNWp8sBAKAPgsUoY1mWvvXpcyVJP3+7UZsbjztbEAAAvRAsRqG5Uyr0uQsnyhjpkV++r1jMDOp1XeGoOrujGa4OAJDPCBaj1EPXT1Opz6N397bo+Y2Np73+9W1HdNmSP+qix17WU6/vVDgay0KVAIB8Q7AYparKClMTOb+36mO1dIT7vS4WM/rBK9t01/99S0fbu9Uaiui7v/5QN/7gdb35ydFslgwAyAMEi1FswaVTNLWqVMfau/XE6o9P+n5ze7fufnqDnli9VcZIt82r0+N/PVPlxV59fLBVty9bp3ue28SeGAAA26QdLF577TXddNNNqqmpkWVZevHFFzNQFgbD63bp25+ZLim+adbG3ce0ZW+LXnynSf/0h49147+8rrVbD8vncel/f36WltwyS39z8SS9+vWr9KVLJstlSb9+b7/ueuotBbv67/EAACAdnnRf0N7ervPPP1933323brnllkzUhDRcNnWsPj2zWr/dckC3LH3zpO9PqSzWj+6Yo/Nq/KnnxhQX6DufnaEvzK3T3U9v0J8PtGrhv23U03dfpAIPnVgAgKGzjDGDW1LQ34stSytXrtTNN9886NcEg0EFAgG1tLTI7/ef/gU4rabjnbrhB3/S8Y6wxpYW6IxxpTpzXKnOGV+qz82plb/QO+Br329q0Rd/8qbau6O6+YIaPfGFC+RyWWl9vjFGxzvC2nOsQ7uOtmvnkXbtPtqh1q6wLq6v1PxpVTpzXIksK733BQCMHIO9fxMsckRbKKJINKYxxQVpv/a1rYf1lac3KBIz+upVZ+rB/zJtwGvbQxGtfKdJb+44qoMtXTrY2qWDwZC6I6deZTKpoljzzxmnm2dP1OxJ5WnXCABw1mDv32kPhaQrFAopFOqZHBgMBjP9kXmp1Df0/ymvOHucGj43U9/4j/e0dM0n8hd6deOsCZoQKJTHHR8a2XmkXc+8uUv/8fZetYYi/b5PVZlPU8aWaEplsSZXlsjncWnt1sN6a8cx7TnWoZ++uVs/fXO3/nr2RD18/TRV+QuHXDMAYGTKeI/Fo48+qm9/+9snPU+PxcjzL69s0z+t7tkm3OOyVDOmSGOKvXpvb0vq+fqxJfr8nFpNqSzReL9P4/2FqvL75PO4+33f9lBE/7n9iH67Zb9++e4+GSOVFLi1+Nqz9OVL64c9r8MYo4PBkFyWVFroUZHXzbALANhsxAyF9NdjUVdXR7AYgYwx+uEft2vlO03a29yp7l6baFmWNP+cKi24dIr+curYtOdhJL3beFyPvPRBaivyM8aV6O5Lp+iGWTWqKBncMM7BYJfe2XNcW5qO6729LXq/qUXNvfbxcFnxHpzKUp/OnVCm6TUBTa/xa3pNQOPKfEOqGwDy3YgJFkMtDM6KxYwOtnap8VinDgS7dH5tQJMrS2x77//YtFf/uOrPOtLWLSneO3LF2eP02QtqNG9KhWLGKBqLP9pDUW3ee1wbdx3T27ubtbe586T3dLssGWN0ut3NK0sKdOa4Up1ZVRL/Oq5UkyqLVVteNGCPixSfw9LU3Kmm4x1qau5UKBKTv8grf6FX/iKPAkVe1QTivTv0lgDIRRkLFm1tbdq+fbskafbs2XriiSc0f/58VVRUaNKkSbYVhtwX7Arr/21o1Iubm/R+0+Dn3rgs6Zxqv86vDWhmbUCzJo7R2dWlKnC71BmOqq0rotZQRPuPd+mDfS36YF9Q7+9r0c4j7Rrop92ypAn+QtVVFMvndas9FIk/uiNq6Qgr2NX/vJITlRS4VVseDyqVpQVyuyy5rORDisSMwtGYIlGj7mhMxkhetyWv2yWvx6UCt0tulyWPy5Ir+dWyEu8juRJ/Ly5wK1Dklb/Iq0DiUV5cIH+hJzUvBgDslLFgsWbNGs2fP/+k5xcsWKCnn37atsKQX7YfatMvNzfpV+/uU9PxTrldltyJG2qBx6Vp1X7NmVyuuVPKNXtS+ZAmq3Z0R7TjcLs+Odym7Yfa9MnhNu043K49xzrUMYjD2QJFXk0cUxTv3fC61doVVrAzrNauiJo7wjrSNjJ2MPUXejSmuECFXpciiV6fSDTxNWYUjcUUiRnFYkbRxP/9e/8WcLvi7e5NhJwCt0uFXpeKCtwq8rpV6HXL53GrwGPJ43LJ63apwONSkdet4gJ36roCj0ted/waT+JrJBYPVZFYTOGokWXFN3orcPdcY1nJeuJFuSxLPq9bPo9LPk/8szwul9wu9QpdljxuKxHKXHJbllyueK+qy4pflxQzRsYk3z0eVC1ZshLXed0WvU5AP7IyFDIUBAuMNMYYHW3v1u6jHWo81qFIzKjU51aJz6MSn0dlPo8mjCk6bZjpCkfVdLxTe5s71XisQy2dYcVi8eGZqDEyxqRu2MkbqcuyFI7Gb7LhaEzdkZiipncYSIQAo8RQj1E0Fg9JLZ3hnkdHeMDVOkif1x0PVF6PSy4rPsxm1BPAPCeEL088nchSPJxYibDSm2VJPk88iCXDWH9TlSwr/sp4tukJRj1BKf6i3r+644HIlQp7HreVCFc9tbhdSoT1RChzWbJkycik/l2WpVSg7/1v7OlRi7+/q1eoS12f+F7yz1LfwJoMbn1e5+75nGQvnaWeQBivO72wl2wXwqH9CBZAnglHY2rpDOt4R7eaO8IKR2Nyp/5L3pX6c88v8njvQPL3r5W8gZr4e0VjRuHEkE1XOKrOcFRd3VF1dEcTYSim7kQgCoVj8e+Ho+rojqSuiUSNwjGjSDQekDwuSx63K/7VZclIivQKVpFek2SSN9dIzKg7ElMoElMoElVXOJaaf5PsdYnG4qErEjMDDndhdPMkAov7hMBgFO+FisWU+lmQeoJMsveqd8+Z1x1/L28iCCXDkDFK9ahFEz9byeDkdfcEtlTwOfGrEgFQVqpnLJYIpS5LPb1ria/J8GglQmnvf1NST7DseW3v4Odx9R+6/sd1Z6vsFJsjDsWI2ccCQHZ43S6NLfVpbGl+r3xJho3ev9hjia+uXjeA5O/inmviN6fuRGhK9iDFjFK/+JOvicbUa1gnfjNL9mokP/dE8aGomLoj8bDWHYnpxP+uS44AJXsRkr0ksUSPVzTRe5UKg8n3NsmA1hP2TK9erphRKnwlQ1m0d4hLvFHM9LRfJBEIozETf89ILF5/tKeW3oEu2cuWvClLJ97sel5jTE8ISA7RnU5kkNelPi35GTJSVJJOvYlfrlk0f6rKHNoqiGABIKe4XJZcJ93UMJIlV3RFYrFUKEsFoqhROBHiwtGYYsb0O8x04nBKMkz2DlLJYcf4HJ9YKiDGYlI4FuvTI+BNDFXGTLznrndo6h1YewfK3kOWrt49G4khp9619J7rk3y/nsBopeYa9Q6V0UTw6z1XqndA7J1TiwsGXuWWaQQLAICjLMuS25LcLuduhrAP69IAAIBtCBYAAMA2BAsAAGAbggUAALANwQIAANiGYAEAAGxDsAAAALYhWAAAANsQLAAAgG0IFgAAwDYECwAAYBuCBQAAsA3BAgAA2Cbrp5uaxLmuwWAw2x8NAACGKHnfNr3PZ+9H1oNFa2urJKmuri7bHw0AAIaptbVVgUBgwO9b5nTRw2axWEz79u1TWVmZLMuy7X2DwaDq6urU2Ngov99v2/viZLR19tDW2UNbZxftnT12tbUxRq2traqpqZHLNfBMiqz3WLhcLtXW1mbs/f1+Pz+kWUJbZw9tnT20dXbR3tljR1ufqqciicmbAADANgQLAABgm5wJFj6fT4888oh8Pp/TpeQ82jp7aOvsoa2zi/bOnmy3ddYnbwIAgNyVMz0WAADAeQQLAABgG4IFAACwDcECAADYJmeCxY9+9CPV19ersLBQc+bM0Z/+9CenSxrVGhoaNG/ePJWVlamqqko333yzPv744z7XGGP06KOPqqamRkVFRbrqqqv0wQcfOFRx7mhoaJBlWbr//vtTz9HW9mpqatKdd96pyspKFRcX64ILLtDGjRtT36e97RGJRPT3f//3qq+vV1FRkc444wx95zvfUSwWS11DWw/Na6+9pptuukk1NTWyLEsvvvhin+8Ppl1DoZDuvfdejR07ViUlJfrMZz6jvXv3Dr84kwNWrFhhvF6vWbZsmfnwww/N4sWLTUlJidm9e7fTpY1af/VXf2WWL19u3n//fbN582Zzww03mEmTJpm2trbUNUuWLDFlZWXmF7/4hdmyZYv54he/aCZMmGCCwaCDlY9u69evN1OmTDGzZs0yixcvTj1PW9vn2LFjZvLkyebLX/6yeeutt8zOnTvNyy+/bLZv3566hva2xz/8wz+YyspK8+tf/9rs3LnTPP/886a0tNR8//vfT11DWw/Nb3/7W/Otb33L/OIXvzCSzMqVK/t8fzDtunDhQjNx4kSzevVqs2nTJjN//nxz/vnnm0gkMqzaciJYXHTRRWbhwoV9nps2bZp56KGHHKoo9xw6dMhIMmvXrjXGGBOLxUx1dbVZsmRJ6pquri4TCATMj3/8Y6fKHNVaW1vNWWedZVavXm2uvPLKVLCgre314IMPmssvv3zA79Pe9rnhhhvMV77ylT7Pfe5znzN33nmnMYa2tsuJwWIw7Xr8+HHj9XrNihUrUtc0NTUZl8tlVq1aNax6Rv1QSHd3tzZu3Kjrrruuz/PXXXed3njjDYeqyj0tLS2SpIqKCknSzp07deDAgT7t7vP5dOWVV9LuQ7Ro0SLdcMMNuvbaa/s8T1vb66WXXtLcuXN16623qqqqSrNnz9ayZctS36e97XP55ZfrlVde0datWyVJ7777rl5//XV9+tOflkRbZ8pg2nXjxo0Kh8N9rqmpqdGMGTOG3fZZP4TMbkeOHFE0GtX48eP7PD9+/HgdOHDAoapyizFGDzzwgC6//HLNmDFDklJt21+77969O+s1jnYrVqzQpk2btGHDhpO+R1vba8eOHVq6dKkeeOABffOb39T69et13333yefz6Utf+hLtbaMHH3xQLS0tmjZtmtxut6LRqB577DHdfvvtkvjZzpTBtOuBAwdUUFCg8vLyk64Z7r1z1AeLpBOPYDfG2Hosez6755579N577+n1118/6Xu0+/A1NjZq8eLF+sMf/qDCwsIBr6Ot7RGLxTR37lw9/vjjkqTZs2frgw8+0NKlS/WlL30pdR3tPXw///nP9eyzz+q5557T9OnTtXnzZt1///2qqanRggULUtfR1pkxlHa1o+1H/VDI2LFj5Xa7T0pYhw4dOimtIX333nuvXnrpJb366qt9jruvrq6WJNrdBhs3btShQ4c0Z84ceTweeTwerV27Vj/4wQ/k8XhS7Ulb22PChAk677zz+jx37rnnas+ePZL42bbTN77xDT300EO67bbbNHPmTN1111362te+poaGBkm0daYMpl2rq6vV3d2t5ubmAa8ZqlEfLAoKCjRnzhytXr26z/OrV6/WpZde6lBVo58xRvfcc49eeOEF/fGPf1R9fX2f79fX16u6urpPu3d3d2vt2rW0e5quueYabdmyRZs3b0495s6dqzvuuEObN2/WGWecQVvb6LLLLjtp6fTWrVs1efJkSfxs26mjo0MuV9/bjNvtTi03pa0zYzDtOmfOHHm93j7X7N+/X++///7w235YUz9HiORy06eeesp8+OGH5v777zclJSVm165dTpc2an31q181gUDArFmzxuzfvz/16OjoSF2zZMkSEwgEzAsvvGC2bNlibr/9dpaJ2aT3qhBjaGs7rV+/3ng8HvPYY4+Zbdu2mX//9383xcXF5tlnn01dQ3vbY8GCBWbixImp5aYvvPCCGTt2rPm7v/u71DW09dC0traad955x7zzzjtGknniiSfMO++8k9pmYTDtunDhQlNbW2tefvlls2nTJnP11Vez3LS3f/3XfzWTJ082BQUF5sILL0wti8TQSOr3sXz58tQ1sVjMPPLII6a6utr4fD5zxRVXmC1btjhXdA45MVjQ1vb61a9+ZWbMmGF8Pp+ZNm2aefLJJ/t8n/a2RzAYNIsXLzaTJk0yhYWF5owzzjDf+ta3TCgUSl1DWw/Nq6++2u/v6AULFhhjBteunZ2d5p577jEVFRWmqKjI3HjjjWbPnj3Dro1j0wEAgG1G/RwLAAAwchAsAACAbQgWAADANgQLAABgG4IFAACwDcECAADYhmABAABsQ7AAAAC2IVgAAADbECwAAIBtCBYAAMA2BAsAAGCb/w9NZ7KdrZqi/wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.plot(losses)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 205,
+ "id": "eaa00692-b04c-45fc-b44f-f8db54d5b4be",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(84592, 64)"
+ ]
+ },
+ "execution_count": 205,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "embedding = model.encode(data).detach().numpy()\n",
+ "embedding.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "822c64b9-04a9-48c8-90b1-41bff00a7de5",
+ "metadata": {},
+ "source": [
+ "In the original L2G code, there is a Patch class handling patches."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ad01511-5965-4676-8b56-dd304d2ec538",
+ "metadata": {},
+ "source": [
+ "### 3. Visualisation "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "9cd75dab-3105-454f-a615-df326670871b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "most_common = ['AU', 'BR', 'CN', 'DE', 'IN', 'ID', 'PL', 'RU', 'GB', 'US']\n",
+ "countries = dl.get_nodes(ts=dates[0])['country'].to_list()\n",
+ "indices = [i for i in range(len(countries)) if countries[i] in most_common]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 208,
+ "id": "4961ad0e-e22e-4160-a742-4e461bfa4741",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "points = embedding[indices, :]\n",
+ "labels = [most_common.index(countries[i]) for i in indices]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 209,
+ "id": "24c57c17-115a-4aee-8d9f-cd69d89901e0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Use UMAP to visualise the graph embeddings for different days\n",
+ "reducer = umap.UMAP(n_neighbors=5, min_dist=0.0, metric='euclidean')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 210,
+ "id": "d8ede66a-8b07-4a10-8121-9645d8f5dd13",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#points = StandardScaler().fit_transform(points)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 211,
+ "id": "44b68f64-9fd7-4ad5-8aad-d0939325a330",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "umap_embedding = reducer.fit_transform(points)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 212,
+ "id": "159fcea7-f8e9-49d6-b371-ec3128dac17a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPcCAYAAABcktgjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xedd3/8dc518reo5ndu4W2lJa9NxSUISp4M1T0dovjdgsORPFWUW/9KUMEZKogU4GyWjpo6d4rbdOMNnvnWuf7+yNt2jS7zZWrSd5PH5XmnO8553Ol0Fzv67ssY4xBRERERERERAacHe0CRERERERERIYrhW4RERERERGRCFHoFhEREREREYkQhW4RERERERGRCFHoFhEREREREYkQhW4RERERERGRCFHoFhEREREREYkQhW4RERERERGRCFHoFhEREREREYkQhW4RERm27rrrLizLorKyssvzM2bM4Lzzzmv/evfu3ViWhWVZ3HXXXV1ec/vtt7e36c6cOXOwLItf/vKXXZ5/5JFH2u9hWRZut5v8/Hxuu+02SkpKen1dR1579K9bb7211+v76lCdK1euHLB7dufQn1VfHP3nc6jO3bt3R6Y4ERGR4+COdgEiIiInmsTERB555BF+8IMfYNuHP59ubGzk2WefJSkpifr6+i6vXbNmDatXrwbgoYce4utf/3q3z/nLX/7ClClTaGlp4d133+VnP/sZ77zzDuvXryc+Pr7HGq+//nq+9rWvdTqemZnZl5c4rFx55ZUsXbqUnJycaJciIiLSiUK3iIjIUW688UYefPBBFi5cyMUXX9x+/OmnnyYcDvOhD32Ixx9/vMtrH3zwQaAtCL788sssWbKEM844o8u2M2bMYO7cuQCcf/75hMNhfvzjH/P8889z00039VhjdnY2p5122rG8vGEnMzNzRH7YICIiQ4OGl4uIiBxl8uTJnHHGGTz88MMdjj/88MNce+21JCcnd3lda2srTzzxBKeccgq//vWv26/pq0Mhes+ePcdYeUe33norCQkJbNmyhUsvvZT4+HhycnK49957AVi2bBlnnXUW8fHxTJo0ib/+9a9d3qempobbbruNtLQ04uPjWbBgAbt27erU7o033uDCCy8kKSmJuLg4zjzzTBYuXNip3csvv8ysWbPw+XyMHTu222H49fX1fPrTnyY9PZ2EhAQuu+wytm3b1qldV8PLzzvvPGbMmMGKFSs4++yziYuLY9y4cdx77704jtPh+o0bN3LJJZcQFxdHZmYmn//853n55ZexLIu33367u2+viIhInyh0i4iIdOGTn/wkzz//PDU1NQBs3bqVJUuW8MlPfrLba/75z39SU1PD7bffzsSJEznrrLN4+umnaWxs7NMzd+zYAfRtiLgxhlAo1OmXMaZDu2AwyLXXXsuVV17Jv/71Ly6//HK+/e1v853vfIdbbrmF22+/neeee47Jkydz66238sEHH3T5vbBtmyeeeILf/OY3vP/++5x33nnU1ta2t3n88ce55JJLSEpK4q9//SvPPPMMaWlpXHrppR2C98KFC7nmmmtITEzkqaee4r777uOZZ57hL3/5S6fX96EPfYjHHnuMr33tazz33HOcdtppXH755X36XgKUl5dz0003cfPNN/PCCy+0v/YjRymUlZVx7rnnsnXrVv74xz/y6KOP0tDQwBe+8IU+P0dERKRHRkREZJj64Q9/aABTUVHR5fnp06ebc889t/3roqIiA5j77rvPNDQ0mISEBPP73//eGGPMN77xDTN27FjjOI75/Oc/b7r6EXrBBReYmJgYU1NTY4wx5i9/+YsBzEMPPdSh3aHjy5YtM8Fg0DQ0NJiXXnrJZGZmmsTERFNeXt7j6wK6/fXYY4+1t7vlllsMYP7xj3+0HwsGgyYzM9MAZtWqVe3Hq6qqjMvlMnfeeWenOj/84Q93eP57771nAPOTn/zEGGNMU1OTSUtLMwsWLOjQLhwOm5NPPtnMmzev/dj8+fNNbm6uaWlpaT9WX19v0tLSOnxPX331VQOY+++/v8M9f/rTnxrA/PCHP+xUZ1FRUfuxc8891wBm+fLlHa6fNm2aufTSS9u//sY3vmEsyzIbN27s0O7SSy81gHnrrbeMiIjI8VBPt4iISBcSEhK44YYbePjhhwmFQjz66KPcdttt3a6wXVRUxFtvvcW1115LSkoKADfccAOJiYndDjE/7bTT8Hg8JCYmctVVVzFq1CheffVVsrOze63vIx/5CCtWrOj064orrujQzrKsDsfcbjcTJkwgJyeH2bNntx9PS0sjKyury6HtR88vP+OMMxg9ejRvvfUWAEuWLKG6uppbbrmlQ6+74zhcdtllrFixgqamJpqamlixYgXXXnstMTEx7fdLTExkwYIFHZ5x6N5HP/vjH/94r9+bQ0aNGsW8efM6HDvppJM6vMZ33nmHGTNmMG3atA7tPvaxj/X5OSIiIj3RQmoiIjJsud1tP+bC4XCX50OhEB6Pp9vrP/nJT3LWWWfx05/+lIqKih6343r44YcxxnD99dd3GHZ99dVX87e//Y0tW7YwZcqUDtc8+uijTJ06FbfbTXZ2dr9W387MzGxfhK0ncXFxHQIugNfrJS0trVNbr9dLa2trp+OjRo3q8lhVVRUA+/fvB9pWVO9OdXU1lmXhOE639ztSVVUVbreb9PT0XmvpztHXAvh8PlpaWjo8Z+zYsZ3a9eWDDxERkb5Q6BYRkWHrUHAqKSnpFKKMMZSVlfUYXM8880wmT57Mj370Iy6++GIKCgq6bOc4Do888ggA1157bZdtHn74YX7xi190ODZ16tQ+BedoKy8v7/LYhAkTAMjIyADgd7/7XbcrqmdnZxMMBrEsq9v7HSk9PZ1QKERVVVWH8NzVtccjPT29/UODnuoRERE5VhpeLiIiw9YFF1yAZVk8/fTTnc79+9//pr6+nosuuqjHe3zve99jwYIFXe6Jfch//vMf9u3bx+c//3neeuutTr+mT5/Oo48+SigUOu7XFA1/+9vfOny9ZMkS9uzZw3nnnQe0fTiRkpLCpk2bmDt3bpe/vF4v8fHxzJs3j3/+858detQbGhp48cUXOzzj/PPP7/LZTzzxxIC+tnPPPZcNGzawadOmDsefeuqpAX2OiIiMXOrpFhGRYWv8+PF84Qtf4L777qO2tpYrrriC2NhYVqxYwb333svcuXN7nSN88803c/PNN/fY5qGHHsLtdvOd73yH3NzcTuc/85nP8KUvfYmXX36Za6655rhe0yH79+9n2bJlnY4nJSV1mp98vFauXMmnPvUpbrjhBoqLi/nud79LXl4en/vc54C2+e+/+93vuOWWW6iurub6668nKyuLiooK1q5dS0VFBX/84x8B+PGPf8xll13GxRdfzNe+9jXC4TA///nPiY+Pp7q6uv2Zl1xyCeeccw7f/OY3aWpqYu7cubz33ns89thjA/ravvKVr/Dwww9z+eWX86Mf/Yjs7GyeeOIJtmzZAoBtq39CRESOj36SiIjIsHb//ffzhz/8gVWrVvHxj3+cBQsW8Ne//rW9V9rr9R7X/SsrK3nxxRe56qqrugzcAJ/4xCeIjY3loYceOq5nHenvf/87p59+eqdfd9xxx4A945CHHnqIQCDARz/6Ub70pS8xd+5c3n777Q7zwm+++WbeeustGhsb+cxnPsNFF13El7/8ZVatWsWFF17Y3u7iiy/m+eefp76+nhtvvJE777yT6667jttvv73DM23b5oUXXuCmm27iF7/4BR/60IdYsmQJr7zyyoC+ttzcXN555x0mTZrEZz/7WW666Sa8Xi8/+tGPANoXxRMRETlWljFHbegpIiIiMsLdcccdPPnkk1RVVR33BzMiIjKyaXi5iIiIjGg/+tGPyM3NZdy4cTQ2NvLSSy/x4IMP8r3vfU+BW0REjptCt4iIiIxoHo+H++67j3379hEKhZg4cSK/+tWv+PKXvxzt0kREZBjQ8HIRERERERGRCNFCaiIiIiIiIiIRotAtIiIiIiIiEiEK3SIiIiIiIiIRMuQXUnMch9LSUhITE7EsK9rliIiIiIiIyDBnjKGhoYHc3Fxsu+e+7CEfuktLSykoKIh2GSIiIiIiIjLCFBcXk5+f32ObIR+6ExMTgbYXm5SUFOVqREREREREZLirr6+noKCgPY/2ZMiH7kNDypOSkhS6RUREREREZND0ZYqzFlITERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiRCFbhEREREREZEIUegWERERERERiZCIhu53332XBQsWkJubi2VZPP/88x3O33rrrViW1eHXaaedFsmSRERERERERAZNREN3U1MTJ598Mr///e+7bXPZZZdRVlbW/uuVV16JZEkiIiIiIiIig8YdyZtffvnlXH755T228fl8jBo1KpJliIiIiIiIiERF1Od0v/3222RlZTFp0iQ+/elPc+DAgWiXJCIiIiIiIjIgItrT3ZvLL7+cG264gdGjR1NUVMT3v/99LrjgAj744AN8Pl+X1/j9fvx+f/vX9fX1g1WuiIiIiIiISL9ENXTfeOON7b+fMWMGc+fOZfTo0bz88stce+21XV7zs5/9jLvvvnuwShQRERERERE5ZlEfXn6knJwcRo8ezfbt27tt8+1vf5u6urr2X8XFxYNYoYiIiIiIiEjfRbWn+2hVVVUUFxeTk5PTbRufz9ft0HMRERERERGRE0lEQ3djYyM7duxo/7qoqIg1a9aQlpZGWload911F9dddx05OTns3r2b73znO2RkZPDhD384kmWJiIiIiIiIDIqIhu6VK1dy/vnnt3995513AnDLLbfwxz/+kfXr1/Poo49SW1tLTk4O559/Pk8//TSJiYmRLEtERES6EQqGeOKu92moagXAcsH13z2VrFz9bBYRETkWljHGRLuI41FfX09ycjJ1dXUkJSVFuxwREZEha+nzO1j1771dnvPEurjj1+cOckUiIiInpv7k0BNqITURERGJjqryhm4DN0CwJcwfvvAmAX9oEKsSEREZ+hS6RUREhGd/urLXNiYED3z5XZ77w9JBqEhERGR4UOgWERERwsG+zzYrXdfC/332zQhWIyIiMnwodIuIiMgxUfAWERHpnUK3iIiIHLPVyzZFuwQREZETmkK3iIiIkFGYcEzXLXmkfIArERERGV4UukVERIQbvzMv2iWIiIgMSwrdIiIiAsCn7j8z2iWIiIgMOwrdIiIiAoDP5+Pz/+8CLrh1Up+vScyxIliRiIjI0KfQLSIiIh1MPS2fW+49o09tL79tboSrERERGdoUukVERKSThJQYPvfH83tsM/vSQjILEwepIhERkaFJoVtERES6ZFkWn/vj+WROPGoIeQxc8d8zOePDE6JTmIiIyBDijnYBIiIicuKyLIuPfK2txzscdrAA26XP7EVERPpKoVtERET6xKWwLSIi0m/66SkiIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiIiIiIhGi0C0iIiIiIiISIQrdIiIiI0hrayv/WV/KzvLaaJciIiIyIrijXYCIiIhE3tLtlXzsoeWdjmcmelnx3YujUJGIiMjIoJ5uERGRYW7xtgNdBm6AioYAE7/zyiBXJCIiMnIodIuIiPRiT5OfKYvWkfvWGvLfXsP3thZHu6R+ufnhFT2eDzqGP72zfZCqERERGVkUukVERHowa/F65r+/mdqQgwOEDDxYWsWot9awub4p2uX1qqqupU/t7n11W4QrERERGZkUukVERLpx/vLNlAfD3Z//4MTvHX5oSVGf2pkI1yEiIjJSKXSLiIh0Y3Ozv9c2N6/ZMQiVHLvJ2YnRLkFERGREU+gWERHpwpOllX1qt7CmMcKVHJ9r5hT0qV281xXhSkREREYmhW4REZEuLK/t23ztoTAsO6EPgfq9r587CJWIiIiMPArdIiIiXbgxJ7VP7YZC//CGH12G1cP5G0/JIyUpdtDqERERGUkUukVERLpwempSn9p9d+yoCFcyMIruvZKPzc3vcCzGY7PsW+fz8xtmRacoERGREcAyxgyFkXHdqq+vJzk5mbq6OpKS+vYGSUREpC/u3l7MH/dVdXveBZScP2vQ6hEREZETQ39yqHq6RUREuvHDiQXcmpPW5blYy1LgFhERkV6pp1tERKQPfltUyt8P1JHhdvH4jNHE+XzRLklERESipD851D1INYmIiAxpXxqby5fG5ka7DBERERliNLxcREREREREJEIUukVEREREREQiRKFbREREREREJEI0p1tEREREpA8CLSFqypux3RbpufHYLvVfiUjvFLpFRERERHrQUNXCP3/5AY01gQ7H5y0Yy9wrxmBZVpQqE5GhQB/PiYiIiIh0o3xXLY9+d2mnwA3w/otFPPerD6JQlYgMJQrdIiIiIiJdCAXD/OMXq3psU7a9nvdf2jVIFYnIUKTQLSIiIiLShTcf29yndite2k2gORThakRkqFLoFhERERHpwvb3D/S57Vt/61tAF5GRR6FbREREROQoxph+td+1tjJClYjIUKfQLSIiIiJylKA/3K/2Tqh/IV1ERg6FbhERERGRo9Tub452CSIyTCh0i4iIiIgcxbK197aIDAyFbhERERGRoyRnxkS7BBEZJhS6RURERESOUrypJtoliMgwodAtIiIiInKUxhp/tEsQkWFCoVtERERE5CjeWHe/r3EcJwKViMhQp9AtIiIiInKEcMhh89Kyfl+3b7OGpItIZwrdIiIiIiJH2LS4hLLttf2+buW/dxMK9m9/bxEZ/hS6RUREREQOCgcdlv5z5zFdW7a9jmfuWUFzfWCAqxKRoUyhW0RERETkoDUL9xIMHPvc7Nr9Lbz24IYBrEhEhjqFbhERERERwDiGdW/tO+57lGyrpaqkcYCqEpGhTqFbRERERATwt4Rorjv+oeGWBcWbqwegIhEZDhS6RUREREQAl3vg3hob7R4mIgcpdIuIiIiIAB6fi7xJKcd9H2MgZ0Ly8RckIsOCQreIiIiIyEFzLht93PfIyE8ge2zSAFQjIsOBQreIiIiIyEGF09JJL0g45utdHpvLPjMDy7IGsCoRGcoUukVEREREjpAzK/2Yr51zaSHJmXEDWI2IDHUK3SIiIiIiR9hXeuzbfVUdx7UiMjwpdIuIiIiIHOSEHWrXVh3z9UWrKwkHtXS5iBym0C0iIiIiclDtgRYIHfv1xsCOVQcGriARGfIUukVEREREDtq5+tgCszGm/ff7i+oHqhwRGQYUukVEREREDtq97tiGlh+5Wrlta+VyETlMoVtERERE5KBA67GNLTfGYEzbXO78qakDWZKIDHHuaBcgIiIiA2zLK/DUxw5/nZALX98cvXpEhhC353h6qS28sS5GTz/2LcdEZPhRT7eIiMhwcldyx8AN0FjadnzR76JTk8gQYYyhvrL1mK61LAvLsrjmq7OxNLxcRI6g0C0iIjJc3J3R8/mF34OWlsGpRWQIWruwmEBL+JivT8uNI6swaQArEpHhQKFbRERkODAGTLD3dj/PjXwtIkPQrtUVvPf3Hcd1j8s/O3OAqhGR4UShW0REZDh49dt9bOhEtAyRoSgcdnjrb1uO+z4pWfEDUI2IDDcK3SIiIsPBvlXRrkBkyNq7oYrWxj6MFOlB7uTkAapGRIYbhW4REZHh4PTPRrsCkSHrWBdPO9Ilt88YgEpEZDhS6BYRERkOZl7bt3ZuDX8VOVpMgue4ri+Ynkp8sm+AqhGR4UahW0REZLhIn9Z7m2/uinwdIkPMmJN6Wfm/F/MXjB+gSkRkOFLoFhERGS6+uBSSCro//6l3wRszePWIDBGN1cc3vDw9RyNIRKR7Ct0iIiLDyZ0b4Ie1kHpEz9tFP4W76iD/5KiVJXIi2/Z++XFd31jnH6BKRGQ4cke7ABERERlglgVf1mrmIn21d2P1cV2/f1cdKVlxA1SNiAw36ukWERERkRHLGENVaeNx3aP2QMsAVSMiw5FCt4iIiIiMWM0NAYxzfPdIzNBaCSLSPYVuERERERmxgi3h475H9uikAahERIYrhW4RERERGbGK1lZgjuP69Lw40vMSBqweERl+FLpFREREZMRa/07JcV1/1kcmDVAlIjJcKXSLiIiIyIjkhB0aqlqxjuMeuRNSBqocERmmFLpFREREZESybAvbdeyRe+LcLGyX3k6LSM/0t4SIiIiIjEiWZZGRn3BMc7q9MS7O/qiGlotI7xS6RURERGREam0KUlHccEzX3vSj04lN8A5wRSIyHCl0i4iIiMiItHVZ+bHt0W1BXJICt4j0jUK3iIiIiIxIJdtrAPq9kFpWYeLAFyMiw5Y72gWIiIiIiAymyn2NrH5tD0VrKjFA2AJ3PyZ21xxoxt8Swhert9Ii0jv1dIuIiIjIiLFnYxXP/mwF21cewADbczy4+rmSWrAlzDM/WxGR+kRk+FHoFhEREZERIegP89oDG3Acg3EMK8f7GFcePKZ9uusPtLBvW/WA1ygiw49Ct4iIiIiMCNtX7ifQGgYDjgXVCXa/e7mP9NoDGwauOBEZthS6RURERGREqNjTgO1q69eujbfJrT62Xu5DWhpCA1OYiAxrCt0iIiIiMiK43DYc7Nk2xjB5n0KziESeQreIiIiIjAijT0rHcdpSd3pdI14DhuMYXy4i0gcK3SIiIiIyIuRNTMF2WcTVLsKq38FGz/H1dGePSxigykRkONPmgiIiItLJk0Ul/HBvBbGWi2dOHsfk5PholyTSL42Njaxfv566ujri4uKYOXMm+L14a9eSuvs97jnnS3hNkKlB1zHP677gE9MHtGYRGZ4UukVERKTdPVuK+W1ZVfvX9YQ5d9V2ANafPoXMmJholSbSZ4sXL+bNN9/EGINlWRhjePPNN5kyYRoFe1/k+6feQsiyCNqwyhvmlIALq5/R+8zrJ5CWow+jRKR3Gl4uIiIiAPxuR8fAfbSZS7cQCAYHsSKR/lu5ciVvvPEGjuNgjGn/J8CetSupJJ798emYgxl7lztMnWXo6n/dmTg3i1kXFQ7GyxGRYUChW0RERAD4aXH3gfuQCYs3DkIlIsfGcRzefvvtbs+7wyF2JediHQzhZ7S4+Uizj0Rjceh/hrYFzquPCN1tx9q+nnVRARfdNi1yL0JEhh0NLxcRERFaWlv71C4Q4TpEjkdJSQmNjY3dnm+Oi6M+OReDxeigzZl+DwBHzuq2sTAY0g4eMxgcLFxY2C6LM6+fGNkXISLDjnq6RUREhH9V1ke7BJHjFgj0/LFQ2OUmNXEyAKf43YS7GUJuHRG4wSJ0sN2hYeoiIv2h0C0iIiJMio+Ndgkixy0tLa3H865wHMnEMyVokx+y6Wnd8rbg3Xbed/Cf3lgNEhWR/lPoFhEREeakJka7BJHjlpqayrhx47CsbsL0wY7qK5q97UG6J4djd5v8SSnHW6KIjEAK3SIiIgL07U3BAxNzI16HyPG48sor8fl82Hbnf6PD7hYMpsce7p6k5yccb3kiMgIpdIuIiAgApefP6vF8oddmQX7W4BQjcozS09O54447mDFjRofg7fG0LZrWn7h99Axul8t1/AWKyIhjmSG+IkR9fT3JycnU1dWRlJQU7XJERESGvG+t384jlU0djq06dSK5CfFRqkjk2Pj9fpqamoiNbVuz4PH7Xyawu+d534cceoN8ZEi/4TtzySrU+00R6V8O1WoQIiIi0sG9Mydyb7SLEBkAPp8Pn8/X/nXN/nTiu1mx/GhVCRYZjYfbun02mQVa+0BE+k/Dy0VERERk2Fu3rIxWx9B50HjXYvwHtwk7+PUFN0/tfoE2EZEeKHSLiIiIyLD3xOp9JPuht1ndBmj1hYkPQvjgsdmXFDLx1OwIVygiw5WGl4uIiIjIsOY4hv2NAQr60NYCYgKGMLCp0EP6WaM445wJEa5QRIYzhW4RERERGd6MIb45RFs/du9DxI1x8+dLk6hNcfNfo2IjXp6IDG8K3SIiIiIyrNkum6n7g2CsXjK3wWCxK8tFZUrb2+Tz07R4mogcH83pFhEREZFhrb6ymQlb/wEm1EtLCwf4+1lJ2AbGxfq4IF1bhInI8VHoFhEREZFh7ZWf/4f8knfxBRp6bGcw/Gd2LAGPRY7XzZMnj8OlFctF5DgpdIuIiIjIsLXyjXXEbXyfojHn4o9JI9NtMdpjkWgfNdLcGCwrRFOMzYc/aGLx6dMYHevr7rYiIn2mOd0iIiIiMiyFgmGW/bOUQhqpHn8lFzbvwrX9XcJ1+7A8Pjy5c6nJPZ0PQjEEDcS4SrhhqZtZFxUQ61LflIgMDIVuERERERmWVizcguV4qRybw1lFrxDe9SYhywbjYAB/zR7itv+H007/KovIxPH4IGQx49z8aJcuIsOIPsITERERkWGpbGcdBoc5zfsI73qz7aBxjmhhINiE9/3fk+UyWDF1nLpgDMmZcVGpV0SGJ4VuERHpldMcJFjRjNMcjHYpIiJ95vG4iQnsJWbDxu4bGQfTUs3Y2o2EOMC8K8cNXoEiMiJoeLmIiHQruL+J/X9ZB7VHbbPjgby7z8KytaqviJy4pswtJOGVuzANB3puaLnwVm3GO2nMoNQlIiOLerpFRKRLgZJG9v96VefADRCEku8sZt97awa9LhGRvkrPs0irKOpTW+Ot46Nf/0SEKxKRkUihW0REunTg/1b33ujFBvYtWhX5YgRCIXjhy/Dn8+Cpm6G15/2GRQQ8NTV4qgxOUmzPDU2Yxhn7iUvQAmoiMvA0vFxERDoJlDSC03s7AF5uIjQniDveE9GaRrSnboItLx3+unQ13PsiZE6Bzy+PXl0iJ7iY1DQsLIIprXjru2tlYWJ9+M+vGszSRGQEUU+3iIh0Eqps7lf78h8vI9ykRdYi4ulbOwbuI1VsgftnD2o5IkOJJzuLmtFj8ew1BHMOrkFhHfH217IwXpvKWxrIyrswOkWKyLCnnm4REenE8vX/x0PFA+vI/uIcLJcWV2tqauKe5d8gjAHAa/n40fm/6f+NjIHNz/XcpmYXVO+GtDH9v7/ICHDyT+5m93/dgrvMEI43mFiD3WSDy8Jxh2idGiR4EhQW3BbtUkVkmFLoFhGRTmLGJ/f7mlB5M61bq4mdlh6BioaOH73zTdLDm7iAzRjAoi07/+rNYmISz+Jzp3617zd7+96+tXvmv+Cz7x5LuSLDXvypp1Lwhz+w52t34m5qwbQ4bdNnbGg5z6HhWpg29RckJZ0U7VJFZJhS6BYRkU4sj+uYrmteVzGiQ/f/rfw1E8OLSKcSaAvch/45g3UUN9SydM9pnD769L7dsLSPi9Q17u93rSIjSdL55zFj+XKq33iR8g9eotW1FzMvkdTR85mZ93FiYwujXaKIDGMK3SIi0qVRPz6d8u8v7dc1TksX24uNIKX1W5hEBfbBYeVHcuEwht28sPOvfQ/d2dNh+2u9t4vP6GelIiOP5fGQfvm1pF9+bbRLEZERRgupiYhIl9weN9k/Oq3vF9jgyehlW55hbhJbsLoI3IeEscmhlMdLKvt2w/O/37d21z/ct3YiIiIy6BS6RUSkWx6vh/x7z+5bYwfiTx0V2YJOcInU09Myci4ckqjnf7btY3eLv/cbulww4ZJeHpoLmZP7VaeIiIgMnoiG7nfffZcFCxaQm5uLZVk8//zzHc4bY7jrrrvIzc0lNjaW8847j40bN0ayJBEROQb5955NxudOpqdEmXhuPp5R8RGvpfrxm9j58xns/Pl0in53LqaxJuLP7Ktq0nF6+CaFsakmjTDw2z19nId987Mw5pyuzyUXwJ2b+l+oiIiIDJqIhu6mpiZOPvlkfv/733d5/he/+AW/+tWv+P3vf8+KFSsYNWoUF198MQ0NDZEsS0REjkFMYRK5d51B/Jm5WN7DPz5cqT5SPjyBpMvGRPT5rSsfo/on+aTteInxLcWMb9nH2Ko1+P93Env+ckNEn91XuxjX4/ByFw7lZAPwj/01hJzu23Zw64vw3f0w+QpImwCFZ8JXNsFXN4ClLdpEREROZJYxpo8/8Y/zQZbFc889x4c+9CGgrZc7NzeXr3zlK/zP//wPAH6/n+zsbH7+85/zmc98pk/3ra+vJzk5mbq6OpKSkiJVvoiIHMEJhAlXt4LLwp0ei2VHNviZ+v00/+Yk4pzWTv3IBjBY7J/zGXKu/nlE6+jNu0XvsrXox4xmNy6cDuccLDYxnXv5JsZqGxGw7eyZJLmPbaV4ERERiZ7+5NCorV5eVFREeXk5l1xyeK6az+fj3HPPZcmSJd2Gbr/fj99/eB5cfX19xGsVEZGObK8LexCGkh9S8scLyHdauzzXFsIN/k3/giiH7nPGnsPWhk+zsvJ5TmElbsIABPCwgvk8yo3tgTvOtol3aWmVE8mWLVt45ZVXaGxsxLZtxo4dy/XXX4/P54t2aSIiMoRFLXSXl5cDkJ2d3eF4dnY2e/bs6fa6n/3sZ9x9990RrU1ERE4sccF6DN1PKbeAgtZyjDFYUR5u/emTPsIzZRfy681PcBKbMFi8yxnssWa0t3EBH89Nw6Wh4SeM3/3ud1RVVbV/7TgO27dv52c/+xnXXnstJ510UhSrExGRoSzqH7Ef/eaotzdM3/72t6mrq2v/VVxcHOkSRUQkynxOoMdVwQFsDEHH6aXV4PhITjrTc67hUeszPGbd0TFwW5DudfOFwuwe7iCD6a9//WuHwH20f/7znxpZJyIixyxqoXvUqLZtZQ71eB9y4MCBTr3fR/L5fCQlJXX4JSIiw1ur7ethebI2YWy8rhNnfvR9Uwr49tgcktyHf9RawDmpibw0ZyKjfJ7oFSftQqEQRUVFvbb71a9+NQjViIjIcBS10D127FhGjRrF66+/3n4sEAjwzjvvcMYZZ0SrLBEROQEF3TE99nQbYE9MzmCV0ye2ZfHlMdmsO2MGz548nkdnjmX5aVN58uTxFMZqjvCJYvny5X1u+8gjj0SuEBERGbYiOqe7sbGRHTt2tH9dVFTEmjVrSEtLo7CwkK985Svcc889TJw4kYkTJ3LPPfcQFxfHxz/+8UiWJSIiQ8yojzxI7d8+Rkq4sdM5A4RwkTr31kGvqy9iXDZnpyVGuwzpxv79fdwvHdi9ezclJSXk5eVFsCIRERluItrTvXLlSmbPns3s2bMBuPPOO5k9ezY/+MEPAPjmN7/JV77yFT73uc8xd+5cSkpKeO2110hM1JsTERE5wrhzSJr/Kco9aZ2Gmde6EqmduIC0i74ZldJkaEtLS+tX+wceeCBClYiIyHA1aPt0R4r26RYRGUHqSmh96r8orynFAAkJ6WTe/BSk5Ee7Mhmiamtr+c1vftOva37wgx9g21Ffi1ZERKJoSOzTLSIi0m/JecR8ZiFjol2HDBspKSn9vuapp57SVDgREekzfUwrIiIiI1ZtbW2/r9m2bRsrV64c+GJERGRYUugWERGREevll18+puteeuklgsHgAFcjIiLDkUK3iIiIjEg1NTVs3779mK/fuHHjAFYjIiLDleZ0i8gJYevK5bx03487HPva0y9FqRoRGQnKysqO+/pZs2YNTDEiIjJsKXSLSNT9741XdXs8Ob+AT/3vHwe5IhEZCY53BfLly5ezdetWPvKRj5CbmztAVYmIyHCj4eUiElXdBe5D6vYVU7pu9SBVIyIjSWFh4XEH79raWv785z+zfPnyAapKRESGG4VuETnhPfnT70e7BBEZhuLi4igsLByQe7366qvs2bNnQO4lIiLDi0K3iERNfX19tEsQkRHKGMNrr73G7t27B+yeb7/99oDdS0REhg+FbhGJmv3bt0S7BBEZoZYuXcqSJUsG9J5FRUW0trYO6D1FRGToU+gWkaiZeMq8aJcgIiNQKBRi0aJFEbn3ypUrI3JfEREZuhS6RUREZEQpKSmhpaUlIvd+7733InJfEREZuhS6RSSqcqdM77WN9usWkYEUDAYjdu+WlhZCoVDE7i8iIkOPQreIRNXH7v456YWjuz1/06//PIjViMhIEBMTE9H7b9++PaL3FxGRocUd7QJERG697/8A+Nv3vkH59s0AfPh/vs+4OfOjWZaIDFPvvPNORO///vvvM3Xq1Ig+Q0REhg6FbhE5Ydz0k/uiXYKIDHONjY0R74kuLi6O6P1FRGRo0fByERERGTHWrFkT8WeEQiEcx4n4c0REZGhQT7eIiIiMGMVFuwflORs2bOCkk04alGeJDAX/+t972PH+ko4HLYs7/vw3EpOSolOUyCBRT7eIiIiMCKH6eoq2bgFjIv6sf/7zn2zatCnizxEZCv7w6Zs6B24AY/jzpz9OfVnZ4BclMogUukVERGREWHX/bwm43WBZhw9GMH+/8sorhMPhyD1AZAjYt30bLfV1PbZ54CufHqRqRKJDoVtERESGPae1la07dsARc629JrKz7BobG9m1a1dEnyFyonv6e3f2qV1DTXWEKxGJHoVuERERGfaCpaWEj+rWDlghsLq5YIBUVytIiPTFK7/7ZbRLEIkYhW4REREZ9myfj+TausNDyw1YkZ/azYoVK2hsbIz8g0SGOCvCH4CJRJNCt4iIiAx77txcJgOWMe0LqQ1C5qayspIHHnhAwVukF1d84RvRLkEkYhS6RUREZNizLIv8z9xBalXVwQNEfGj5IXV1dSxcuHBwHiZygrnpZ7/tU7uE1NQIVyISPQrdIiIiMiIkXHIJ1enpHYaYD5a1a9fi9/sH74EiJ4hR48YRl5zWY5vP/uGvg1SNSHREdtlOEZETxL7vLYLQEQd8kH/32VGrR0QGlzGGvd/8H0hKPHxwEOeQOo5DXV0dWVlZg/dQkRPEf//5UV75/a/YvOjNDsct2+YzDz5JfHx8lCoTGRwK3SIyrFVuraT1L5s7n/DDvm8tIu7O6aRl9fwJvIgMfY1vv03zK6/AR24AOzoD/Xw+X1SeK3IiuOILd3LFF/q2fZjIcKPh5SIyrHUZuI/Q/KuNg1SJiERTzVNPg23jDoV6b3wcDAYHp9Nxt9tNcnJyRJ8tIiInJoVuERm29t27pE/tKt/YHuFKRCTaAjt2YDkOqTU17auXR4J18H9Hy87OjtgzRUTkxKbQLSLDUmtRDdSG+9b2jfIIVyMi0WYnJGAAb2trVDYETklJGfRniojIiUGhW0SGpco/bYh2CSJyAkm84nIAWuPiIv6szj3dho0bN7Jxo6aziIiMRArdIjLs1L1T3L8L9DehyLCXcsMN+H0+/FFZzKwthC9cuBATwaHtIiJyYtJbTREZdhre3dev9vn3aOswkeHOk5bGkquuIuiO3sYt1dXVVFZWRu35IiISHdoyTESGn+bIrk4sIkNLa2sr//rXv6jwuMEzOG99nIP/cx/1Vsvv9w/K80VE5MShnm4RGX68ff+rLf9e9XKLDGehUIjHHnuMLVu2DOpzLSz2JuzteMyytKCaiMgIpNAtIsNO3MzMPrXL+9lZEa5ERKJtw4YNlJSUDPpc6hAhdibvbP/asiymTJlCQkLCoNYhIiLRp9AtIsNO4ll5vbZJ/ehkrChsGyQig2vVqlVR+W/djZugHTz4lSEuLo5LL7100OsQEZHoU+gWkWHHMyqetI9NptOuPQclXzue+FlZg1uUiERFfX19VFYM99t+EoKHerUt7rjjDg0tFxEZobSQmogMS3EnZ+HNT6RxeRmt22vBGGImpZJwRh7ulGhsGSQi0ZCYmEhtbe2gPtNg2Bu3l3H148AAVlsdIiIyMil0i8iw5U6PJeWKcdEuQ0SiaPbs2RQXFw/qMy0sUoOpZPgz2o+VlZWRl9f71BcRERl+NLxcREREhq2ZM2eSnZ096PO6M1szsbDaZ7m8+uqrURnmLiIi0afQLSIiIsOWx+Ph1ltvJSkhFYxDXFwV2dnbKBy9ltzczXi9zRF9vmMZ8sJp7Nu3jz179kT0WSIicmLS8HIREREZ1rxeL6kJyzlpwnKcOAvLdjDGwrIM48avpLRkCrt2nUIk+iJCVojp4QLKPLWsW7eOMWPGDPgzRETkxKbQLSIiIsPaps0/oWDiMgAsY7AssKzDQ71z87YAsGvXqQP+7MrYA2S1JOM4Dk1NTQN+fxEROfFpeLmIiIgMWytXLqS8/FEAjIGupnZbFuTmbsXjaRmYhxpwhUOEnQDTnDwcHGzbJjk5eWDuLyIiQ4pCt4iIiAxLW7duZfWa/9cetHtcS80yZGTsPf6HHtwibM4Hq3DVvc/ldWey11WJ4zjMnj37+O8vIiJDjkK3iIiIDEt///vfiY1poC+Lhhtj4XYHjv+hxuGMxe8xtqiIa5a24gvCRnsvEydOJCcn5/jvLyIiQ45Ct4iIiAw7gUCAYDBIKOTtU3vbNrS0Jh73c32tfgr27cMCfPVVlK64jxoaSEpKOu57i4jI0KTQLSIiIsNOdXU1ABUVY7B7ebdjDASDXqoqC9qGhx8jy3HIqKo6/DWQsr+YrIpKgsHgsd9YRESGNIVuERERGXZcLhcATU1pVFQUdjvE/NDxHdtPwxhXW1I+Rsa2mbh9e4djjmUxdvduMjMzj/3GIiIypGnLMBERERl2UlJS2n+/beuZGMcmJaUUY1x4fS3ti6q1tCSyc+c8amtyj/lZluNgbJupmzaRfeBAh3O2McS0tjJr1qxjvr+IiAxtCt0iIiLDXMu6dez/xX20rF4NjoOdkkLM9ddj33A9iUlJHQLqcOHxeEhNTaWmpgbLn8TOdVcS8taDBR5PK15fE6GQF/+xzuM2bf9nGUNGRSWTt20lr6S0UzPHskifPJnExOOfLy4iIkOTQreIiMgwtvdb36fp+b8DYNyGA2fAjul1VHofZc/j/yEhOJ1RCXlcd911jBkzJrrFDrCrrrqKp//0H4wrQNBb2z50PBiMIRiMad/e63jMXvkBE3bt6vY2tjGM/cwdx/cQEREZ0hS6RUREhqHqhYso/+J/YzlhAJrnhqm8OYzbC4UmyBhamU0Dy6oqWLtnKq1/KOPi6z/CvHnzolz5wDEtHmJaM6lP29h1A4tjC94GYoyHVjvI+lknM76oCIzpfBvLIvGyy4jV/twiIiOaFlITEREZZhrWbqT883fAwcDdOtOh5rYwLk/beZcFlgVuC87KqOO8jGaCcQn8+4UX+OUvfxrFygfW1qUVtMbuP64VybtkQQpxAITcbnaMHwd0fIwVE0Pa7beR94ufY1nH2Z0uIiJDmnq6RUREhpm9X/xy+6fqrWPD1H0ojAHsbrJfQcEGSkumEDI+GhuD3HXXD7nzzq8N+b2lK4qacFyBnnuyj6GX24VNpdXQ9qVlsWHMFF5JmMPOpBzG1Zfx0zOzSLvtNlwJ8cdcu4iIDB8K3SIiIsOIcRysAyUANF4UJjjKIZzT89A2y3JITy9m//4Jh47wq1/9ivz8fE499VSmTp2K1+uNeO0DrTXcigsfoQGYu93OgjDOEV9bLEyaya6EDGwnzMzYIBmf+2+sg1uWiYiIKHSLiIgMcVWNxSze9QSBUAv5MZNJAYL5DvXXhol9z6b38dUWbo+/09F9+/axb98+nnvuOaZMmcKVV145pFbhrkjfTdy+LPyxFQN744Mh3hgI4GK3kwbGYNsWn/vGzQrcIiLSgUK3iIjIEBUItfDEss+QG1hKAg4GKHVS2F84FuvCahKcCpzE3ic0W5ahtTWhxzZbtmxhx44d3HLLLRQUFAzQK4is4jHrmFF0NZ7WVIK+mgHt7Ya27L0oOA6Djddt8X83ncLE/LQBeoiIiAwXCt0iIiJD1BNLPkFeaA02hmIKeJJPsNaeA99uS4UTzRY+Ou1xTtq+hdbxBruLMebGQCjkpboqv9fnhUIhHnvsMb7+9a8PieHmifE+alI2kFozjcakXQRiDwxc8Ab2WTEkxyZz4xmTuHFeAVmJMQN3cxERGTYUukVERIagtaVvURBaDcBeRnMX9xDE07Ys+UE7mMhP3Xdzt/f7jAtuxXgtLOtwz7c5+Nsd20/DmL4NiQ4EAixbtoxzzjln4F5MhMSvjcfx1VGdvezw9mD9ZQ5fZBlDbHMzzQltowJ25LzMjfGJjPXb/O3BlwiHw+Tl5TF//nzGjRs3MC9CRESGPIVuERGRIWhl0eMU4MJFmEf4FEE8OFbH4GwsFzgO9yd/jUce+hz1V3sw+S3t55ubUigqmkNNTV6/nr106dITPnS/sXAhduBg1/6hzyH60csd09xMTmkZDUmJeP0BMqqrGFVSSkt8PJunTGZ7vpdaXx1vVr3JSTtPwhwM59u2bWPr1q2cddZZXHTRRQP7okREZEhS6BYRERmCQqEGwFDOKLZa07ptZ2ybytR0NjonM++e9YRuuBxv/Cw2O9Ws9TdjjmG4dUtLC6+//joXX3zxsb+ACFq0aBHvLFrMsS1nZsAxtMbFUTRhPAC+1lb8MT7Wz5yJOThGPykYZnrNdPbE72FmzczDVx8M34sXLyY/P58pU6Yc56sREZGhTqFbRERkCHJcqRCGA4zqdK7A7GYcOwjjZgMnU0cKpRmjgPW4n11I45eqmVFzBdP8o3je+z7NViuJSVW4PX78rQk0N6f0+vz33nuPpKQk5s+f3+/ajTHs3r2btWvX0tDQQFJSErNmzaKwsBDLOr5J12vXruX1hQt73CKth8oAq1OPuN/nwx/Tcb62CxeT6iaR7E/u8k6WZbFs2TKFbhERUegWEREZik4f/19UbX6DeBrbj2Wacj7H/UxiW/sxx1gsC59OQqDtR76xDc76lez40GqMP46s/aPJzNtOTExz+zX19ens3DGf5roUCoqLyTpwAAxUZGZSXFhA2N12r1dffZWSkhI+9KEPYXe1SlsXgsEgzz77LNu2betwfPXq1YwdO5abbroJt/vY3p4YY3jnnXcIYBNz5F7aXbfmcLpu6512uQKEw94O8+KBzl8fOozFqNbOH3ocqmXv3r19L15ERIatY/sgWERERKJqVs6ZbOIUtjAVgCRTww/5LuPZ0aGdbRlOt5cw6qK1HEiMwXIs3OUWxcXT8CbUUjB+LTG+5g7XJCVUMevkV7hs3XOctmw5Y4p2M2b3bua//z4LXniRtKqq9rbr1q3j3nvvpbGxkb545ZVXOgXuQ4qKivi///u//nwbOvjz829SXVVNnhPfxyscLCtMamoJY8etIBz20d/lzU0Pq7Mdb6+9iIgMDwrdIiIiQ5Rtx/EEtwBwGS+TRD2uLnp4LRvScuvYcnYK+5NiMT4YPXodhOnY4dt+47ZDzR9pwfEabNP2C8ATCHDeW28T03J4QbZAIMAvf/lLmpub6U4gEOCll15i9erVPb6mmpoa3n777T68+sOMMfzvX5+nevUyFgTm8qHAqQSNfeTC412aPmMhs2a/yqTJ7xEMHNt2X1Y3Id2yLK1gLiIigIaXi0gPAmGHN6rrqQmGyPF5OSc1EbetnhuRE8U7zoz235/Lm10G7kOMA2mT6li/J5tZs3bgcjldB+5DXBDOgfqLHBrXFlI0diwNSYm4g0EmbtvOvKXLKM/NpTYlmQOjRgGG+++/n29/+9udbhUMBnn00UfZt29fn17X22+/zbnnntunnuLa2loefuSvNNTUkEIcK9zb2Y/F0uBozvEWdf29MODHzcYNbQvBzT31n5jGUJ9q6ytjDKeffvqA3lNERIYmhW4R6aQpHOZLm/bwcmV9h+M2MD8pju+Mz+HUlMToFCci7bYxtX2+cSINPba1bHDHhgi4XVSkx5FS14hJgN6W+N6UMZvis6eCMaTW1HDGkqUkNDVhgFEHDmAB9QnxvHHhhfgNvPHGG522ylqxYkWfA/chFRUVZGVldXveGMOLL77IqlWr2o/V2m097SuC+RQ56cQEQ8x1F2MBDm2fL9gW7HZS2RdO4mzPbuLjaoiJaaJ1UwtWhh/j6WJOdz/Yto3jOFx66aXq6RY52n2ToGn/4a+zTobPvRu9ekQGiUK3iHTQGApzzvLNlAY69/o4wNL6Zhas3gnAVwuz+J/xuYNcoYh0cHAMdS2ppJmqbvOicSDY6AbL0NrgJaYqkZZTew7qABVW2x7eCY2NnP/mW7hDbX83HPmYpMYmPvyvF1gyfx6LgZSUFNLS0hgzZgy2bbNixYp+v6yWI4avV1RUsGXLFoLBIJmZmWRnZ/PQQw/hb209HJCPKKjMScJgsSk8il3hdMa7Kkm0/PhxUxROo9bEEUsALIuCMesp3ZCPv85HTHgvLfkT2r6nR34jD41T7+Kba9s2U6ZMoba2lnA4TEFBAXPnzmXUqK4XWBMZkXYvgUcu73z8wFq4Kxm+WQxxSYNfl8ggUegWkQ5+UVTWZeDuyq/3HqAx7PDjSfkRrkpEulLAXsqtPDAh3uRCruNZrG4W9rJsqNqaAgYs25BYMoOW2UvB083NHWhoTKPV3/ZGeMqWLbjCoW5Ho1vA6cvf57X4BF566SUA4uPjufrqq6mpqen3a3vllVdIT0+nrKys++sPhmB3MEhsSwtBj4fW2NgONbbiYWM4p8vL8wvW0Vo1hsoV9Vj4cTfWEbtvB63ZhRivr2NjJwyujm+bRo8ezY033khcXFy/X5/IiNJV4D7SLwrgrrrBqUUkChS6RaSd33F4pKSyX9c8UFLJd8bnEuvSuowig+2itAxWVocxuHjdXMDZvEOWs5+jd+8yBmp3JtG8PxaA6q3JuMadRMKr79N4dbjzjQ9ODS8qOqX9BqN378HuZWEyG5hUtIsV6WngctHU1MSTTz6JZVmY3lY1O8r+/fvZv39/j23sUIgpmzczbfMWXE5b0ZXp6Ww+NYXqmAmY7hY5w6HAU8m+vTOZEsrD2G8cPA62vxVj2x17uy0LbBcYw2mnn052djbjxo0jObnrPbqHm9raWlpaWkhOTtYHDNJ/f7u5b+12LoLxZ0e2FpEo0btkEWlX2hok0L/3xQD8uqhs4IsRkV7dMf0qPsdvAGgJO9zjv5ktzVMxR6ynFg5aHFiTzp63cg+GUIvW6liqa4MkLR9H4nMuLP/Bxgf/+7frwHk6i7q6tiHSljG4w12E86MYILekFGwbnCMXdQuRlbWTiRPfIy2t+PCDerhTQmIFGRm7SU7eD90sEGdsmy3TplGdntZ+LK2qis+++wyWMd0+x2AxyaoBy2Knez/miG9Ya87oth7tbvbq3rZtG7Nnzx4RgXvHjh386U9/4je/+Q1/+tOfuO+++3j22WePaeSCjGDbX+xbu79dF9k6RKJIoVtE2sW4jm3xoGf26w2YSDTEemK5JLGJe/kq493V1Nq5/K45mYfXTGP7f/LZ8XIB6x6bSMn7WRin4+ZWm/duI+Gc75C4OJnsb3lIecBF0pM2ab91kf09D6lrW9rnMhvbxh8T22s9FuAOhUitrsFdXw0BP0G7HsYtIqZwJSUl06muzqPnvbDbnulvTaBw9Hqmz1iIbXUfuh3LYunpp+McDMU2kN1cw7dWPoaN6TDcvu33hjPcu8mwm8EYQv5G7EBr22JrXh/h+KTuF1KzLKqrqyktLe31ezHUbdiwgccff5yyssMfqhpj2Lx5Mw888ICCtww8JxjtCkQiRqFbRNqN8nrI8fSylHEXKvs4B1xEBt7UyT+mgGLu4nv8n/cHXJGVxfYZl/KHeZfxRv4saqZn4UkMHRE+24Jni6ecptgiEi/9Fd5xHyZmq4/YD1y4ymzWnOXivz8bpDhhHwYDBlxj+jbs0+04XPL665y/fBWJzS24wwk4O89lzbqLaWpOpve3Hm298cGgj3VrL2HNezfhmB5mw9k2LXFx7B+V3eEOZ5Ws54vlrzDNtZ8Uq5lkq4VJrgqu8W5kkvvgNBrLwt18eDG5sK/3DxYADhw40Kd2Q1UwGOTFF7vunXQch9bWVl5//fVBrkqGLKuP7yuypke2DpEo0pxuEWlnWRaXZ6XwcElVv64LAVWBEOle/ZUiMtiSkqYzceL32L79JyTSzAJeYIEXjAesVKjZUkBDfgB/XQyBOg8uX5jUifWkT60hsNOCEoiZdBmxk6+g3FPJl8b8nCZXMyc3Teaa5tPY7NpLbDCJlPGn07hzEQRbei8KSKmt5cI33+K1Sy6mOSGBtEBa7xd1YBMK+QgZ03PHOGA5DnXJyeSUlbcfcyyL0bXlnDqmmFN7utg5PGzecrrf5/xIHk93q88ND5s3b8bv93d73nEcNm/eTHNzs+Z4S+8+uRAePK/3dp9bHPFSRKJF75BFpIM8n/eYrgv2c5EkERk4hQW3kZgwneLih6muWQJASso8CgtuI+2CM6mpWcbe4keoqVmKhUVq6mkUFNxOTME4qh7fjGXZfHd8Mzt8L9DoNHNx3Wl8pexmHBwSzniY+h3nYQXiiLvgbppf/273w0C9iRBo6zm2jcETDDJl61ZWnXLKsb+4Psx6MZaFK9RxzrkFBPsUjg8vt+ZqboBwGFzd98y53e5hv/92VVVV+37j3THGUFdXp9AtvcufDZYbTA+j4lKH939TIgrdItLBeWmJ/HhX/xZGy/S4yVQvt0hUpabOIzV1XjfnTiM19bROx02SwZXio7I5wGvjEsko/oCUcAJfLPs4AC5cmLhqMvPXwIErcMWmEH/Fr2l5///hHNhw+EaWG3fhaYQaK6Bqa/th2xgK9uylLjGRPWPHEopgD3FeaUmHr21j2FfQ+3aG7oZaHI8XKxjAMgZvVTmBzNxu53XPnz+f2Ni+DUMfqmJjY/u02nxMTMwgVCPDwvcr4J48CDV3Ppc5BT6/fPBrEhlEepcsIh1MT4wj1rZocfrec/2p/Exc3S08JCInLMtlkXHbdEr+uh47XAOW4eLa07GxOLTsWu3mdPathMzMBmLdCdhuL/FnfAnHCeM07Cdcvprg3mWE9nQeGmoAbzDIKatWc/K69Sw/bT4l+b0H4X4xhjG7dxPXfHjYuwGKc7JpSIgH47RtUt7FdVagFVdrM8blBsvGGAdvVRnG5SaYnt2+kJxl2xhjmD17NhdccMHA1n8Cmjp1Kv/5z3+6PW9ZFpmxsdR94YtUFBXhSkwkacECUj96I+6MjEGsVIYM24bvlUFLLbz8TShbAzM+DOf+D532OBQZhizT340zTzD19fUkJydTV1dHUlJStMsRGRaeLavmi1v29qntuamJPHbSWLz6oSkyZLU0+JmxaBFxFV/l6yW3cF79XFy4KGpYz/uVrwCG0fHTOS1rAQaDRdu+2/51TxIsertPzzC0DQN/64LzqczMHLDac4v3cfrSpdjGAdO2TFtpSjzrCrJwbJuWnDGEUjoHQcuySK89QKBsb3uvrrFsME7bSuYeH3ZuIWPnn0lScgonn3wymQNYd7Q0Nzezdu1aKioq8Hq9TJ06lcLCQqyjPjh96aWXWLlyZdc3MYaz311E7v79h7eGs21cycmMfuxRfBMmRPhViIhEX39yqHq6RaSTG3LSaHYcvrVtX7e76Rb63Hx+9Cg+npOOx1Yvt8hQFpvo42NuH4tas/HbQQzgGIfVVQtpi8sWe5o2YVXHMDvtPLx4CFVu7nPghrY51gaYvn49a2fPJuD10hwf39ab3N+RMubgDcMhGpsr2ZSbTrw/SMhlU54cT1OMt+01+GIJJaRghcOYI+ZpJyYmcs011xATbOXvP/k+jhPGOA7Wof26LYsYj4uPf+mrpOcX9q+2QeaEHKqf3Yp/Ww3YFvFn5JBy4Zgu265du5YXXngBx3HaQ/ayZcsoLCzkox/9aIf52ZdffjkAK1euxLIsLMvCcRw8lsUpS5eRW3bUNCTHIVxfT/HnPs/4f7+KpQ9iRUTaqadbRLrlOA6PllaxsKqBgHG4JCOJa7LSyND8bZFhp6G5hY8/fj8ZgTX8eN/n2d+yh7fLn+rUzvLEkpU1l4lr3iOxbAdWP99GHMrLBkNdYhL/ufKK/hd7+CZYIT8xJbtwtzS1f0hoAaH4JFpzxoLLxdwtS9iYlkE47CUcn8Snv/19srPbthjbv2sH7z3zOEWr23p1Ldtm0vwzOfPGm0nNyet/bYOkZWc1VX/bAs3hLs8nXT6GpHML2r/euXMnjz32WJdtLcuioKCA2267jdbWVmpqavB4PGRkZFBfX8+mTZtobW0lNSkJ7xe/hFVd3WNtBQ88QMLZZx37ixMRGQL6k0MVukVERASAmqpqvvvAD7ix5Uzsqjrer3ip27bnbt5LfKCbVcx7YTAEPB4WXnwxDcfzs/uIdzCJLWEymqDApFOa4LAjrh5PIMBJpcvYY1z4W30AWFNm8ZUf/gj7qJ7YloZ6WhoaiE9JwRcXf+w1RViwppX9/7sSQr2/fXOPT8KbGkvzhkqCrX5ctPX2N9PKOvdeNrn2dVgdfvz48RQVFWHCDnlOOqN92YweO4a80yZQ1FxC6/adxP/5JQ5MnE1LbAyJViKJTgyNTgN7WjaQunMV+SWlZN/xadJu/Syh6hbsGDfu7LhOw9dFRIY6hW4RERE5JuFwmLcfeQrW17Gm7JVu2525rZiklkBfdvTqoMHnZm9GCttnnow/Ob3/Q8uPZuDM0GSmhvNxMIRMkLcaH8MTrMEfaKC+Je5QM4zHy7lf+hZzZ84kVFGBnZiIOzX1+J4/iMLBMGU/WEK383766NC8fD9BVrp3ssNVTtBq6zEfG8ri7NBUvLjb57pblkUl9YAhjhji8HW6ZzOtPJjxL1bEr8WDxdjWcXyk+hImBwuwU7ykXD4Oz6g4WjZWYYIOnuw4YmdkYLk1DF1EhiaFbhERETku+x9ay9/f+AmtTkuX58fvr2FSeXW/QndZcjxrRmfjuL00Tjzp+AM3gIE8J41Lg7NwcFhU9QIH6re1j0A/2ARsF1MvuJI5xfuoe/5fmEAAgLh588j84heIO/XU468lwiqf3ELr2ooBvafBEMZhoWs9451sJpgcjDGdeqYd0zYP3OrhT7yJFr41+jeUeCpICaRiLMMnKxZwVvPsTs9sc/BuLnAXJJJ6zXh8OYkD+vpERCJFoVtERESOS7gxwJqf/523tz3R5XlPKMyF2/Zjh/xt23L1osnr5t0phRggmJxGa954fK2teP0BWmNjCHq9PV7vcgXwePwEgzGEwx33+05zEhgfzmazu4S58yeTYCw+eOUFGqsrsd0eUidO5ZyLLyf8ne8ROlAB4SPmQR8cZp7/2/tJvOiiXl9HNO379qLj7uXuTnsQNnQI3I20YGMRR//35A7jYB8R0nsK7O3iXeT+z3xsr6v3tiIiUaTQLSIiIsfN8YfZ8o83ePuVR2gJNrQfd1teTs+6muygj5alv8W01vZ6r8056ezOTMZYFonGw6TyKrIPtPXaOpbFjgnjWT1nTqfe77i4GkaPWUt6ejGWBY5jUVlZyN49s2hpOfrnvqGgIIdPfvKznZ5f8q1vU//iix0D9yGWhZ2QwMTFi7B9nYdOdycUCgHgdg/O4pL7vrUoovfvqocb6LBAXUSff3DYO0DO9+fjiu/5gxgRkWjSlmEiIiJy3Gyfi2kfv5RJV5/Pxu8/T1OwjvpgFfub95AdOxpXnJv4S+4hVLaW0IFNhEpWQKi1y3tVJsZiLIuM+mbmFpV1CNe2MYRd7k7bhyUkVHLSya9hWU77Yds2ZGTsJS2tlLVrLqW5+cg52RaNjZ2fH25ooP6ll7oO3ADG4DQ00PDa6yQvuKrH74kxhvXr17NkyRLKy8sByM3N5YwzzmDGjBk9Xnsi88fsp8Vbi9WcSnIoq8O5wVoC7dD+707DfkrvXoJlu7Di3XhyE7DjXLRuqQb/wY8AbCDWhSstBu/YZOLmZhOblTBIlYqI9I9Ct4iIiPTIneAlZ/JkAnvqaQ01E+dOpKq1jMyYfCzbjSfvFDx5p2BmXI9/03ME97wHTtvK5k6MD/9EC9/kEOHqMCdtPIAFnbYaC7nd7Xt5tzFMmrwE23awrI5tbdsAISZMXM66tZd1OJeUlNyp/mBpKRzsle6OY8G6vz3CmHGFFEw/qcs2xhj+/e9/s3z58g49wmVlZfz973+nvLyciyI4RN07LonArvoBvWdl2moaJv6LQPJukvedS/amW4COvc6DybIsXEmj2mowBppCBLbXdm7oAE1hwk1NtBQ30fxu6eF7AHgh7+6ztGq6iJwQFLpFRESkV/Hn57Hsl/9kR/1qDA4WFiennc+kpLkAODjYbh++mR/BO2UBprmKnZP+AzNWYTx+8qnHt84i5s22+dgGKMvJYfvECdSmpmKwMEds45WYWEl8fF239di2ITm5gri4WpqbU9qPz5kzp3Pb+N63ALMMVB7Yz/s/+g7n33oHcy6/ulObXbt2sXz58rb6j/jQ4NDvFy9ezKRJkygsLOz1ecci7aNTKL/n/T63N8YhvH8DofK1mHAIV3I+nsIzsLzxBAizKPM/5M96FoC4iplkb7q1/dpoBO6j9Scwd2oZgJJvLyb3J2dia4V0EYkyhW4RERHp1eK3Hmd7/SoO9UUbDGuq32RN9Zu4LDc2NkkhF6NLSynMvYCm8w1m6tIO93AfsDCWAWOxcu5cdk0Yj+U4h8P2oSBrWcTG9a1HNza2nubmFBwDttvL9OnTO7Xx5OXhmzwZ/7Zth59xFAsoT2rbXuytR/5MwfSTyCwc06HNihUrsCyL7pbDsW2bFStWRCx0u5N8pH1qBtUPbui1rdNSQ8uS+3EaSsFq+/6GipfRvPkFnjvnqzyfksTPp79K28ppMGrj7cCJEbYHwqHV60v/tJz8z58e7XJEZITTR38iIiLSo+rSfWx46w26Wzo7bEIETYCWUVVUfqKZnTf/nYopT3ZqZ2LbbrFr3Dh2TRjfduyI3u32idvGEA55Ol3flaSivTihEEVOGitas7psY1kWmV/6YreB2wAlKQk0+9qeadk2a197uVO70tLSbgM3gOM4lJaWdnt+IMRNSCX3J2fgm5bW8YQL3HnxYFsYJ0zzkt/gNLbNOcc4YBwc4N45H+HhpHRuz9iJ5W0AC1KLLsUTSB02gRuO6PkuDmGCva+uLyISSerpFhERkR5tXvx2WyDuIXCOOvUAo+ZUYZyDHatdNG09ySHpSRdbJ0/qtGhau4PHamtzCIdduFzdLH4GhFpdVJV6SDYbWTJ6Ltmu5m7bJl54ITk/+THlP/oxTiDQXp4NlKXEs74gs72tcRxKtm7udA+Pp/cPAvrS5njZbheZ/9W5Rx+g9N7l+DetwjSUdTq3fNQ0FuedjAs4Pa6aGmPja8gnc/tHI1xxdPn31RMzNiXaZYjICKaebhEREelRS33PQ72Tx9Uzak4V0D6Sucslr51EqDvfpiE5uevAfbglpWmp/Me5sqecj+0NU3B+OTEpDVzUsIzkOE+P23elXH89ExcvYufkMezJSGZHdirvTC5gzehROHbHt0SuLsLztGnTepxnbFkWU6dO7eF1RZ5lIFS25og/iMNeHns6thNmHDa+YDzgkLL3QtpWJRu+THhI744rIsOAQreIiAwr/uZm9qxfw+51q2lpGNiVnkequJTUHnu5s05u6+Hui4aruu+5PsSyYKa1htM2r2TPnkk4xiKMTQgXDjZhbJqJxbYhdXw9k67bzSzvB1wzu6DH+4brA7Ssb6DgrE/SPOVcinKyaIrpvBe0ZVmMP2Vep+Nz587F4/F0Gbwty8Lr9XLKKaf0+voiyTs6uW3l+C7+vIoTsnBsF6fiIr5kMoQhrmYKFq4oVDp4vDnaSkxEokvDy0VEZFgIBYMseuIR1r7+KuFgAADb5WLKWedx6oLr8MbEkJCejm0P74Ax0IKtrWxf/l635y2XQ3xW13tzd8XtCxEfX01TUyrd7QBtjE1qWhlpGaVk7bVI+pGX1287hQOFqVSTzlLO5HwWch3PHOzQNYy5YC+nnj6h6/s5htqXd9G0pG2+dYaVTXr6lZySdjErK//D3qbDQ8kty8Lt9XHShZd1uk9ycjI333wzTzzxBK2tre3h2xhDTEwMN998MwkJ0Q14CWfmUvtsHpR80PlcsIUDxuC1LIJrXiMeF8RFocjBlOvFFR/5If8iIj1R6BYRkSHPOA7P3/dj9qxd1eG4Ew6z6Z2FbHpnYdsBy2LivDO48kvfwOV2Ew6F8Dc34Y2Nwz0Ic3GHonf+9hcqi/cM6D3z8zexdetZXZ6zHAePp5WMjL1gQ6jQEDwpxJU//4CvfvX7rJs4Fcs47DMF7ZndssGbGKK56X1Iv6LTPWtf3kXTe0cscGYOhmu8nJa5gKDjp6xlF1gWHl8MH/7WD4lPSe1wj9bWVqqqqvD5fHzlK19h48aN7NnT9n0ZM2YMM2bMwOvt3Gs+2Hyjk6g6fToJm/8FdPxY4/x9qyhKzqEi2ESoeClJe20CV2/EY2dgmeh8GGWMiehe2rmf6ryFnIjIYFPoFhGRIW/b8iWdAneXjGH78vf4zU3v4Y6JxQkGcMJhbJebyaefxZwrriExPYOYhERcPcwNHin8zc1seOu1HoeWm7BNS6WPmDR/V9OIu5SZVURTYwr7SmYc3jLs4DM8wSDnvP8O/tMPjle3oOncMHEL3Xz5tQd4esJFrGYOriBwRMY1jkXY2dvpWeH6QHsP99Esy8JgOCX3MjYmvk/hzJOZft5FxCYktrdpbm7m9ddfZ926dYTDbUPjk5OTOfvss/nwhz8c0cB4LJpKSuCZ3wKdxxFcuud9nht/Dnuba8AJYWFhLXwbLjwXQ+TCb5AQNjY2FkdvStbXZ8adNgrHcvBvqsUEwm2T11udLqc1WACjPOT+96nYPo1sEZHo0zsKEREZ8t548P/6fU2otaX99044xObFb7et0k3bIloT55/JBbd9pkMAG2kq9uwiHAz22u7AujRGX9B5tezuWBaMHbuagvWllNZNoiY1BXcoTEFxMWOLivAFAlRttPDPbNtD2kkDG4exG0v5hPMwn7Afptzkdrqn2xXb6Vkly0uxTHcD2dsiYLyTyIJP/w+ejI7Xt7a28vDDD1NVVdVhq7C6ujpeeukl6urquPDCC/v8ugfD1m98k/impi5fb2KwhfsW/4GHpl3ZfsxpLKd15cPEnHJ724LyB6dfOJiDIfnYtXqaKa3ZQW7MeDzu+MMn4l3QEu7b+m0uSLp4DInn5rcF9GuOqyQRkahQ6BYRkSHN39xMa2PDgN4zHAyyZfHbbF3yLh/6+vfJmzqN+soKvDGxJGdlD+izTmRWH+e/12xPJi67hczptd3uBNaJA8kJFRS+VtPplLENvm02/pkHF10LtrW3sLAdAzbkeEuOKtaQkXHB4ds7hp++spnQ4hJuw4e7lwBpWkKdji15bwmJB2zmB2eTbhJxcNhtV7DBXUyt3cSiRYuYNWsW6enpfXjBkReqqCBm9WqsHkYm5DZV8b0VjxKwXXicMBYQKllBU+0evGPPxZU5FTCED2zGVTAfOybpmPbvjpmRTt7HzmIcF9Ha1IRd42A5Fu6MWFyJh4comKBDy+YqwjV+7Dg3MZNT8e9pIFzbip3gJXZaGrZPb1dFZGjT32IiIjKkVewtiti9jePw3C/u7nAsJTuHSaefzZzLF3Sa9zvcZI0dhzc2lkBLS4/tpp13Mfs2rqV+TxEFZ5fhSQj1HrxtsBu6aXTk4TDErmw7EMxy2t+5dLi/sag5MI6KCkNWVisbNmzgjVXbWb23nkJycBPTcy0WuFJ8HQ45joP9TjUXBmZ26PWd5OQwMZDDG5517HNXs3r1ai666KJeXuzg8G/f3mPghrbt0y3A63RcRd40HcC/4VkAHMuiadR4Miaej6u3DyucMCbYglO7B0/BGGJnjiXpotG4U9u+5xYu4pKSIKnr6y2PTdxJmR2Oxc30dd1YRGSIUugWEZEhzerrROIBUru/jPeff4b3n38Gb2ws8z/0ESaddhYpo3IGtY5IMMbQUFlBMOAnKSMTjy+G2ZctYPnzz3Y5r9uybQqnn8Tl//0V/vr1z1NZnEDRa/lMvm53n54Xt6LrPzsrbOGf6LQNPzYQs9bGYGg676jxyAcTpK9yOnEbr+b5A8/T0NhAMBjEMRYzXAaPaz+t/rPx4up6uLQNMVPSOvS+AjSuLGdCIPtgE+uI5m21XBicyZOu96ip6dxTHy1WHxdyC7pduEPhw6/KssE47f/0pI0nZ84XsTi8uKDBtPd4G2PAGCzbxqnbR8sHf8aTk0zB757ClRDf+YEiIiOcQreIiAxpWWPGRu3ZgZYWFj35VxY9+VfSC0Zz9Z3fJi03v8/XV+zdzfo3X8Pf1Ej2uAnMvOASPL5eemUjZOvSxSz7x5PtK5V7fDHMuOBi5n/4Rqr2FbNjxVIs28Y4TtsCZMaQnl/IFV/6BgCTTz+byn17aamMpXxlBqPmVnY71NwYSHjTxlXb+aRjgf+kcPt8bmyo+WwYuwqclKPug0XdgTFs3TwX7FICNYd7b22r7UOCMA6L3Zu5MDSj0zxlY4Htc5NyxbhOdTQvLe92XrOFhQubSeFcvDH9//OqfvoZmpcuxZWeTtaXvogrObnf9+hKzMyZkJgIDT1Pt3jrvPOZ//77JNfX4wDutPHYnjjwxuPJn4crcwqW1fbhggHqaaLcU0HcKc8wseo2Gt9YjdPQSKhqG6aphOQPf5isO7+qwC0i0g3LmF7GIZ3g6uvrSU5Opq6ujqSkbsYuiYjIsPabW64n3Nr3vaIjKSWvkDmXXklN6T5cHg+xSUk4oTBur5dxc+aRlptHoKWZZ3/yPcp3bOtwreVyccFtn2XWxZcPSq3GcWisqWb9m6+x9O9PtCXkI94WWLZNel4BN971c8q2b2H9m69Ru7+MuOQUpp1zAZNOO6t9q7Xmuloe+vIdBFqaAUgeW8+ouQeITeu4EFs47KKkeCqjnm5lzJ69OJaFbdrCHUDLZKj9QqA9cB8ulk6roRkDRbtOoaRkWpfnj5QfTueUxtFk+tqmBIQx1OfFM/Vj03AftYCacQwl31nc4/fOwbDbPkDhHXMZM2ZMj20P2fu1r9P08sudjnsmTGD8iy8MyOrhC+/7NTkP/bnLb4XBorXgJF44cwoYw6iycvJKS7DDDomjLyA/ZQ7eI3q3S61qFnu2UG+3MHHSUsaPtzht/r8xjoN/xw5MIIh3zGhcUd6bXEQkGvqTQxW6RURkyFv31uu8/v/uj3YZvbAAQ0J6Bk4oSHNdXbctr/jSN8gaMw4nFCYtLw+Xu+Me4s31dfibGolPTcMb03nF7t44TpgPXv4Xq175F43VVT1XbdvM/9ANnHnjJ3q97/6infztu3diwod7nEdfVEzK2EYsG/z+WFZ9cBWhkA8M5JSWMWHHDpLr6gh63JSMHUX69RvaerT7MGvAcSzeX34dwWDv3wPLcZi4bTuzt5Xw74nn89cx83j8S2cxI69zL7NxDCXfXQw9vENycDiQ1Mycb13Krl27qKysxOPxMGnSJBITO694v/3yKwgVdb/+gCsnh0lvvdnr6+jNkyUV7Lnrbq5ZtJCwbWM7Do5l4TKGNROnsueSrzCjfA8rPTuxjHVw2Hhbr7/XDpEZzMJtWdRajdRZbXP5x4xdQ0HBJiZN/D4FBbccd40iIsNBf3KohpeLiMiQ11RdGe0S+qAtwTVW9V7rK7+97/AXtk3OlBmMnjadhooKKvYWcaBoJ9AWiDNHj2XSaWcx8/yLiUtO6b0Kx+Hl++9j27Kee3KPbL/29Vc544absOyek3D22PFc9627+Ps9P2jvMd+/KpPkMU3gGHy+FqZMXczmTecQDnsoyxtFed4oDDYYSEwqIzVtQx+KAizYvXtWnwL3IWG3C5oruGztMzSk+hifdgFLly5ly5YthEIhcnJyOPXUU8nOzsY3PgX/ztpug7eNTXCcl/vvv5+6urr2IfeWZTF37lwuu+wyXK621d+33Xgj4R4CN0C4rIzmVauImzOnz6+nK2ekJfHVj32SF8++iCuWvE1WTRW1CYm8Me8s1k6cCpbFmDHTWLAnl7j6YppNE+VxHlbm5nJN+rNkt7xKRcVo4oI+UmMayc7ehdcbJDFxOrm5Hzmu2kRERir1dIuIyJDWXF/Hnz93G+FgINqlRMShH9K9DTy2bJtTrvwQ8665HrfHi6ebucar//0Sb/7l/3X7NFdsmLDf1Ta5+ghf+MvT+OL6Nmd374a1LHz4/1FdUgxAQl4TYy8uxeULYVluQiEXB/YX0lI5gWB5BqOtMazw7SYvZivj5r3f+wNagRgwxqKysoDivTNpakrr+RpjmL16NZO2bSfocrFv2jTWzJ5FIHD43xvbtnEch7POOotsfxLN75XhJ0iiiSXDJLYvJObgUGbV8Kp3Tbd/MCeffDJXnXMuO848sw/fsTbuMaOZ+O9/97l9d254fxOLG1sx/Vxk0DZhXsx7i4byxwiHGwGwLC85oz7MxInfxu0euXvWi4gcTcPLRURkxFj+/LMsfvKv0S4jYpI8GWT7CmkKN1DWsgtDuPeLgNxJUzn1muuZMHc+0NZjveKFf7LoyUfofjNtg+12mHDNbur3JrJ/dQYmZGPZNl9+7B+dhrn3xBjD/l07aKiqIC4phVETxlJR9QaNjVuwbR+xW6cSfjuG8uYidptSNqS3UhDexpjzl/d6b+8aCMxq+73jWGAs1q+/iPr67EMP7/j6jMF2HK564UW2T57E9okTCXm6fy1ev5+g241xHd6nPMWJ48zgFEaZFFoJ8oxvCUGr+z+LrJISzlu0uH87XMfGMnX1qv5c0aXqYIgL31xBmTcWyzht4buPG6ivOH0auR6HhoYNGBMmIWEKHs/ALPQmIjKcKHSLiMiI8dQPv0nJlk3RLiOivHYMAad/C8VZlo0xDufcfDtZY8bz0v0/p7Whvg9XGrJmVZFzagXNFTHsfHks4+ecydV3fvvYiu9GqLqV8l+swBjDy9WPUJ5XSFxTI6fOfw4nlU49yK4KiF/oIu59G8sP4VRovCRM8xkOxgV+fxwr3v8whyaDu+urCSWltQ9zP/X99ynJy6M0Lw8si6S6OsYWFRHb3EJrTAy7x4ymNi2t+3Bq2lYtHx3OoMw5gN9DtyF23qLFjCkp6V/gBqyUFKYsW9rPq7pW29zMD15dyCI7lmZvDL5QkANJ3e8rbwFjY328N3/KgCzoJiIy3GlOt4iIjBjhUCjaJURc3wO3OTjd2QV2JhYW7z7+GBDs7cIjWNTsSCJ3fgVxma1kzqxm/odu6H/RvXCnxZBwyWgaX9vDKYWTeK25mua4BMzCNLihusNq5J5dFhm/cUOI9iHe7mpIfspF/Fs2Fd8JERPTTGpqGTXVudgtTcSW7KLZsvG4vMx7fwXGtijNzwdjmLNyJRN37MQ5IlwGvN620N1d4LTAGIfSUDEBr/fQgYPnLOIbGmiOi+PUZcuPKXADZP3gB8dwVddS4uL47XULKC0tZfPmzfgDAX5mG3Y5VpdjJQzwxdFZCtwiIhGg0C0iIkNa7qSplO/c3mGrq5Eq/+wySt4rBFKxPaNx+04C20t81kt4E1bjhAx1exLx1/p6vE+w2Y1xAAvy5wXJGjs+IvWmXFBI8/tljKqbz5TpP2H9jjPZkjaTybxzuKc7DOn/58YKdb1ftns/pD7gpvq/w8TF1VJ7IJPY0l0YIGZ/MafuKMYOhdg482Qsx2Hqps1M2NG2EJ198N+ZlpgYNk+b2n2hxrT/+xXoZq58U0IC47duY0xx8TEFboC0KwZ+q7jc3Fxyc3MBOMUf5IY1O9nW3IoNOIDLgrCBL4/O5qOjepkXLyInrH17iuGPuzseTLLJ/07f15WQyFHoFhGRIe3kiy9n1asvRLuMqDjcGWyISfWTNqWOUGsp5StChFsriE17hzEXHcAd24xx2mJW7mkVlKzPpGJJRvc3diyqt6aQPrWWsKnGcfy4XF2HzeOV9d+zKP/5+0ytvAzrpH/S0JiGcSwsuy3kxnxgYbd0H2MtLGI2ACGDVddEXNEm7HDb6Acr6OeD0VltDZsrSNhawajdZZ1C8d7CQkxPPbyHzh3ax/zotsYwYfsOZmzadMyBe8yS947xyr7L9nlYeOpkXqms5cUDtdSHwkyIi+ETuelMTej/1nMicmLY94NF0NVaovUO+761iPx7zx70mqSj/i1rKSIicoJJy83nok9+rk9tbffw+qz5yIDnjg3hr/GROb0Gy+WA5TD2sj24fM1tbW2HQ4tZB8p7XxCtcmPb/F/LcmHbfV9Ard+CDaQsSCa5eg5T9lxPfvZusA6PWkh429X9tQdZWMQut2jeGG4P3F0yhpVjR1ET17GnvzUmBstxenmI1fGfR5iyZQunrFqFL9C/FfQNgMvFhHVriU0bnF5mj21xTVYqD84YyzOzJnDPpHwFbpEhbN+OvV0H7iPbfGvR4BQj3Rpe7z5ERGREOvniy8koGM3Kl56jaM1KwsEglsuF2+MhLa+AMSfNZvZlC4hPSaV02xY+eOV5dq5YTjjUn7nOJzZ/nZetfx9H+rQafCl+WitjqFifyqg51R3a1RfHU7ert4VHLVprvViWi8zMS7Cs3oNvf9UtX87q3/6a/ftLsTBkNLYydupcCgtuZW/a4S3NrJa+3S+8yUfQ9PLhgGVhMGzKy+DM7SXth2NbWjC97EHenZTqamauW39M14YBz6K/4/F6j+l6EREe3BPtCqQPFLpFRGRYyJsyjbwp03ptlztpCrmTvoVxHN546A+se+P490U+EXiTggSbvFRtSsEV09bbe2Bdx9DthC32LMyl912/wQ4BxmJ04WcGvNZtzzzJq888Rsi2sFLb9n4uTk9mS+0u5v1uDe67Ewg5TYAhmGPw7O/9nvsrkqGHEfPtLIu6uBgafB4S/W0fuhTu3cua2bO6H2JuDJYx7cHcEwgwedMmJm/bjru3HvJuOMDtX3Pzlf0fMCVtyjHdQ0Skr/Y9tZ78j86MdhkjlkK3iIiMSJZtc/Gnv8CcK65h1SsvsH/XDprr62hpqCPk90e7vH7zJgQJJgUI1HsJt7rBsgiEDAEHvAc7ceuKEgn7e//RbxlDXlUDU83XSUoa2Ddp1SX7ePnvj+PYVlvP8xE5t9XjZll6MucuzKLigs0YA3UfCRO7xm5ftbwrBtibesRe0n3Yk7rFezh0x/j9TN+4kQ0zO79Wy3GwHYcL33iD+qQkinNzOXNZ217ixzJ/29AWuN8+ycLvtXp8XSIiA2ZvU7QrGNEUukVEZERLzyvg4k9/vv3rcChEfcV+bJeLQEsrRWtWsuyfTxFs7d8+2YPLImV8A4EGL4H6w9tZeUMOS+s8nJvaFi5bq31t86VNz0HPMobCyjqc13fBhQNb6ft/+XPbXOYuQrGxLPxuFyVvljP3v37P1tL/R0vyWlqnGGK3dF/z/qQYcB0cAu8YsHsPsp5Qx42zpmzchB0KsWHmSTjuw8PpU2prmbtiJam1dSTX1lG499hXJzfAqunTGLtnE8+cY2MwzBs17xjvJiLSd/aNhdEuYURT6BYRETmCy+0mNSev/evM0WOYd831vPP4X1j54j+iWFl3DC5fmKSCRkrey+54ympmScPh0G27nYOrd/XspOIDJPmDBPfsHvBqd23d1PNK4UB5cjwxFQlseiaFxtrJ+OL9nJFSirfWdOgZNhhq4n2sGnv4zyuh1U+Lz0vY1fUcbQNYlk11fAyJ/gBuxxAG9ifFUVC0i7zifdSkp2MZQ2JjI6m1te3XHuvqswZo8Xh49aorMVaIB87bSn2Sm3nZpzAhdcIx3lVEBPDS60JqALmjcyNeinRPq5eLiIj0wbk338bHf/or3N6j9ri2LNxeL9d+6y6mn3tRVGobc9E+mvbHEmg4YkEuy2Jbfgu1R0w5ThrTQI+Doo0hvjVATm0TBnClpg54rSET7rmBZVEX66O0cj/1lQdwQjYtoVjeLBzHurwMGhPctMRa1MR7WTwhj2UTCjpc3uzzMq6yrstbH9pirSUrny15Gbw7KZ/S5HgsILe+mYRAiKTmZkYXF1O4b1+HwH08wsCL111LyOejIdaiOsmiMKmQn5/z8wG5v4iMXPk/6sN2YBMTIl+I9Eg93SIiIn2UM2ES//3A42xe9DZ716/BcRzyJk9l+nkXEZuYRPb4iZRs3Ujdgf2YY1xgq2/a4qPlCjPmkn3E57Sy44XRRzUxvD85jM/vwglZ2G5DbFqA+JxGmsri6TJ8WxYT91e3n0m+6qoBrzyzcCylO7b2OOc65Hbx2nNPdThmLIuSjBRKMlK6vsgYbGOYua+C6R/5OHEbVrG+oQrHttvneFtA2OMjlJKB7fdz5uJleMJOpx6Iw/ufD4xAbOzB+xrCqWHuPuNurhh7BTHuyOx9LiIjS/69Z3e/LdiEBPI/OXtwC5JOFLpFRET6wRsTy8kXX87JF1/e6VxcUjIf/8n/svQfT7LhzdcJ+tvmgRfMOIlTF1zHpkVvsWXx28ddg+11yJhaw6i5lfjrvOx4sZDmA0fstWwMZRlNBLwwfVsCG97LwZsYxIQt/HVeDg3StkzbWPNDI86nllaRW9uEsSxiJk0i8aKB77mffdWHKL3/F7228zf3cdGfg6/BGwpz2q4yEm0XW32wO8FHqpVCvMtDKNZHQyBAa3UdBP0EiksYu7cMj2O6HPI3EIHbHPwuO8C+gvyD97X42rVfIzdXwzxFZGDl39vW473vV8uhNgBXjyF/bkEvV8lgsYwxfZjddeKqr68nOTmZuro6kpJ623dURERkcISCQZrravDExBKbkNh+vLmulr0b1vLqH36D09s+4Uf+iLYsXOEwMYEgjA3jjgkRaPTSUhkDR81zDrkML59eRsBruHpRDjHBzvtse3JHY0p2kV7XQnKLn9zqBmJDYSwgbv488n79a9xpacf5XejiJTkOL/zqZ+xYsbRvF1hWx+9D+40MFpDU7Ce3tpH86gY8Hg/LRmdREx9zeKSBZYM5POogZLn4T8rl/P7t+7sM1wPVy30odG8dX8DOSTNoSE7iqquuYu7cuQNwdxERibb+5FD1dIuIiESA2+MhKSOr0/G45BSmnHku61csZ+/Sd7u52uB2HNIaWsBAvD9IUqufUXVN1MX6WOEZRdgV19bS6hgSaxKDLD6pErdjc+HSjE6B27JtssdO4Ma7f47b46GqdB/Ny5fj3leKNy6e+DPPIGZK5PaNtmyb8275VN9DdzeBG2DWnv3k1B3uEV+Tk0Z1rBeOHNpvOg7z3x43nq+uerbbYD1Qw8otLAyw/uRTyG3187E77lAPt4jICKXQLSIiEgUX/9en+NOGdbgbao84enCutm0RxEVtfCx51fUk+oMEXS5WjMulOj7mYNC2iGtuxRt2qE2Mo9kb4kCqnxZfmDPWp5NR7yM+JY2m1pr2kGrZNlPOPIcLb/8cbo8HgPTcfNI/nD+orz0+JQ2310co0PN+6JZlMWbWKVSs+oBG63D4jg2EmFpayaj65g7tA+7e14f1+N1MqC89tsL7qS3AG5iZp8AtIjKCKXTL0PLcF2Hto52Pz74NrvnNoJcjInKsUtLSmLLgBtYveht3bQV2wI9xuQkmp4NlEVtaRMDtoiir4wriBkPQZVg+vYqTyjLJbIzFEwqTFPIQt7/tx3pMbCJzrl3AvOs+QktDPWXbtoAFuZOmEp8y8CuS95fb42HGeRex5rWXe2xnjGH0zFnM3rCD8o0baPW48YVCpDT7O/VIG2jr5e7FSQeKCGHh7sveacfJ7/US9HiocPcyjUBERIY1hW4ZOv5yFezpZmXG1X+Buj3wX88Nbk0iIsfhyiuvJBAIsHHjRmzbxmAwxoBjaLbriNtXjWMZbNMWMR0MYZdh4akHOJAW4OprPsztM24H2uZK11cewDiGpMwsbFfbsPKE1DQmzj8jaq+xO6ff8HE2LXqLQEtzt21sl5tp51xA3aoNpKz8AFq67xkPe9xtK5X3IiXQgLEtdowew4SiomOqvW8sdk4Yj2XZeOI8EXyOiIic6BS6ZejoLnAfsuvNwalDRGSAuN1ubrjhBs4++2zWr19Pc3MzKSkpzJo1C0+ch1v/39Vk7QiTUeclbBv2jGpha2ED/jjIjM3kuonXtd/Lsm2Ss0ZF8dX0T1xSMh+/51c88Z07uw3eF37ys8QmJmHdcD01f/tbj/cLnH8O1oFijOl5qzaXq4WNM2dSNHYMY/fswRWBrd0MEPbGsmXKFAyGs+f1YR9dEREZtnr/SFjkRPD7+X1r94ezIluHiEgEjBo1iosvvphrrrmGc889l+TkZOI8cfz29sepuSSXf5xfygvn7WfdlAaaY8NMSJnAI5c+QrIvOdqlH5f03Hw+9bsHmXHBpbjch/sBssaO55pvfJ+TLrwMgJgpU0i77baub2JZ+GbMYOK3v3Owd7/npdDK0hPZNnkSgZgYisaOicggcwPsLswj6PVSkVvOqfmndjjvOCGam/fQ0rK31w8JRERk6NOWYTI03JUCfXprZMFdtZGtRURkkK2vWM/75e9jMMzJmsPsrNlY1kCts31iCPpbaaiqxBMTQ2JaRqfzxhhqnnySqj8/QKi8HAArNpbUj9xA5pe+hB0fz67VK3jhl/fgOOHDW4YdJZCSgX/U6LYt2EIhzn73XbIPVOAwcD0RBnj5rHzWTvDwHc98pn3th0Bb2N6790GKi/9CIFgJgM+XQ2HhJynIvwXLUl+IiMhQ0Z8cqtAtQ8NdqUAfegMsG35YE/FyREQkOozjECgqwgSDeEePxo6N7XC+7sB+1r7+CkWrV+KEw+RNmY7L7Wbze+/gb2rEnz6KQGZe2/7fgOU45JaUMm7nDjIqq/CEQse1bZgBAm64+2MWdz8JqeddQMHvf48xDus3fIGKitfo6kPknJwbmDrlZ8PuwxQZJt5/EF79Jpjw4WMuH9zyEhTOi15dIlGkfbpl+Jl7O6x8sPd2878Q+VpERCRqLNvGN358t+eTs7I556bbOOemjsPRT7vuozx852fZ60ol9Yhga2ybkoJ8Sgry8ba2suDFl3CHw0fftk/aNnyDBy+1MTFeXIRwJba9ETtQ8R8qKv7T7bVlZc8yKnsBaWlnHtOzRSLmpa91/R4s7IeHL4Ybn4SpVwx+XSJDiMYxydBw1f/2rd1lP45sHSIiMiRtXvw2gaYmsit24PEH2vcuP9Jpy5bhOsbADbArG352g807M23crvG8ffZZxFx6CQAlJX+jp7ddluWipOTJY362SEQ4Tu+dHk9/bHBqERnC1NMtQ8fH/w5PXN/9+Zv/NXi1iPRDKNRERcW/aWktweNJISvzcny+zGiXJTJs1JSXsu6Nf1O6bTO2y8XYWXOZcf7FxCW1LTTXXF/Hihf+AUCyv5mJK1aw5Mwz2oL3wV7v5Npacsr3H3MN919t8970g6HawISGCVRm+VhcV8fVQFPTTnqaJmVMmKam7cf8fJGI+OvVfWu39ik4+aORrUVkCFPolqFj0sXwjVL41TgItx4+7o6Fr+6E+Pjo1SbSjdLSv7N5y/90OLZt290A5Od/kcmTvhKFqkSGjw1vvc5rf/otWFb74mklmzey/J9Pc+237yY5K5snvv91mutqAfCFwhTsK+Gcd95l3UkzqU1LAyBv37724eH91eqBlRMPXzmjegYx4RiMBWvWruXCiy7C7U4gEDjQw10s3G6tTSMnmJIVfWu36NcK3SI9UOiWoSU+Hr5/7D0RIoNp/4FXOwXuI+3b9zuam3cwe9bvB7EqkeGjbPtW/vOn37b1WB8xXNwYQ9Dfyj9/9kPyps6gsbqq/Vyrp+2tT055ORkV5dzx1WTSG91csaP6mGowwH9OsfB7LdLrDFPrTiI7PKn9vOM4FBcXk519NUVFv6Wn3u7sUQuOqQaRyOnjTFSXJ7JliAxxmtMtIhIBxhi2br2n13bV1a8OQjUiw9MHLz/f7TZbxhgCrS0UrV7ZYfswv8dNRUIsDuAOgwk3ctNrVcS3mn71ch+K+CHLYtIei9/8KcQ9j8d1CNxH1pKf9zE8nmTA1em8Zbnw+bLJGfXhflQgMghm9jCt70hX9HHtHZERSqFbRCQCGpu2EgyW9qntsuV9fFMjIh3sXvsBxult4bPOC6ZtzUnHWDZgsWCZw+xd/XtD9PrJFp//bxe3fcXFXZ+w2ZnrJrsGqjI7r9VgWRZ5eXl4vRnMmf0EMTE5B4+7say2XvfY2LHMmf0EbndiP6oQGQTX/K73NpYNo+dHvpZBZIxhX0uAb23aQ+5baxh18FfOW2t4ZE95tMuTIUjDy0VEIiAUrOtz26am1RGsRGT4cpzOgbovmlLmsGr2xzl53f9x6aqmfl3rd8PjF1i0xLT1i+/IMWzPc1g3zmZm44QObS0DEzNGt+/fmpAwiTNOf5OqqneprVsJWKSlnk5q6hnan1tOXNc9DP+4vfvzX1o3eLVEmGMMfy2p5Pd79lES6PzfpAG+tauc7+4qp+T8WYNenwxdCt0iIhEQG1sQ7RJEhr3cSVPYu2Fth+HjHVgWLrebcDB4xEE37rjzqcdDXfI4MqrW9/l5jgWvz7ZoiTncL27stjfma8bbhCv3Makxtb1zPcXEc3rDUUHccpGRcT4ZGef3+bkiUTXzOsibBw+dD00Vh4+nT4TPvAdeX/RqG0DGGL6+ZQ9PlNfQ26qKYWDUW2soO+9kfWAmfaLQLSISATExuX1um5p6ZQQrERm+5lx+NXvWdT9SxAKCjtNh6LjtnQB4sCyL1ph0DBZWF0PQj3To/ff6MfDked0MRLdgR9IuZjTMIsHEMiWcx8RwDl6jN+QyDKQVwDd2RLuKiHq3ppEnymsBq8/bGOS8vZbtZ00n0aOF5KRnmtMtIhIhp57at0XS5sz+bYQrERmexs05lXnXtK2JYNmH39JYtgssi7Dbg3G5O0Rqy0rkUFd0ac4Z2Ad/313sNkCr28VT52XysxvcBN3dvxtv8YW40JnGtYH5TAvn48GFK3l49AKKDHcPF5dimd7WiOhs4uKNvLO/duALkmFFoVtEJEKSEifh843usc3YMd8dpGpEhqezP34rV37rbszpF1BZOBE7JZ2pZ51LTHwCgdRs7GCwvdPKWBaOK8ihbqymhDyK884DoCU2tq3NwbaHBqxXJSXw74svZNPU7Pah5D2xj3xrZUH8vFHH/RpFJPI2N9ZjrM67C/TFjZt28631w3skgBwfDS8XEYmgs858k507/8LuPT/pdG7G9OfJzp4ZhapEhoegY/jV7nIebPDQMPM8mAlxts11cRYZ771LaNRYvFVlWGGHYHI6raNGYxkP6RVtA8YD3mqWzx9LZVEtAbcbC4sxu3cT09pCc1w8u8aPY19+Psa2yWoJsSVlS7e1GAMefwJZgVSwIGwZfJnxxM9X6BYZCuIsp+0/5GOco/1IZSOPvLWGci2wJl2wjDHHtvTnCaK+vp7k5GTq6uraVwcVERGR4c0xhk9uKOLflfWdhoZbQMG+nVy6fQ1xFaVY/hZaCyYePGkR11iIO5hAfcqmwxc4Ttub7W7ecBsMC3MXUu+tx1hdv3WauWYi99RfAVmTeS/b4WN3nIEdp7meIkPBr7Zv4BfFgbYt0I6TgvfI0J8cGvXh5XfddReWZXX4NWqUPhUWERGR7r1RVc+rXQRuaBsivjd/PLtSswikZhLIOLiw4cFA3Ry/l/pDvdaHMvahOeHd9EVYWJyx/wziQnFtDzjU7OBCacHq+Xz2rX08nVLBFefG88NJ8ezZXnucr1JEBsttY6YQZ7V0+3dAf3xx3c4BqEiGk6iHboDp06dTVlbW/mv9+r5v3yEiIiIjz+OlVfQ4+9I4LJ6cTV1cACcuoWMPtgVYTnvgTqmpYf7SZZy1aDG242B1swVZXDiOi0ouYk7lHLJas0jxp+Cum0bLrs9w54sNZLQ2sCUthmqfjS8I/3lgA011/oF6ySISQakeN8/MyMImdNz3eraqgWp/YACqkuHihJjT7Xa71bstIiIifVbU4qfHdYYtm6Ank+WZy7i47JJum+UV7+OMJUsAsI3hkv+8xtbJkykuLCDscuHz+2mNjcVyHIxt4zZuxjaMYWzjWLa0ppOwp4oP7XqO8XWlODYsmz4byxhm7AnghA2b3ytj7hVjBvS1i0hkzM2cyNsnF3Hp2hJaiD/m+d0A/5+9+w6Po7oaOPy7M9vUe7EsyZK7ccPd2GCa6SX0QOiEVNKAFEglQIAkhJYESICPQCD0FkroYLCNe+/dlmSrd2m1ZeZ+f6wsS1aXJa1sn5dHj62ZO3fOLN7dOXPb6cu2sGz2uF6MThzOBkTSvXXrVjIyMnC73cyYMYN77rmHoUOHhjssIYQQQgxQiU4HCl/7K2xrjbJrqXXVYukApmo9ttrd0MBxX32F0rqpl3lcdTXTly5l+tKlTeWKUlPZPHoURWlpACRV1jAxejZXzPsXdsWO0OmUpm6WpjImFo9fM3m7D61h37bK3rvofuT3+Xju9p9QX1HBuFPmctLVN4Y7JCH6xcikXDaeOIR7duTzVH4ZVlcX7T5Ivj9IoS9AulvmdRADIOmeMWMGzz77LCNHjqSoqIi7776bWbNmsX79epKSklqV9/l8+HwHumpVV1f3Z7hCCCGEGAAuTU9kcVVdByU0nrr52EpT6MpnsD+nVatV7s6doe7knZwrrbiYtOLiFtsiTpoOx1xI/Vf3o2yFd4pN9aUWcV6Ly76sJ9oXehygurDM2ECiteaBy89rsW35O2+y/J03SR81hivv/HOYIhOi/3hMgztHZHPniGwAnt+5l1t3FXdyVGuvFpbzgyFpvR2eOAyFfUz3WWedxcUXX8z48eOZO3cu7777LgDPPPNMm+Xvvfde4uLimn6ysrL6M1whhBBCDAAXpSUwNMINuo1O5trCsCrw1H5OQq3mG/9dRVxlVaux2oll5T0PwFuOI2UU3jlxFP8yQPkNNiVkctO7NaRVHYgpa0xiz88RBgcn3M0Vbt7IC7/9RT9GI8TAcGVuBm9MGt7t4/b5An0QjTgchT3pPlhUVBTjx49n69atbe6//fbbqaqqavrJy8vr5wiFEEIIEW6RpsEbk4aTTElog7ZDP4DDv5v4orsxdD1fmxfFPmcW2cs2M3LjZlzNesvZhmq/e3pnnJGhPxOiCWZqlNasrDoDY3+FClwRJqNmHj5z1rzxxzs7LbN38/p+iESIgWdmXBTHRLq7XF4Bya6wdyoWA8SA+5fg8/nYuHEjJ5xwQpv73W43bnfX/8ELIYQQ4siU5nby+Khobpz3awKeMYDC6duCw78dHYjD2HU1fxs6Bj0s1MaQ6K3i4jUfc17+CkzbpiIxsdutDxpo8HgIJKWSoDU0Llu2TE2nYO8chuBHKXC4Tc69aSKeqMNnPOeOFUu6VG7eC89y4hXX9HE0QgwsSimenTiMi1ZsZU8XW7AvSkvo46jE4SLsLd0//elPmTdvHjt37mTx4sVccsklVFdXc+2114Y7NCGEEEIMcLMzZvP1IVOIrHmfyJr/4fRvRwdi8G3/PjX+0Wh14Fan3BPLE+Mv5sXhJ+EIBEgvKur2+RSwbvx4vnBtJli8jmojwNN8i0e4lcwKm7TcWKafP5Sr7jyOQcPje+9CB5BN8z8LdwhChEWmx8XnM8bwwKgsEsz20ygFXD84iSER0lAoQsLe0p2fn88VV1xBaWkpKSkpzJw5k0WLFjFkyJBwhyaEEEKIAU4pxe9m/Y6xyWP558p/UuQrgsKTsa1obMM8uDAArwyfS2ygkou2LkZpWk2kppv9qQCtFEprLNNkzcQJ7Bg2FKihaM8X3DPzh6xVU5i6cwMZx2dxyWlT+/aCB4C4lEGHXEd9fT1LlixhwYIFBAKhVsOMjAyuu+46XC7XIdcvRF+JNA2+kZHENzKSWF5ZyzfX76LQf2Btb7eh+E5mCr8YeujvE3HkUFrrHg9nGgiqq6uJi4ujqqqK2NjYcIcjhBBCiDCxLIv7//IAT5SMIGh20K278dbnzIpnuHTtOtIrQsn1/uS7KiaGL0+cQ8DpJGtPHh5fA/URkeRlZxF0Hqj3mHU7uOu8b3Bs9W6Gle3j7BkzmH7WWX13gX3s4WsuJthszHt7fvTv13EeQmJcUVHBY48+it/vb3wQ0mwgPDbZ2UO44YZv9rj+gcTv8/H6vXdQXpBH8pAcLvv13eEOSfQyrTVLq+rYWu8jyjQ4OTGGOGfY2zVFP+hOHipJtxBCCCGOCLvqG7jpnjdYHwzdDyhnKY6EDegYG8vIIFA/FrMwiLI0aI1L1eAafS/Hb7D48X8PzGy+d9AgvjxxTqfnm1C+j8TIOj725OLQBkNycrj++uv77Pr6mreulkdvuLzjQkpx64tvH9J5Hn7oISoqGp90tNnPwCYjYzDf/vZ3D+k84fbIdZcS8Hrb3Hfm925m7Emn9nNEQoje1J08VB7DCCGEEOKwVuIPcNP67axdk483GAvKj2fQqzjj1qBRgIHCwo6Poib3O1i7cnDk1+MnFrNuGAuO2crQQsV5SzQog9TiYhyBQItW7YOZwSDDPluI0w5w7knLWDFmGtXVh9fyYAeLiIrmuMuu5quX/91umUNNuAsKCqgrLASPm9YJN43bTKqr1+D3+w/bruYPXnkhdrD9ybbef+xBNi74nEt+dVc/RiWECJewT6QmhBBCCNGZqqoqPv30U5599lmee+45Fi1ahNfrpTZocf6KLSwrLCNuczGGtvEMfhFH7NrQgZaLQPkMvAWX48s7l4jtX0JuGVZ6BAA6GA9K8fzJLvwmqKhUnJ4kxuzc29QNvRWtGbVpM85AACyI/QSmL19MWnpB/7wYfWjWxV/n5hf+iyemZavN8VffwK0vvXPI9eft2YPf3V7CvZ/G54vm739/+JDPFw4FWzd2mHDvt3vNSsr25vdDREKIcJOWbiGEEEIMaGvXruWNN95Aa83+UXHbtm3j888/R51zMbvqGxhZ+Bp7OA7l2YczZgMAwbrhePOuBu1i/7jhYPUkHCUN+MdHYBR6UWYtGgNf1AmUJa8lvbiYiKnfYvrgyQSrv2JjbD2qWfKtDYPhW7cybt06VLPEMeork4xTP0ZrG6UO7zYNwzC46cn/9EndqqamaUK7DkphaxPb3tUnMfS1l++4vctln//lzfzoX6/0YTRCiIFAkm4hhBBCDFh79+7l9ddfp60paHw+Hy/v3keU90XK1ZegpuGIXYvWCh1IxJt3LWiTltOkAUEXznUV6JggRtR2hhXFMmeDFxtFTVQkwRVP4clbxBRPHENLl7MrJwdvRAQRXi9Ddu0mpra2RRy6cQr0iEW17D3lFQZnfL1vX5TD2JCcHNSCLxuXcmsv+da4XF6UOjynHbKDwc4LNWpvzLcQ4sgiSbcQQgghBqxFixahlGoz6dZa47W3ElX/JShwxGzAcO8DBf7y40AbaI+TYGYkdpwLZWuMUh/m3noIaMzYvVw7L4XzFu0haJTjsO2mZcKqaraxOz6LY2rrGLdufYcxahU6xqiC7dsfIGPQpYd9a3dfSRsxgpTqQorjMjoopcgavI69+zqfzE4IIQ4H8o0ghBBCiAFr69at2Lbd7v7I2k/RjbczzoSvMJzlgCZYMw5rUDS+E9Kwhsagkz3YKR6CY+LwzUnDjnESV+bgvEV7AHA0nmN/22tkfT2Ze/d2OPIYQHPgYYAdB4FAKRUVi3p6uUc8pRQnjxyGoYLAwQ9SQr9HRZVha5MTTjij3+PrDRmjjulyWdNxeE4UJ4ToHkm6hRBCCDFgtZdwW1pRbEehKkAHI5q2K0eo67cdE01gfEJjz/LG1Fmp0I/DIDA1iZh6aC+dN7Qmrrq60/gUCmWDshV1M2xAUVe3tRtXePQZ/d1fcGLVOqIjymiZeGuSk3cxMnc+xcUncuyxx4YpwkNz7k9+0eWyF97+2z6MRAgxUEj3ciGEEEIMWIMHD2bnzp1N3cttrfnCmcpubwbackHeMYCFI3YtzvhFKNOLwksw1xPK54w22qoNBU6DqCSzw9YHm663TtTMtiitiSaBGkwzovMDjmJKKeb85U1SXv8Lu9a9TM2QSAx3kGhHBftKR1Na9W2+9a2rcLvd4Q61R2ISkzj+yuuZ//zTHZaLS89gyLhj+ycoIURYSdIthBBCiAFrxowZ7NixA4AGs4E3nTE0VOYcVMokWD0ey5uJK+kznPErsZIS2k64m9mXnU6pJ5bkhrZbtJUKJflaKcw25vSyFaBh4+zBfD5uL996PEDZLSaJs07q9nUebZRSHHPxTznm4p9SXl7O7t270Voz7eRskpOTwx3eIZtx/sVkHzOeV+7+NQFvfav9x8w5lbNuujkMkQkhwkHptmYmOYxUV1cTFxdHVVUVsbGxnR8ghBBCiMOG1pp3332XJcuW8E7KOsrzvtlBaRszdiURGa9Rmv0kKGeHdRslXhIX5fPH+Y8xtHpfm2XemRrNpJ0u0ssrMJvdMllKYRnw4hxIc52Go3QFp6woRUdorL8fz7gZj2IYMl5XCCGOVN3JQ2VMtxBCCCEGLKUUcTExFETmU1M7CrDaKamZmLKeHwz/it+kWQzR21G6vbKA1qjqAPUON7+feT3WQVOmWcqgMtbFU2f+nAVZWexKjsNvhm6bbKAoLpKXJs3irRkZ5CcZVKVMpCwqAlUP9e/NY/Xy2wn6/b3yGgghhDi8SdIthBBCiAFt1fJl7InOQwcSaOvWRWHzrfHP8qNJTzA2cRvJbi/n8S5amW1XqDVocOTXYxsmxZGJLE0b07TbbmzF/s1VEznnkw+J1HVszkji47E5fDguhw8mDGXVkHQSA4WMXT+JkshyglGxLMtNp87lwL3OoLTyLf75gytY8PJzWN1Yt1kIIcSRR5JuIYQQQgwI+6q8vLo8n5eW7mHTvmq2VGxhfsF8Chry8Zt+lKOOtuYbP33IZ8xIXw6AaYT2z1QLOUV/CNCyxdsOdRF3rqtANYS2G9pm1aCRWIZB0DQpj4/nqVOjqTCnkVG/D2P/DNtKETRNdONs6AqYmL8DbYVup7RS7EmORwXBMDXO+FIWvf4S7zz0R3QHy54JIYQ4sslEakIIIYQIq1pfkF++vpZ31uzF1mBG7sCd9jamJzTO2jHIQVzNUMyY1QQqp7c4VmFz2pDPW9WpgBv4B2P1Wt7nHLbZI9E2GCUNOHbXYlQFmspqpfA7ghTFaZKrNfFVldQmpjAkvwIbdSDpbkOE7SO2MonkjD3ERJazb3ksWZnFoRgMDVqzbelX7Fy1nKGTpx36iyWEEOKwI0m3EEIIIcLGsjXf/NdSlu4qb0y4txOR/RTN12/2Vk+gqmImkTmPYkZtwaobzv7OekkR5SR4qtqsWwEzWcg0exHv7zqF17ed32Y5jWLhzB3MP81kRHkW48vHk00EvkDzQhrT1liGOrDudyOP5WF46WZi3JUUTPexx4gmniryA4OJoQZlGKz55H1JuoUQ4iglSbcQQgghwuazTcUs3lne+JvGnf4WoFEqlHRr24Gv6Dy07UEVnku8o4SgK5Iafzo2JnTQCt0VCk2sUYMVvYWh1blMqJqMblwfLNJt4gkEGFZcSVZ5NQ5bYylFQUIM21Pj8bqd+JWTOZuXkrm5Bq2cxBn15GdEsyZ1PBuSJzEj/wu0bVOxb+8hxSmEEOLwJUm3EEIIIcLm+cW7aVzuGsNTQKRZRU7VSJIaktBoNqtIgraJAx81lcejGpNsjSLKrKTGs5oKfwTxTu/BDdBNTMOmrjK09rPCRmOwP1mPUj6S0l+lXJuMLx/fWCZU0fCGCmZt3YsnEGiaBMfUmszyagZV1bJg+GBqRkUTOXcNq5cms29NMoatyaioZfALNZjnqtCkbYZBpCxrKoQQRy1JuoUQQggRFn/7dCufbS5p+l03pOPdejuFqp4YRynJ1OANDAegDneoTLOlveqtONwVc/hwp8FlI99s8xyWbVDqTcSsiuMs10Y2B1Oo0h5cWOSY5dTEbGF33BayarNw6pbrek9bvhxPMNhq1lkjVDET8kup/f5OlAPSjisliKJkTTIFiTEYtqZ2j0FktZP6uCDHzDn1UF8uIYQQhylJuoUQQgjRq2zbxrZtHI6Wtxlaa1bnV7FyTwUr9lTw9up9LfdjUoeDOu0mP5BIy67jrZuxNYoGnCzYfRxD0z5jWnxVaBnvxl7nWkNNIIqHV36HokAKGUYNQ4wKMlUVVbaHte56fDlVWK7zML26sQ08dJ7I2jrSCwvbOGuIASTWebH2agJDQtsGTSuldEMiOmhgG3DCri95IfcczvR+xshZJ/TkpRRCCHEEkKRbCCGEEL1ix44dzJ8/n507d6K1Jjk5mZkzZzLx2Eks31PB797awOaiGlRjr+vWVDt/dsxA8eTGC6l3P8/pziDBdI3yKiKXGfzLfwlFiWkA7LXj2GvHAeDJ3EbVqGlox+mgg1Q1FKAKVzbVGV9V2eHZNZpArsYoAXeVwkqAYKYmNruaqh3xaKUwVRDbZbE1eiJ7LMWILl2NEEKII40k3UIIIYQ4ZEuXLuXdd99FKYVuzKiLS0q5782lbHpzH7XBA5202064e0phoQjWTETveJOkBfVNeyxlcHLaKubPnNTiCB1jUjVmNlo1xqQc7EzOYM7WNTjs0Nrdlmm2e0atNP5cG+c+g6T/O9AlPTDIxnlpIbtigpRvTMDyGYyr3kBVfA7B3r1oIYQQhxFJuoUQQgjRY76gxdtLtrLuw3epsV2ss9Kp1y5i8VJhR7CX+D49v0LjJkg9btL2DmFfegVKa5LKynAGgwyuK21ZXttEDnHjxwB14EFAwOFkSc4YZu1YB0BpcjJ+pxNXIMDBlFa4dhw80hschYrkvzngh6WkXl7O9v9mk1O/h6XRY8mJcPfylQshhDhcSNIthBBCiB75eEMRt76ymlz/LvZZoygiBprmIk/ABUzHYDU2vj6KQaOwGqc62zFtKqWGHwAzGGTotu0Y+TWhNba1jWWYTCveyPz0U9FG66R5TeYwbEMxbedG3MDm0aMYt3Zdi27mGo1q/O9gSis0mvhXTPy3Bxl6dh47Xsni6lmf4+ZbfXH5QgghDgOSdAvRh8ry8qgqLCR20CC8m9aw6Z4/AQaWw0GDy03GcVOZ/qvfhTtMIYTotsU7yvj2v5dha9hKUuPs4i3HYvuBJdh9GIUmRdVSoqMBjVMdOJflcLB11EicqfXMLFxHQkMtp+YtZ7CvlC+uOb3N2hSaooxoPkwdz4j1uxh2bhW1JW5iCn1opVG67WS7RR1a4dwb+lFZQS6asQa9Eza9/AtGX3wfhqv9butCCCGOTJJ0C9EHNtz/Fwree4/quDhMyyKxtITEyioy7dANoSZ0S1pZUsybC5cwZcwxJFx4AVHHHYdqo/Wlp6rWLmb3HT9HextwTR7L6LueQrW3kK0QQnTDgx9vbfp7HZ5+P79JkEFGDQV2HPtb17dZyYx3FB4opBSBxCgiU1aQXLCTwVtrifYqPA0NNHiaxaw1p/AR5/ImaRSBAxrGusEK4IxUaAysBI1ZTqdJd1N8FRAcDFtzIxm9vZbM/Kf45/3xjJ6VyeDBtbhcbuLipxAfN6nzyoQQQhzWlNaH98we1dXVxMXFUVVVRWxsbLjDEYIvb7iBhUlJeKOiULaNVgqUInPPHmYsXoLDsprKaqAuKorqmBgyCgtxpKeT/utfETN37iHFULVyFbuvvgpH0GrVLdK+/ATG3fHEIdUvhDi6ldX6mHL3x2GOYv/jy/1sco0KTnTtaFHKxmZvZCGL0hahNDgKTqA443Ks7GgwQsdfqf/F2byNDS3W5NYaHAWQ8kcHylKgQi3ZXVHyswCBHI0jH4JZYAZtImuDVERHYJoWSoFzB8R85CYiPwaHO5rouaeSeOWVuIYMOaRXRgghRN/rTh7ae01qQgi2/ve/fDp4MN7ISIDQmMHGluWCzEwWzJ7datXZqLo6KuPjAQgWFpL/wx9R88knPTp/sCHAS9+4gYIrrmiVcO9nvPglG/5yS4/qF0IIgOqGIACmCoYxioM/4Qx22km86xvN8ugcFueMYdmQUZRHJxBlpYFygtIEM7/AUzYP1WCBrcnV2zibtxtrOOgMKtRaXfbjILqLjfkaTTBZE8jRoMC1JrTdchjUxLtCCXdj2cBQqD7fhzejksDevZS/9Dzbv3YetV/O7+mLIoQQYgCSlm4hekndtm088sQT+DyepkS7Lad+9DHJZWVNv2ugKC2N5NLSUCu4UjgHDWLYxx/hLy7mP399joLdBSTWVpLkhqHnnMT4Sy7F05jYA2itKZn3Gs+//Qlnvvs5focTn8tFlLce46C3uEZjOxXj1m7s9ddA9A7bDlJa+jF7971CQ8Ne3K5UBg26mNTUMzEMV7jDE4I6X5AbHr+H1UWjabAj6Xg97YNbpPueBoITE7BSI8BQmGVe1L5aIiJfw20uQAdjqN3zKwIj47l+0LOcqD7F7GjsuQZHHqTc5+ywe7lufKxa8Z0gDRMbP3sPbj4/mE3o5fEBntC53JtNRp/3d5KzTuvWdQshhOg/3clDZUy3EIfIqq6m8K67+WL3btSxGeQM3khUZAWW7aCsNJvS0my0Dk2co2yb3UOGtEi6FeBuaAh1QwfQmsDevXz8+z/xTKHiRwtfYmbAS1AZKK0xVy/i46eepP6005k2exJ5S56g1t5I1eQY3PvG86vv3MpXEyajDYPY2hrO+/JjrvjwbaIavI3nUxgBTdHGBaSNmd3fL5fohGV5eXjeNZSSxAaORTOJkXWbmF3xWwbnP82kY5/F4YgJd5jiKPfvea+zeN/kxt86S6jDM4+EY0NVKOkGrAQPyjTwLz4P0qPxJHyAaexBrYPMyB2Y8Z1M9qYgMBjqp9tELTGbZjA/mB0DVV9vlnBrOu9TaDSW27+imALfCIvVW77LGPNeMjIu68ZVCyGEGIikpVuIQ2B7vaw7+WSsqipqznQQOLceNOjGFXOUAV5vNGvXnIbPFw22TXZeHsd9tahFPQWD0snYV9h0C1cWHcd9M6/ivk8eRWnd6p5t/5u2+S1ffbyT+y/6DvMmz8Q2D8yOa9gWQ/YV8Mj9dxDdmHgDWL++hnFX3d5bL4XoBf/YupO38z5gBVOxMUM9Jho/ohWa4/iSHyXs4KRJD4c5UnG0sG3NRxuL+M/iPWwtriEYsCiuCxCO1uuDdSUC/8RE7PSIpt+dy0oxy3xEDnkUX8lpWPUj+NGkxxmfvBFDdX47ZGuF8XASiXvr8dSGutbbDo1/qKZ+jhVKtntrcnINKJPZs+bh8Qxqs0ht7R6WLT8fy6pp3GIyaNDFDB36Yzzu9F4KRAghRFu6k4dK0i1ED/mrq9k8YyY2UD/JoP5Gb5vlbFvR0BDD8mXnoWwYs3Ej49eua1FmV24mOTvzm36/65xvce7iz5hQuh2Trr1F99+A/uH6m/h4+vEt9hmWxUWff8BNr/67sawm9vWnyDxGWroHCr/fz/D5K/CrjgeOKm2T7G/gl7nJXDFqZD9FJ45GQcvmBy+s5P11hQftCX/C3RUaCI6IwRraeG9ga8y99Tg2VOKIXo3tHYIOxnPcoCXcOP65Ltf7B+sONqkx/Hz3n5jkWY6VBLqvRn1oiHSNZMiwG0hNPbOpl0t9/R4WLT4LrRvaPMxQbqZPf4eoqKF9FJgQQgiZSE2IPub3+9k6fQaLj5lIRXwigVMaaG84oGFoIiOrSUjYh1aK3B07W+wvS4gne1fBgQ1KsSkqk0ml27qccEPoFtgGfvDyMziCLSc3sk2Td2efjN/hbBrTLQn3wDJ6wTKCODstp5VBiSuCWwrq+OaL7/dDZEevKl8V+TX5NATbTmx2Ve3i9a2v88bWN9hTvaefo+tbWmsm/f5/bSTccDgk3BCKUvnsFhu0Q6E0WHUj0cF4AJYWTaKwLhXb7tp11RpR2KaDDVXHEkzvw4S7Meb6wBY2bryNL76cwdp1P+GLL2fw1aKT2024AWztY+WqqznM21WEEOKIIUm3EN1U9txzbJswkT1pGXw84wRS6ksJDNUdvptsW5GYlM8x69cTXVcHhFphqhMjia+qPDDZWWN3YpfP36PYDCCurpYZ61a22uf1RFCckAhA/kWn96h+0XfqdQS26mK/VKXQSvFeahq/ef7Vvg3sKLSqeBXf+eg7nPDiCZz1+lnMfmE2dyy8g+L6YgDKvGXc8P4NnPfmefxu4e/47cLfcs4b5/C9j79HRUNFmKM/dDVeP7m3v0dNzz6GBgwN2PGuFhtUXWjJxigzyJ2z7uH8oe8RtJ38edkPKKjtuDu21lCsU8lTOQBkbymifk8C3Xg22nMKtPZRXPw2gUBplw7x+Qqprl7dx4EJIYToCkm6heiGffffT/Hdf0Ch+Otl13LmonlYzq61jqSWFTFu3Xp88VCfCcWDPMTWBDCbNcQ40tIY/NCDNERE4DN6Ns+hDaSXbm9zn9Pvp+DkFM78vYwJHpC62SqlgflROVjBcC7bdGSZXzCf696/jkX7FjXNRO23/by57U0uf+dyVhat5IzXzmBp0dJWxy4oWMDX3/k6tf7a/g67V027+6Nwh3DINGBlRWIPOrDKAwrMgjqUspmYvIHB0YWckfMJCptKXzx3LLqN5UXj230bKgWvqa+jVejWyXY5WV80h6A1cOekLdj7crhDEEIIgSTdQnTZnl/8gsonn0LFZgGaXzz7ODM2rMFRqzHK6bC1w1CaxLW1FMZG8knOMAI/uIMTP13B6FUryf7Xv8j485/JfuYZhn/yMbFnnsnJdiEfZ0/FUt1/ixqA33oXV/2Kpm3KtskuyaP+uzHMffSLbtcp+oHWHS411yal2Bhr8uW7r/dNTEeZgBXgl1/+Elvb2LrleBFLW5R4S7j6/etosHxtHq/R7Kvbx2mvnsa8vHn9EXKvW7G7ggYr3FF0Tjf7afpdHdhmZUYSHB3fuDNUytxWjeENgoZTh4Q+Bz2OAOOSN2BgAYp/rLmB+QUzALBsg6BtYmtFUJu8ELyK+eqkphjK0lLx1UezauU51NW1Hss3EHp2l5V9Hu4QhBBCIEuGCdElGydMBH+or6WuzgMgpSrUjVShiP7cpPoCq+2hjjbgh+otcTh/OZufnHs/pqPxrWeaRM2c0eqQO79zAWcEY5lWtImkhmpM3XrAeE1EJO8cfyrlsXEkV1Uwd8kCkqor8bpg+XBNbOlfKRv8MNqMRRsG4/w7Oeu691HdTexEv5jsKGeFlRT6pTv/j5SivKq+b4I6yszLn0eFr7Pu4Rq/ZyKGVYEZKMSgdR/s2kAtP/r0R/zz9H8yY1Dr9/dA9uBHm/uo5v2TrwU5lFuPpinc3AaBnBhcm6tCSXZGBLhMtMvASo+AiGbnaHw/Gd7Q04Rrx75ITmxe0+5zcj9iXekxgMbSJv/acCXv7TqNGenLiXLWU+GNZ0Hmabga4jESrabVIWyXAx0w8HpjWbH8ayQl7SEjYxNR0RXYtsIkgMPdyVJkfSwQqArr+YU4Gizeso+v/9+yxqVrGimYnRnN8z84KWxxiYFFkm4hOrFpytSmhLu55mlR1KcGvpE2vrG65bqsFqCh+sMsjn/lN6Skndqlc8YMHsx/v3Ui3wpUc/LqrzgpbxVOHbph1MCH04/nvmu/h2q8BdVK8Y8Lv8HlH/4Xs/4VAk4FWHjqvsAbey7RuhqnNUgS7gHs3TmnMujTlWAY3Wr1jgxqhqQO7uPojg4rila02hZ0ZtEQfSJYNURVvwsEcTWsBUBhozFQ7cyi+PCKh/nPOf/py5B7XXldbwzkbj67uQYsjIjdgIHtzT1of9dqsyMNcDnAY2Ale7DTI8FU+N0Gzo1VBMfEg6ODnkFaE0yLYGbEQk4Y3HLJxhEJO/n2+Gd4ct3VWDp0W1Rcn8rbO85qKpO1rYjMhAj2Hn9g+bEGh7PFlZSVZVNWlg2As7yIcTPnEZ3edq+I/mIaHa+GIIQ4NOc/8jlrCmpDa8TS8rt7QV4tE3/9LqvvPid8AYoBQ5JuITpQt3EjunHis44oW5H4uIP6WTZ1J1oE00EFILA5hjxvLjc+9Ea3z52cm80bf76Jd94q4qmiVDIbCji2egOfVJzLv865LDSZVrPyWileOPMC3DWxxFY8DWicvu14tSaaGs7PSOp2DKL/KKXYfMIYRn25ofHLu3OG1swq9TH58rl9HN3Rofk4bQ1YRjxGYB9RFc+zvyNz6HaqeZLddh9iG5u1pWvJq8kjKyarjyLufTNyk1i/r6bzgp1QzlLM2GWYDj+2Lw1/9bEo233ggVLzySM7ERwShbW/q/hB7PQI/G4DjE7qUQocitqc1DZ3T0tficMI8vfV32pz/z5HAr997yESfdN57dSzUbbNttRMMqrK2iyfGLEj7Ak3QFr618IdghBHrBeX7Aol3Pu18XlWFdBs31vOsIzEfoxMDEQypluIDuR/69tdLqtsRdR8k9Q/uOCOwby8+EYGX/QCN/6y+wl3c+d+7U7OsbN5dtx1PD7rmzx7zsUd3qj6ok8m4Mwl1AIeeosn15dz1qknHVIcou/FuSIoPHUKf8owybR3MMa/lRRvY4J30ABRQ2sy622+5i+QHgy9oD5Qz+byA12rFeCwKzEIotCh5afaOE51NJkDHHazmf9o7ohulT94XHWIQgeSCZadia/ofAKVM1C2G63AjnBgO8GOdqCdBrbLwEr3YCW4Wj5EbPwJDonCGhXXuPGg11prVGkDruXlqNpAx4OobY2OcVLsGNTOdSh2VWe3PCTagX9sHHaUg18ufpbBFZu56dV/8/t/PMDo3dvZmppJjTsSu41/GclDS2hjVFC/GzXyN+EOQYgj1m2vrw/dj7X3Hdy479RHvurfwMSAJC3dQnTALi/v0XFPXngZv73kbMYMGdorcZz6jRu47g9/4c+nnQ9mJ8tKKUVdwmXEFf+RgHs8pq7nDnc6hiHP2A4X14yewDWjJ/Dy7p28sXYBOduH8+EgFwWRoS/2qKDmxKIgx/vzuPSGi8Mc7eGvzFvGE2ueaJqtvLv2dzHWqBZJuEKRHtXxMlQDTXyki4uOHcTrq/Z1qbwCEiKdpMS4MVA4zNArkF/hpSEQGhITF+EkMyGCLUW11PuC+EbHYWVGtWqdVvVBjPw6lM9GR5pYGZEHxmZrjdpbj44wwWFg1AZw7KjBqLPQgLmnjuDY+I4DdSqiaN2Kb2sI2iZfFhzXtM1KdhOYlAQ+i+iVhcwo2tCUWs9ZtZQ5q5Zy1w0/4L8TZ3Pm+sUk11VjN/Y+MrXGEW11tcNKr9v/7zEt7RJ5ICdEX+ryULABMKuiCDtJuoVog1VXR8ljj4PdvaYKG6iKjiEmsY4xOb2TcAOYsbH85PabeWrhWsojYjotH3CPxjZiaIicwfMui+NPOK3XYhH957IhuVw2JJdnduxlxfI8ztxnYWhNhFnH7defhlLTwh3iYS1oB3lg2QM8t/E5NLpHE8jvp1EEndk4A7sBMDA4LuM4UiPb7s48kD1w+WScztW8tDS/zf3PXncsc0Z3fx6BXaV1/O6/6/lgkKPN7uA60oE1Mq7tgzU4KvyY6w5MGhh60AHKYxJM90BdEKIcbf9PVKGpzWfzJZYGs7GIZRvYKB5d/U2q/aEZyLWpCExMbOraMGvfuja7Bf70+Se44E//4NUpJzOoqozBlSUorSmMSyLH+IwYXdvjf0+HKjFxLuPG/jE8JxdCCNGKJN1CNFO3cSPrLruSBtOFxwqgHB6igw1A59P+7J8/7bFLruSOSSf2emxmfDznJCr+7e1CYeWgMuXnvNbwHrPn3tXrsYj+de3QDK4dmhHuMI44f1zyR17c/GLT74eSIHljzsRTt7CptdvtcHPr1Ft7Icrw+OPFE/n9+eN49qtdrMuvIisxgsumZTMkKarHdeYkR/HMDdPJ/GwVna0snxvh4tyUeBKdDnIj3ETXBfmk3sW+BC9V9QFcDpP4SCenjE5lXRT8Pb8Euy5IKKOm1f9MZVvE1ZYy8p01rDp+ItlJeVjaZHXJeD7Lm02JNwVo7NKeEZqkDaXAbYYmcTuImXIMCcPnEmU78QP74pPZF58MwES9nMG6oN8Tbg3sYgQXH/cSCRHtPLwQQvSeLr7JzW5MHCmOXJJ0C9Eo/5XX2Xjfg2QGvEQFGjDRWPs7izZO/NP8Y/Pg+XdL4hP554VXcPK69Qy77cd9EuOdE4/hua92ojHa/7DXmthgNX/a9jTHfU/WbxaiLQW1BS0S7kNlBMtQdhVauZmQNJLfHfc7RiR0b3z0QONxmnx7zrBerzcn0s32el+7HS5NBacmxfKrYc0eNKXA8TltTwZ5lm2zob6BT6hBAYbPj+V2oSwLBdimyYi8Xdz1jwdIrqhgzfZkHpvxQ6qJIKAN4gwfY0c6WbctgI51YY2MPfD5quC9K89j3uzZ6C11xPi8nFFTyhXJ4yiINajwtEzIlba4kccO+TXqLg28rc/mZ7P/QoLH1e/nF+Jo5HYofMFOuo5rzfJf9n5DjDj8SNItBKC15ouH/48JdaGZaM3G20ETjd/pxBEItHpOWR0Tw4czjmdrZi7V0dFEBiyu++ADxl9yZp/FGTSjuLb+af4V+c12yyg055R+wdwhyRidjf8W4ij1wroXeq0u24jF7V1CIGIa/5x9EycOntJrdR+JrhuczG+2FrS739Jw5aCur7bgMgyenTCUt4sreXZvKdvrHAwuLWLMyqV4qqqYtHk9Y3ZuRQG7h2Szbdp4TnbsAEKrBpimyXulKehIB/6pyS2nmG1MvutyEjE8EdhrKnjVFcX/ghXM0CWY1mSsZp+z41lDIhXdWRGtV2gNV4y+gkxJuIXoN1/8/CRm3PNZ2zsbJ3bMiFDEx3U+LFAc+STpFgL48ObfMqFsZ1Oy3ZzzoITbBho8Hj475WTsiAiGNZRhN5SR7NhDeuE2Mm5sPyE+VNfN/zffj/wftZUpvJrwtVaTeChtM6VmHT8q/R/R31jYZ3EIcTj7cOeHPLP5mUOuRwM2kdQlXo/2HMO/jh3HiUmxhx7gEe7qjCTeLq5kaVVdi8XX9o/R/smQNMZER7RzdNtMpbggLYEL0hIat4xDf+0UvMuW0bBxDA2Wzf+KCslraMAwDAzAtm3cbjezz7yAJ1/cTnBiQiiIdsaE24MisXfUQG2QOsNgfko26qAZ01Mp6uYq5L1DKcgxS/v5rEIc3dJiI3n7B8dx3t++ank/1vi5cMH4ZB66amYYIxQDiSTdQgAbNu4hu531XQ6+eTIAj8/HxNWrWTJzZtO2vKwUzHPP7dM4p/g+wXIaXBj3DJNK1/Afz9dZHz0SgGR/OZdUvc0o10K+c8zf+bBPIxHi8PTq5lf5/aLfH3pFWqONeCJy/8LF6YO5YXAKuZHuQ6/3KOA2DF6cOIwHdxXyzN4yqoKhWc5zIlz8cEgaV6T3znq2Sikip00jclpowsHrbZudO3eydetWLMsiIyODsWPH8t+1xWgD7LSIjsdo2hprUCTG1mpsw6TW5yJ4UG+iWqLDMnpTAes33EpkZA6xsRPCEIEQR6fxmYnsuu8c5m8q4ndvb8BGc+fXxnLCyLRwhyYGGEm6hQC8Zve65BlaM2T3HlZNmkSD202dOwIruo60q6/qowhDXeATdTmmYQOKnKRV/EqvxK6JJKgduCJq0MnQEHSxpdLqsziEOFx9uPPDXku4XYaL/170EoOjuz+Lt4AI0+CXwzK4NTed/AY/TqXI8rj6dIkrwzAYNmwYw4a1HKeuABwdzJPRnCvU99zw5BOtF2Ls3QMY+CMm4o05jVWOKfhw4cbf6/F3RinFnj1PMW7cw/1+biGOdsePTuOT0ZJoi/bJwr1CAD6nG7tZ+8Se1HTW5wxnQ84waiMi2zzG0Jqo2lpsw+TjMdMYs3MH8UN7b5mwg/ltmzKdhGUfeNtqpVDRXpwxNWhHqEdTlS8Op0ve2kI0t7NqJz/94qeHXlFjF8JH5v5VEu5e4DYMhkV6yI5wh21N6em5iRCwwepkiUgFOc4dnDLufqJy/4YrdgWmVYppFeOp/YSEfbdje9fxJhf3T+AH0dqitKyd8aVCCCHCSu7MhQDmUMZXg8aSl5xKUUIi2cWFjNm1jWN2bcfj87Fm2CisNm4IBwdimOiYTkxkDRN2unA6nX0Wo9s0mec6tbGlu20axbyi2dw1KbvP4hDicHTP4nvQ7c6X3bHQ2G1n00oGt069ldkZs3szPBFGWYmRHD80CbOgHuz2/40oNBfF/o2lVmjstFbN99mARWzp33m/4The5esEtYnWtPjpDR1Vo3Vni7EJIYQIB0m6hQCy/VVYboPUqkqSKyuAA28Oh20xbscW1g89sPyPRmNFaqbHnsb06ggeey+PMTf+vM/j3OOYxOq68di69QMAyzYork/mo8izuSwztc9jEeJwUVhXyKJ9i3p0rAY0HgxCEyrOzZ7LdWOv683wxADw9ysnM6QsCH67deLdmC1fqF9mdW01Rjtpb+hTWZNS8i5vqMv4t7ruwMpj6tDWge8ag5iY8X19EiGEED0gSbc46tm2TXDnTlLtGkwriNlGc4ShNRO2byEvJR0AhUJnDcIwHJgo4t3j8cT2faL78tTRPBh1O59WnUzAPjCBj60Vq0vHclflb/novOMwwtRNU4iBqKC2/eWpOqMAEx8Apw85nT/N+VMvRSUGkvhIF5/96AR+GZeAq6wG1WxiTXfQyw3241ykXmGrz2wxFOlgCps6ZwFOv59JrDh4gYlDoumstdwmK+u63jmZEEKIXiUTqYmjml1fz+bJU7CUYkT+bky7/a7bQcOgODGJzJJC1o0fR3DkXOY0zlemlEHD5lI8w/p2jOeEmEieO3YMV6y+iZd9VzGmajVmMMhOhlGcksXKE8YyKEJmUBaiuRhXz9ZIzYzOZETCCFIiUjh/+PlMSJ4QtnHHou+5HSY/mjWUuUUlbFp/I3WvZhGzzY/rnL24jqntevKsFLYTJrCqw2O6vbSYBtV4kI1q1uJuADaDB19JasqZ3alRCCFEP5GkWxy1AkVFbDvxJAAa3B6iGrydHKFQwKpjj2XLqJGg9nGMnUmyDq3La1VW9Wm8+52YGEv+SRN5q7iSL8pz8JgmfxiUyLiYtid8E+JoNyJ+BENih7C7eneXyisU5w49l9/N+h1uUx5iHW1Gp0xmX3ktoz/ZjEJRZgfwNWbHIz0Wq+rbb+3WGPg9Y4mrr8SI7HgQd3cf3yh14KDd5JCt9uHAJjZ2PFlZ15GacpY8FBJCiAFKkm5xVCp/5VWKfvObpt89DV78DieuYKDdY5TWWMpg2qpVeBoaWDvxWDabe0kOhpJuM6b/lukylOLCtAQuTEvot3MKcbhSSvHjyT/mls9vab8MimvHXsugqEGclHUSGdEZ/RihGEgMw0mGdTLwBQCu3Qa+cRYoODE6yIp6s83jNKC04tzP9zCk8GH8VzpwRgXbbe3WwGZGM4SdRDQOYeiqJ/gub846n0Hu7i13KYQQIjxkTLc46lR9/HGLhBvABDZn5xI0OnpLaDJKiwAYs2kTiWUl1KgGbG0TLFpPxLicPotZCHFoThtyGnfOuhOPw9Nq37ikcXx4yYfcOvVWvjHmG5JwCzKGfaPp75ELjf0z6uF0D2JqykT87mNQHEi+NQZKG5yyPJGswkpAUbIuscNzKGA0m6gmvlvz6muAyvfwNeztxlFCCCHCSVq6xVFn781tt3ZllBRRGxlFdH0djjbGdi8bM4EZG1YDYCvFsG3bKZ82Dp+/CrN+Ie7c7/Zp3EKIQ3PhiAs5I+cMPtr9EQW1BcS54zgj5wySI5LDHZoYYGInHU9eUiJGWTlmlaL6v9k8eOG32aLGQAQQAU67hqSaN7HrVhA0J3DpB5uJq3ewf1Gv0rXxJAyvIiIp1Iq9v8X74LHcKRR3Oa4yEqkkkfGRTvbW7iUnLqc3LlcIIUQfk6RbHFWsqioItN2FPKmmiqKEJPZmpTJm9/amm6LK6Bi2ZOcyrTHhhtBs5vGVlRh2IoGP7iDz1f/0Q/RCiEMV6Yzka8O/Fu4wBgSrxo8O2JixLpTj6Or41lBby/p5n7Bz1TJsyyJj5GgmnHomsSmhVSh8Nuw5/xpyn36IgpQ0fnrm3Xi1p0W2HDBiKIy7GmKvYtayT4nx7mB/wu2MCjD0rDwiknzYNlQZ8SRQ2ebkaUbjCvIdTazmtT3807iJJWpWaIMbduTBvVG1zIiP7r0XRgghRJ+QpFscVbxbtnS4P62ijLSKMgoTkymNS8C0LXLKdzM2aSW1F2iMWoVnuYFZoTBMN7FrPyNi7EgiRo/upysQQohDU7eqiOqP87BKQ5NHKrdJ1Ix0Yk/JxvAc+bcF+7Zt5rU//Baft75pDa78jetY8tarTL36+7xRk85bqwqwdSYXjj2Xwhk5eN0ebKPtsdwAkfW1B34xNMPO2YM7zg9AjRHL37iZ3/C7dpPqzqY/cysfV9tPs8UYQ6UKzeWx0QsXrdrGCxOGMSexZzP0CyGE6B9H/rerEM24s7K6VC69vJT08lLq5lhU3GKF3ikWYED1BRaRXxjELxpC7e5FZH76cZ/GLIQQvSH/ti/b3K59FrVfFuDbWknKdydguI/cW4OG2lpevvs3BLxeFJpaM4pN0SOpccTgsRso+c/zLEg5BdsdavF+bfRJ+KdkgNFxWrwncxgTNi0HNPE5NXgS/E37FJDaxS7k7a3rbShNPBVcYT/LY+aPQ2UBW8Otm/NYPHMMhsxcLoQQA9aR+80qRBuc6emhOxrd+bQ19dMsqi5vNiN5s3dL/Yk2yrUF51senElJfRCpEEL0nvYS7iYaAoV11HxRQNxpQ/onqDB497W3CHjrAVgSP4Ul8VMBUGg0imXxUxjkDU1QZkc7cI008XeScBvY7EsdjKlDc4HE5dagbVCNPfZjqMaJv4MaDugobzaUZiYL+Je+Ea+KAkKJd16Dn4WVtRyfIK3dQggxUB1dg7iEABK/9a1Oy2ilqT3NIvJzg/hnTeKeN/GsVKHWbgAFdTOKcQ8b3rfBCiHEIcr/44KuFdRQ99VetN2dubQPHw0Bi4XzQq/FupixLE6YjlYGWhnYykQ3Zsn7PIOwUj34j0ulNrnjGcj3S48qZG9KJrZSGE6rRX9xBQxnK/VEHvI1OJTVZqv5rvqGQ65bCCFE35GkWxx10m65meizzuqwjJWkSb7fSdzLJhFLDCK/Mkh8wknqHU7M/fc7BjSkbOj7gIUQoofsoA0VrVdjaLd8fRDtszoveBj637p9WFYQjWJJ/JR2ezxpt0lgQmIoW1ad3yZpFDeph0k7u5z6nCii0rytWqxP4HPWMr4XrgK8RLTatq9ma6/ULYQQom9I0i2OSlkPPsDIJYvxTJkCntbr9pqlChUAhULZoR8AswKSHnayv6egL7sKf35Bf4YuhBBdVv3Bru4doEA5j8xbgzX5VRS50yh0p1LviGq3L7c1ODJ0d9SVMdJaM5zNJFHKFM9yjj99Kaa79UMOBUxnMUWkEsREa7Aw0ECgiyP9tIZSfyrFpLWs224gNtDxJKFCCCHC68j8ZhWiC8zYWHKff44xq1aS9utfH9jhjAQUSre+4VK2wlGhiFhugAI7Gmo+eL//ghZCiG7wbavsVnnP6MQjdvkwl2mwLuYYAsrZYTk7ztWl+kwdBDTbGc4KpjZtby9XV0CaLsaBhVKgsFnACbzIlaElwzrp1a8UvKoub3WCyKo3iXW6uxSzEEKI8Dgyv1mF6KaEK79B7fWXh8b0Beo7XL5FK41nlQEajAqwamr6LU4hhOiO7ibQMSd3bYWHw9GJo1KoccayLuaYjjPcLgxpNyyLf/7up6Rt2YatnDzEz1nOVDrtyN/sy8UAjtdf8jVeD63R3cEcn7ateKf6Er50zgkV0hqHDvKznU9wfcFLnJR5UudBCyGECBuZvVwIQCnFlJ//hjVvzsddkd9xWa1Qfg02eLYYuM4/cmf6FUIc3iKnpuHP69qDwcTLR+LOju3jiMLnuKFJZMR72MEwXJYPv+Fsc8y2UdqAndZ62NF+pmUxbcNq0iqqqNoViUr3M9hbyqD6MlS2ArMbE9EpiOXA/58gDpwEm5YOs22DXbUjedL4LrvjslDaxkM9s5au5Oa1TzI5dxeGCexcAOMv6c7LIYQQoh9J0i1EI0MZ7E1LJre2HAL17ZbTSuMsVOh58USut4l99Ix+jFIIIbouamo6lW9s67xgmkHksWmdlzuMKaV44VszOenPn+M33YSatDUc1LfJLPQSHBELTqPN9bkt0+T8/LcpP1VxbPIaxr1UzJUrP6Dg9CjIObSZ3x9SP8VJgERVQQUJrDSmEIg70HVcKwOtDdyBAJHL/BTsTWDwCRUYn/0Bxl3ctXHoQggh+p10LxeimYzRuTiyZnVYRmmFqlLor+Kpuv5bGJGHvgyMEEL0BWUqUm86tuNCc5LJvHl2v8QTbkOSonjk8mOJdNRx4uAFmCo0Lrs5ZWlcy8sgaDd15QbADv39autJhpy5BuO8Kn7e8DRnbl/M7d/7Kd+84K94VQR2hwOU2qeBauJYqmbxgTqHJWoWAdV6rLaFA0fQQgG1eyPwFrugfAcUb+zReYUQQvQ9SbqFaGbk5ZdRHxXXaTkDcPv8vF9cjNfr7fvAhBCih1xZMaT/ajqR09IOfOsbEHnyYAbfezyZZ48Ja3z97ZwJGQyL38WElHVY2uDglm4AoyaA+8siHJuqUGU+VLmPEZXr+As/5Ezjf0Bjo/Lnsfzwp3ewdOyx+FQEj3ArFiZWJ7dXflxsZQRbGUkDoa7smxhNOUmdjDe38eBl5rqVAFgK9uyObqy0ttuvhRBCiP4h3cuFaCby2GOJKP8Zljse7atst73CVoqamBgA3n33XS65RMbSCSEGLkeMm8SLR5J48chwhxJ2hqHIiq7kvZ1z6ajtQQU1jj11OPbUEeGo51cn3o2TYNN+swTeGX8GRUkp2EaonrVqEr/Wf+Ys/ssMvsKND6V1U6/vIA5e4zI+4iy8KtRLyq0bOIUPMQhSqZI6Dl4ZuCv9TF+/KhSDhgK/izHKgIScnr4kQggh+pi0dAtxkCH/+j8sf1WHZQyt2TFsKACbNm0iGAx2WF4IIcTA8bX8QnZV59BWK3dbJqeuxWG0/JxXQcW7s0/GPmgcdb7K5gn1A25Uz7NCH1hKzEbxED/lbS5sSrgBfMrD+5zLYmZ3vm4Y8Osn/47ZWC5owPY4k9KEWRCd2qVrEUII0f8k6RbiIKUPPIipNV5PRKubKQiNu9uRm0tZUqhFIhgMUldX189RCiGE6KnU5QVYuuud/aKdtdi65S2Tlawpj43vcPKyWhWD3XirtYKprFTTQktTHkQrg1KVRlfWK0uorW76u8OGzycoXtx+CaVdnKVeCCFE/5OkW4hm/Lt2UfH++7x33IkUxSewY+hQgqbZtL/B7WbNhAksnT6txY2Wy+UKR7hCCCG6SVsWVvoeVOerajcpa0jENFqW1y6Ir+24V9QSeyamCh33KadhaKvdskrbbS5h1pxhWfzzgst5+6STqYl0s2IYbMl2sHFGIX98eQUBX/v1CyGECB8Z0y1EMzWffMIn02Zx9lfzsIGa2BhKk5MIOF3kZw4mLzsbbbS8KcrJySEiIiI8AQshhOiWhrVr8Y8O4nKCr0h3aZmtVSXjqA9EEOHwtih+xobP+M9xF2EbZpvHrTEm4dsbhTutjmIzHVu1XQ5Crd1NC3S3WUCTZezi4gn/Im1iEVWXKsp8cQzyj+Vb294gq+Exnnj5Xr5/9ZWdXo8QQoj+JS3dQjSzY1ces1cvRxN6c8RW15BeVMzgggKOW7SYY1eubDXm7sQTTwxLrEIIIbrPqq5Gm5raxDhi/HVdGkcdtJ38Z9NFKNWy+Gm8R1JlBabVuoXZsG2mblhD1gMBXNshhupQa3Z7tE007XQR15o0Cvk1vyNFFYXqV5rRnmp+EruA+4+9iC0R2Vy586es3bq20+sRQgjRvyTpFqKZVeVVRPkamqbW2f+n0XiXNXLrNs59678ELI3T6eTiiy8mNzc3LLEKIYToPmdWFs49Bi5nkEnFW5lYshXVRuKtGsdXj07YxE+nPMLlo9/ApmVDtHNyNfc/dScTtrZcI9u0gpy58HN+886fqT03CEE4Qc9DdzBxmwJy2NHmvuFs4Q/8lEi8LW7czMYu8tcYT3H9pLuYPeN5nlj1CboLDxKEEEL0H+leLkQzETXVnZaJamhgaHwiV970HTweTz9EJYQQore4c3NJrD2WaTHL+CLzWL635k1uXvUK22Iz2JuaxNYpmXgNJ7GR5czKWEpu3J6mY4tI5WlupJoEoqmhxJOG/qaTO//5AFHeejbmDMe0gkzevI6aS4LU/LwBLMCEWfoL3uV8inVaq27mhrZIoJwi0tuM+bv8FTcNbe5ThB4QnMQnvOm8mJeTTyJlez6/GZ7VWy+ZEEcUX32ANZ/ls2H+Xuqr/HiinYyeNYiJp2QRGStz9Ii+IUm3EM2kBPxoOl9EZmpujiTcQghxmMr8+Z3c8PB3WDJ0Ao9OvIAFJeM5Z+dCZs2ez6xjGmhr6LWFYhnTWcekljOQJ8L3fnE3Y3ZuY/Lm9YBm3/mRnJLyfmh/Y10e5ePX/Ia/cgubGdvU1Vwrgxx2MI2veEld0+q8hrYYxL5OrymbXU3N8H/PK+OqjFRyI93deVmEOOLVV/t5+ufzW21b+eFuNn21j4t/NoXYZJmnR/Q+SbqFaGbM1EnUrlzWabmRI4b2QzRCCCH6gmf0aE66+Ql+8e9n+LNnFqtThrM7M5n7xy3HaOep63xO4j/q+tY7Gic/K8hNZuPQCzB1kL/y7TbrSKCS3/JbdushbGAcoBiuN7OVUbzAgYTb0BapFFKoBqNRWBhNXcnbolEEcDb9rrTNS+sWc9v0OV16PYQ4Gjx/x0IqC9vuMaJt8Nb4+ejpDVz8syn9HJk4GsiYbiGaSTpuZqet3NrhwJUrSbcQQhzOPCNH8r27/sBfMuO5wBPByLgiDNX2WOggJi9wdduTrjXOrmaiuUw/Rxa7iaPjpcSy9W7m8Cn7GMSD/ILn1fVNXc4NbeEkQFpj67ZWBiuZgoWBHxfLmM5nnMoaJjatAW5is5zpTfVrZfDmvkpqFv6pJy+NEEecV/64pN2Eez9tQ+H2KsoKavspKnE0kZZuIZqJnDkTZ1YW/vz8NifW0UqReNmlmNFRYYhOCCFEb7vwxtnM/2gDl29uv0vpesZTo+Lar0QpKkhkhN6CC3+XzhuFlzN4jxpiWaZnYCsTQ1tMYTEOAnzFgVbqt7iIMpJ5hSvwqgPfPwm6nOv4J5nksZypYNtgGKBt8mIyeGvVC5xTfiUJ5zzXpaXRhDgSbVmRR/HOrifSxburSRoc3YcRiaORJN1CNKMMg8xHHmb31ddge73QuAyMBpRSeEaPJuWWW8IbpBBCiF717VlDucDl5T4rimjqWu2vpoOE+6Bys/iSAA6cBNstp1RojPhgCvgxf6GeSGp0DAZB/sIvyVM5LcrvUCPZwchW9VQQz0P8nBiqsLUZSrgBNGSoPdw37AZOXPF93Mb3iTz7sS5dgxBHkr9/99NuH2OY0hFY9D75VyXEQTxjxjD0rTdJuPIbGHFxYJq4MjNJ/elPyXn+OcxoefophBBHklFRHv47dSyLnJfQVgfzZEq6VE8SJcRRzWomYbVzi2VhUEwKexkMhLquu2kglSIe4WfkMaTrgSsDjaJaJaCNZuczDPLIpdSZzLQZL3NLzTDqyvZi+y1ZTkwcNXqScCsDMkcn9EE04min9GH+6VtdXU1cXBxVVVXExsaGOxwhhBBCHKbK/H4eWHALp+j/YWGgtI0iNLToZh6ljOSWM5c3UtomjX3cz49QwFKmMdZeR4ThDe1vLGdh0ICHu7mLPQzhGNYxhnUoYAVT2aFG9Ml1Ka2ZVbaXh5bH4kj0EDM7g6iZGShTupyLI4/Wmke/91mPjh193CBOvXZML0ckjlTdyUOle7kQHdDaJhiswTDcmOahLxFWW76JfaufwQrUEztoCuljv4FhyNtQCCEGgiSXi5KUW/l58emcyGckqRKGsZUkXcb16gnu53aUtlsk3qHEXHM9TzQl11P0Mgw0tlYYSqOBeiL5gpN5n3MpVakAbLDHwk4XG4a27jrem7RSLEgezKr4eiaVN1D59g4atleRdNUYVHvTtQtxGLItm8du+rzHx8+5om/fi+LoJS3dQrTBsurZvfsJ8gueIxAoBxRJiXPIyfk+8fFTu11fMFDLyncupTpuC9iEBombYNQ5GDP0HtLHXtzblyCEEKIH/rB9L3/fU9y0QFeyLuYufk4sNaxhIs9xHQUqu6l8lt7F1TzNWNa1W6eFwRJm8jd1a4vtWYUFPHX3L3j2rAt5/swL0GbrBcINHcRWvfNwNtVr8/LCOqIbh5snXDSCqOnpvVK3EOGmteaJm+cRaGh/eb2OXHDreAaPSOnlqMSRTFq6hTgEllXP8hXfoKZmPTTddmnKyudTVv4l48Y9TFrq2V2uT2vNsrfOpi6+AIANxjF8xlwCOBkXsYZg/m04XPEkjzi19y9GCCFEt1yUlsBf9xQ3/V6qUvml/gt32TczhvX80biZPfYQKkkgQVWQxe5QC7eG9tacNLGZyUJe0ldRotKatjuDQbZm5/LOCXNDCXfjmt/7KW3zI/7CP/VN1BMZGnB6sIOO6UixR/GzYyN4dJkXpaD2q72SdIsjxlsPrexxwn3sGRmScIs+JUm3EAfZteuxgxLu/SxAsWHDz0hKPAGHI6ZL9ZVt+YD8xFqe50csZha2cjbtW2rO4t/GDfxwxeP8QpJuIYQIuzHREcxNiuHjspqmbRUqibsa7qF2gcVPCl5kdsEqGk7eg3e6Dt1JNQCdjEDSKCayko85s2lbfmo6t/7oV/idjd8LByXP41jNNJbQQASPqx+1mZTvr7tLlGJpkoO1cQYTqmwCRfVdO06IAW7rsiIKNlf26Njr/jyLqJhDH0IoREck6RaiGdsOkl/wH1on3PtpbNtHYeFbZGZe1Wl9Wmt+sCWPz6OearclIoiTB1N+yPSCPVQ7Y/iotBq7roKJm5+j1lYkqCDnTDmbtGNO6/mFCSGE6LKfDElvkXQDFJOGWxfzkXMmcwtWEfGck/j/aLQLApk2ZbdYHdapUTgPWsPbNlwEHRrbaHum8zl8hoXBCczDqQO8wNWUktq0P4vdnMcb/J32l7JUdQFUg412G+hoJ4bWfJzuZEKVjwCa4uoGUmMl4RCHtxUf7O7RcTc9fkovRyJE2yTpFqKZQKCcYLCyk1Ka6pr2x+41d+uG3XwePa3jQkqB1ly9pZQg5dyy8188mXkxrw++CocdxFIGvynUXL/it9xxyc9weLrWwi6EEKJnjomOIMo0qLMOPIDVEQ60Q7EmeRjrE4cwuiIP07ZRDeDcZ4BlQesh2U1MbHaT22KboTXBdhJugCRKMRsfAs9kIdP5im16JDXEkEwJ2ezGh7vNY1WFD+emKozqQNM2O8ZJcISLcl3IFidsDyTx+CNf8up3Z5GbHNWVl0aIASfgsyjNq+32cdc/MLMPohGibbJOtxDN2Hag80JAScnHaN3xuKESf4D/FFd27cRKEUTx0x1P8mDONVQ7Qjc/QcOBVgaWMnkq4wJ+9+qfu1afEEKIHos0Da7NSIbmq3bbGjvehVaKO2Z+k7VJoQTaRmHUKSKWqdAopDZYGOxjEBsY12K77mAsdmZJgMR90dj6wK2agWYkm5nCMoYQatmrIq7Vsarch2tpKaq65XdaVl0JF6xbSs6eTXxhbmK35wtG2ku45fnFHb0cQgxoPZkT+vuPnUxkZGQfRCNE2yTpFqJRMFjLipU3dLFsBeXlCzos81phRWj8XZcpPkw+HoVuc7IcrQyezvgahcte6EadQojDRV1dHQsWLODdd99l/vz5VFVVhTuko9rPc9NJNENZtKoJ4P6yCKPUB0CNK5Lbjv8ePz7xR7w08hQ2JmQT86oDs5RWo5MsDHy4+Su3NPVs2v/dEO21UXbb3xP5yQ5K82djqPYf8GoUnzP3oI0a54ZK0C3ndRtmlDLXuZVkVde0zYHJCNtHbsUXLN9e2KXXRYiBxuVxkJDetQQ6Li2Cmx4/BdXFyQeF6C3SvVyIRnn5z9DQsK3L5bfveJykpBPa3b+rpLTLM8oCZHgLWRM7upNSinfWzOPGqVd0uV4hxMCmteb3v/99q+0ff/wx06dP58wzz8TooAuy6Bse0yDK4aTcb+FaVgp+u9V0ZZsTstmckM3/DbmE2IQgZ22Yx/jy5aQO3Y3b3UAAB7vIZQsjQ93A9z+IbfxuiPBrKmLa+Z5QiqeGzuQG/Smj1Iambub7WRiUk8QnnN7yuJoARl2wxSYXQY5z7gLg4GW5DQyisfn4jfeYfOv1koyIw9Kxc7P57LlNHZaZck42M88b3k8RCdGSJN1CNCoo+E+3ytfULALA9vnY+8orFH/2OVYwiGPiBCJOOw394bsw88xOatlPM9Sbx96IjpduMbRNuZIJb4Q4UpSXl/PII4+0u3/JkiU4nU5OO00mUgyHBm1i7qttM+GGUEtyMNVDcHQ85cDzaRcDFxOjq6gnCgsjVGp/C/dBCe2+BJNR5SVsTkhqrLDx4Upj2X3Jbu7Xt3MdTzCbL1ok3hsZy+P8kDrVcp4Po751H/ehZhkmut3nwAYGNbW7WP7BLqaemdt2ISEGsDGzB1G0s4oNC/Y1vd32U4bijG+NY9gkWRJMhI8k3UIAWtv4fN3vWlex7Avybvwx5dHRGFrj9vvxbtpExVv/ZUxOKqOzh7ElfSi20cHsOo2Lu06o2szChMnYqv2yQWWSVbcX27al5UuIw1wwGOww4d5vwYIFHH/88URERPRDVGI/n21TGQhilDR0WO7gRNbUAeqIbvFZHqVrmMJSvuCgmZKV5jtxd7BMT+N9dS7lJLeOQ3l4Qn+PF7mKY1iHicU2RlKoMtoOyNn6uyFWNWCjMJuNUbcBv8OJ07IwtY0Dg6c+Xs7Ek7Nxujv6zhJi4FFKcdJVo8mZmMLaz/MpzavB4TIZPiWVcScOJjZJPj9FeEnSLQSglIFSDrQOdl54Pw0fPbOC1Nh40ooLsZXC0Dp0S1NVRXxVFdfVvsZtP7itzRaO/VKdDsoCFh+knsCZpfP5IGk2ltHGW1PbRFkNTPt0GVtHv8SoudLFXIjDlW3b3H333V0uv23bNsaPH9+HEYmDfVRaTUCDs50x1/upGj/T9FecwbsMYxs2BquYzP/0+WxTI5mol/Nj7qeOqFZJ9zC2kWYUcg5vcxbv8IE+m+e4vsX3xQS9khFs4jUu5yvVxpCmg75f7AQX2m2A70DrfAAzNF8I0OBwsjJ7JBsH5eB3OFHaJrdkH5P3bOGTBgd/eW0dt359PE5THuyKw4tSitwJyeROaP3wSohwk09UIRpFRnajS13jPVjGyEeJS92LRmM09mVSjT9un4+xu7bys2cew2kFUbaNGQxiWqHEPj4Q4PXxuaw5fjyPjMlmR1Q2FxZ+SKxVh2m3TP6VtkEZ3LflAQIbXeQ/80ovXLEQIlzuvPPObpVvaOi4tVX0vo11XgCc0c4OSmmuzH6Jn3A/I9mMiwAefExjMb/jl5ynX+cW/oiTAIlUMEpvQOkD3b/jqGj6u4GmmDTMZlOgK23xLR7lfN5gNl+GyjU+HN5fTyoH9dIyFIERcSgOzL2+20rAUOB1unht8kmsyRyG3xG6Lq0MdiYP4vXJJ+JNiOLxNflMuPsjvv3lJp4uKKUq0I2H0UIIIdokLd1CNEpJOYO6uq1dK9zYfOAbbeEbCxELFPH/caD0gdYGQ2ui6+o5eeViZq9dwUczTmBPWgYRvgZOXLGIzPFxzDj9eQAuTk8ky2XyaMEZ3L/pj7wy6Cw+SJqNbhzfN8hXwtmlXzCyfhdJX2ugYuGeXr12IUT/2bq1i58zzSQnS8tNf1tUXsMtGxs4eY/N19FYgDpoZPfk1DXMzQ4lw83HW5vYaODrPB9aUqwx/b2UF/gDv4fGB6kVJLaobyYLOIu3MbXFdkaynWEkUg7A93iYE/UnfMZcinQ6MVQzW3/BdBZxm36wRXdze3AkAa1xbKoCS1Omo8iz4tg6cii17oim75b9tGGgtcaemIgxr5B6b5AP/redd46r4Y5YF38cmcnlg5J666UVQoijjiTdQjTKzrqBXbseB7rxVL9x2Jt3tsa1yyZqQetxcB6fjwifj0s+/V/TNo0m4E5tUW56YhzZtQb2J2s5dexXVEQlcuew7/BOykns9aTxZOalPJl5KeNrtvBAwh+pKS8mJjH14NMJIQa4N954o9vHDBkypA8iER05a20tE4p2cefIf+CqyaZh3yWERkKHPuc1cGr2PCxtYLaxrNf+lubm46jHsIGb+SP/5AfUEsNuctjHINLYhwGMYnNT2UQWMZ1FjbN+hH7Gso6xrGt1rhSKKKTlGG8rMwprUCRGiRcCmg9cU7FSotDtzQeiFLhN7GQPZkkDWoOxqxbfuAR+simPJKeD05JbrwkuhBCic9K9XIhGTmccY8b8oe2dnS23bUPtXAvdRsHm7SLN93piYluVTb3uRsq3RLOlOIc/5n6TN1PnEjBcLcpsiBrGRZMfZs3T13USlBBioCkrK6O+vr5bx5imKRMn9jPbG2T8jj18N+dP7DTKccavIHLI4zhiNoAKADZE+8hN2NNmwr2fAmwU8ziZ+/gNv+aPLGYWP+Av/FDfz4W8wgqmtDszevM/O1JPVNs7TIWdHomdFUUwLab9hLvpwjU6JtQeozSY++pBawzg/l2yjrcQQvSUtHQL0UzGoEtwOZPYueuvVFevBsC5FaxksONp/+7HACsNar5m4Vlj4NypWnVDhOY3UYqUr9/QuhqPB8cFX6M+/jNeHHR20/bcujymV6+lyhGN2/YTxOSV9OOYGQxgOjoabyiEGEhqa2u7fcwVV8ikif2tYUs592U8gV9ZqMak2ozcQ0RkaEiQBrSKwKLjWb41sJnR/FP9AKVttDLYrXNYoE7kJP0xZ/EmsdR1Wkd7Xz0aKCOZHfTS2sMKsA48HlZ26CS2gtU1XvY2+MnwuNo9XAghRNsk6RbiIMnJJ5OcfDI+Xwm1tRvZuuEW9Noq6mfbdHJ/Re1cm9ozbJw7FQn/NDGrWiffGmhwQsK5F7ZZx4hf/4Y/vGoT4a0jur6euQ2LeDHjHPZEZqAJjRUPGg4mV61n2UePMuOsH/fOhQsh+lxMTEznhZqZOnUqw4f3UkIluqyspohtnj3trmutAGwva8sHMSVpNw5ar429v+QSjgNoGkdtq9Ct1+ecShLFXMRrHcbSUcKtgJe4qtUY7R5TCqO4oal+3AYYByKotdpv1RdCCNE+6a8mRDvc7hSSkuYw9cbPcea5O024gaYygWxN2U+CVJ8faFVEAZ4ABPLz26yi+KGHufBP7/LaL77PTa89R9rnhXz3lX+TXFaGrUyCjcuJrY4ZxZ+80RD09/AKhRD9LTExkaysrC6XP/fcc/swGtGez7z/7UK/boNPSwZjaLvNEUgWBnVE8SUntVtDCWldjimIiY0i2DhK3IebJ/kuC9taRqwntEZ5a3DYBaBCc5tYmQe++NyGYrBbelYJIURPSEu3EG2wbR+FhW+zc9dfCQTKiRgfgVHhxY6ly8m3lQZ1Z0LUVxpHScu7NwXs+NUvGPH3f2A2tnzZfj/bzz6HQH4+r596Nv869xK8noimY1Iqyrjqvdd56bTzCDidWIaDBQlTePfZ73LODf/XexcvhOhTZ5xxBv/3f/+HbXfcavjtb3+7nyISB9vMpi6U0uyuTedxfsB3+DsQmrXcRqHQ1BPJffwWr2pnvLVS1OrWc3u0pYAM7uQepvMVsVRTSjJLmYFPu0Pd1g9lzH/jOt/OhnXElT6EGurHth34646jbvD5GMEKlCOBS9ISiHJ05QtQCCHEwSTpFuIgwWANCxeeTCB4YP3U2gn1uDZBwAU6ggNTyXZGg3eyTcwHrW9UAstWsnna9FA10ZEow4GurubF087lnxdd2ap8aVwCz595Ad9/5VkevfQatGFg2kFWmYmc09OLFUL0u8zMTK677jreeecdiouLW+13Op1ceeWVZGRktHG06A/1Kh5tucHwo1T7M2nmuKL5Sh3PRsZyMp8wjK1YmKxhEvM5AW97E5w1WssE6okgEm+H5d7gMmpVDJ9yessdqvN5PjulFMqqxVO3AKVDPacMI4g75kucZeuoi7scFT2RndVe7t/h5LvZqURL8i2EEN0iSbcQB1m85NwWCfd+/tGADTVFMcTG1RxIvjuhPa1viTRg2M0Or60nkKIpn+PmX+de2nY9hoGybT6cOYepm9ay9JiJGGiCXWp6F0IMJNnZ2Xzve9+jsLCQwsJCSktLiYqKIjU1laFDh8ps5WGktWalcRxR5mfUabW/IfigMhCsnEpWjo+NaMpJ5jV1eWgHgFJk6x3sUUM7PFcAF69xOVfzdLtlVjKJrzj+UC+rQ9qIoib5u1Cq8dQvBELfT6Zdgcu3mpqYWSysg4V1RfxldxGXpScwOtLDf0uqqLUsRkd5uHZwMrPjo1HtDYQXQoijmCTdQjRTX19AQ0PbY60BMCAmvYb8mhQGq5Iu1anqwTvFAlvh2qowa1WrhvKG4RbOfQYr/DPxO9sfM6cNg61DhnLLc/9k6TETCRhOjqnd3rWLE0IMKEopBg0axKBBg8IdimhGKUW5azznJifzVlENSmk0AULT4ISSartqMlPTs3gv7sKDD276q0Zh6iA2Cq3aeDjamKC/zzk4CHAJL+Ig2LTbxuBDzuI5dcOB8h0ltJ3t74hSoDW1Cd/AXb8Y1WxiOHf9Imr0N0G5Gq8LXips+WB6h9fH2yVVXJORxB9HZkriLYQQB5GkW4hmtmy9q/NCCnLi0vHZJc0ndW2bDTUXNGvStiBikSLuZRMjEGrJCibauLcboKEyJhbDtrHNjluv3X4/hraJC9YwvXpt5zELIYToVIk/wG2b86kIWDwdcT8J2QVU+etwla/GWVsMQR/KhqtG1/N/ztPbr0hr8shpSmabJ8TK1mgFqZUWxQmh27B3uJBP9elMYxFxVFJBIkuZSYOKaP8cBzvURFcptBlHXdxFOAIFOPw7cQT3obBxNmwmEDG+3UP3rzL27N4yxkZHcO3g5EOLRQghjjCSdAvRjNe7o0vlPEWRHHv25yxZdhLQTi/z/eu5NN9pgvc4TcPEIPF3Q0S1C6zGGzEUKRXlnSbcAErbmNriHxvuoCh5PEO6FLUIl7yaPF7a9BKf539O0A5ybOqxXDH6CiamTGxRztY2Rm8t/SPEUU5rjW17UcqFYXR+u/Nkfgm/3lpwYINyUG5kQ4QimDEG0BgEiA7s5EUznvr2JkiDgxJgzYj8EooTkvG5FAm1NlO3NTB2t59nT4llX4KJNhRO/MzjZGjvM6CfWo+9cec3/d3ZsIGYsn+gdEOXjlXAY3nFXJORJK3dQgjRjCTdQjQTEZFDfd0O6GDiHLQiumA6sbFZHD/rCxYuOh/brmw78W7r3skAHQ2VvwT3bTaOqgOFZq9eRkSDF6/b0+YNlmFZjNuxhfqcKN5f8R3G1m1n+3GPdfs6Re8qbyhnbcla8mvz2Vi2kQ3lG9hbuxe/FZqUKGAHGuczDv272lu7l3d3vMvk1MmcknUKL21+ibzavKb60qPSuWj4RVw++nISPAlhuSYhDlc7yjfx+OJb2Fy5C4fSmGhOScni65P/SELC5DaPeb+ksmXCvd/+z2EVeoJq46baNZoUvbdrweggyqphdF4Dl35VhXnQV8s3vqjh1VnRlKfWcR5v8hzXtVmN0hYa1X5C3kcC7lFUpv0GdOvlL9uigV1eP0X+IOmyvJgQQjRRWutDnvgynKqrq4mLi6OqqorY2K4tvSFEe/z+ala8fgN1yatDM50dTIOzPo30dd8k+tpYMjJCk55t2/cFi1ZfT3rjPUZXH/Cn/dCJabUs/N5xJ/Hna77TanyeYVs4LIuHH7mD8ycvwDRgYdwEZt30Abgie3K54hDV+mu5d8m9vLP9HWw6Xv6pp6455hpunXqrtIAL0QUL8j7lnWXf48TYIM7Gj0+tocKC+TUmt82+n0Hp57c4RmvNtIXryfcH26ixHV0cPx1tFdHgr2BSfg5nrKhvd+7NikFlzDjhl/ydH7NIHR9KshvHgRvawoUPC4OA8nQ9xt6i7W4n+ytnHcMgt6uPAhJCiIGhO3mo3MUJ0YzLFUvMvpk4vEltr8OiIBBZROG4/2Pjptvw+0sBeGz9a/y5MJJ9AYVunO22Uxp0G/dPZ3/1Ob9+6q+kVJS12D48bxcPPnYH5xy7kIKoZBa5RjFr7EmScIeJz/Jx44c38s6Ovku4AZ7d8Cy/X/j7PqtfiCNFfaCexau/y9y4YItufEpBggnnxlv8Z+mtWFbLrtKb6xu6l3Dvr7QjWpOgy7CMaIIRo9kwxIV2qHaX94ovisWyndzEQ/xI388oNhKta0jSJZzNf/kjN4dauvtKR19a3Uy4B7udpLmklVsIIZqT7uVCNJNf8BqlI18i6ClvfzkwBYGoQgD27n2V+ORL+Dj/U2wFDxS5+c2gBmK7sIqX9oNtm+jGWWJVsxOeumwhJy//ig05w6iKjSHCVUwwehdjI4PkV0STaZaSPfQYOPlXh3rJoofe2/Ee68vW98u5Xt/2OuOSx5EWlcaU1ClEuTpe+1eIo9E76x9nQkTj5+lBn99KARpGeGz25P0fuTnfb9pXGbDoC7lsY4WaAUC9y2D7ackMe78EG5q6me9PdXclR7BHncrpvMcMvmIGX7WoywYSqaBYp/XN2O5erPO4+GieyC8hzmFyZnIc8U651RRCCPkkFKJRUdF7bN78c+jGZLGlZZ9TttaN3Xi/EsTg9/s83D+4odN7mLh3TBwNukWy3ZzSNuN2bqN+uM3ea0/lvB1V4K2AhBEw9QYYfwmY0poQLq9uebVfz3fnojub/h5hRnDD+Bu4asxVRLui+zUOIQYqu/SZDhtllYJIA/KL/tci6c7y9E036FJSmv6ugRdjLf793TG88fY2RhcEMDVURhksHeFh2XA3HnUZp/I+JnaLbwULA4XGTRcmM2u2Tnif05o4KgngpJ4IUCambxuv7k3mVTMeACd53DQkjZ/npmO0tdh53mIoWgfOSBh+GkSntD6PEEIcASTpFgKwrAbWrb+528fV1W0j8nMHTDiwzcZgQQ2cENfBgX6InG9idNClT6EIxsLY/yxmSmx8t2MTfWtHVddmuu8LXsvL31f9nf/t/B/PnvUsce6O/rEJcXSIxtvpUGulIOgrbbFtsMdFustBYXe7mHdijxra4ncTmBdp8cWceF4PBDC0wjYPBFtHDHv0EHLsnQRw4TJCEzFuZCxvcgn5ZPVqfIcqijoe5UYAttmZfFATy+bqPLQZR2X677HNeALAQ7uL8FsWv4ipocBbjzM+i0zvXtTr34bSzYS6lWkwTJh8HZx5HzhkPLgQ4sgiY7qFAEpKPgC6f8MVDFZQffoi5tQGUPaBBPrjOk+7Q+Q0oAoNDF/n9adffRMeSbgHnE/3fEptoDbcYbCzaid/WvqncIchxIDgNLuWqMXHjGm17a4Rg3s3mDYyfw2U+oPcmJ0CqmXCvd/m3ZMYdLuTrJ/AhteP5778O7lP/5at1mhGBLbgxNfJ+GvVb63c8ZQ3/TpU5XNT3AbmRDdgWJVEVr7covijeSWMWVvOrF0mX1+4GO+TZ2CXbQXARhNwKGxtwfKn4c3v9X38h7uvHoPfJ8IdcQd+7hkMpdvCHZkQoh2SdAsB1NXv7PnBDs2FowOMTJpIVtx4MjyxVFuKJXXmgXujxj8tDUuZzt/VLZ3XaxgYEWGYqVZ06M1tb/Ljz34c7jAA0Gje2/kelQ2V4Q5FiLDLGnRpV+Y3Y/To+1ptPy81gdOT+n4FlAy3ixszUxgV5WmVPCdXlHH5wx9j1CrMIMz9eAmP3HM3n9x0Jde89ypbXGMI4O639bo7pBRePFiNt5FGY0jnx2tinBG465aibG+LQyxlMrJuJ18r/pRqRyQBh2bzsCi+mJXEF7OS+Hx2EutGRVK74w3Yt6a/r+jw8co34YPbQB80F4G/Fv42BfKWhScuIUSHpHu5EEBFxaKeH6xCneO+G72oaRxeuR3Dx5WKSKOB8ZE2KLi95i/kx2RhKxNzcJDK6Bjia2var9e2iZo1q+dxiV43P28+v1nwm3CH0ULQDrKtchtT06eGOxQhwmrMqF+zd++z0EEXc6cziYiI1Db3/WtcDqcu28zGui50Q+oBG7h8UCLRDpO3Jo/gpCWbWnRpv2Deh3j8ftRBDdkbckfwf+dfHvqlpwl3F5c4645ylcpKPZWpLKGEFN7iYuarEwkMcoWWGbNbjkH3mR62uzw8EWOwUmdwXIMm2W/jrorkc+PrFJpppDhKOGPo/zh5yd3Efe3lds58FGuohvWdzCfy1Fy4o7JfwhFCdJ0k3UIA1dVbD7mO5rczCaqGyxJBve8krSqH6msVUboWNAxhB2OM9aw+JZc5/13T9jRqpknEpEl4jjnmkOMSvePlzS9z16K7wh1Gm3S7CxEJcfRQymTypBdYufIKoHWeqZSb2bM+b/f4u3bs67OEG0LfESOjQr2X5lfUthpDfsqyrzDt1ssP/uPCK3rh5ApDa+xeTLyVtviCk8gkj99xL/VEYjeuLY4ywGg2K6lSuGvnM6nwb9xbUsoYfwANPDX4Yu6Ku5ZK54F5Kd7gHKZXreSFzZ8QNerUXov3iPDk3C4U0rBjAQyd3efhCCG6TpJuIQCtK3u1vv33NdbpFtkTHsNyVXH+sw/jHvcCo9gUmpv2dPAWGkQuMQkaBg7bRiuF0hpXbi6ZDz3YqzGJnnt+w/Pct7R1l9SB4uHlD/P0mU/jlNnsxVEuMWE6J85Zzeo136OycjFgo5SLzMFXMnz4bRhG2+s5bqtv4LG8kj6NLbpxDLfftvnZ5rxW+z2+li3Dq4eP5qmvfZ21w0cf+sm1xmNBfS/e9WllUqkT+UfwJ9Sa0Qf6mO+nVNOTD4d/F6OL/s6z+wqJbJz/5JHsq7g391ttxrok9lhuWLeYlyTpbqlse9fKzf+zJN1CDDCSdIujnu5oUppDpJTNKysfZ4j6H8em+QjoUF90Aw0GVF5rUXscRM6DyDVgNN6M1EeAb9cuHMnJfRab6JqS+pIBnXADrC5dzZNrn+R7x8oEREI4HNFMmfzvbh3z4r5yTBWad6MvmAouSEsE4K3iSiqCrdcG3zUoi9htmzC1zVfjJvHr795KOytKdpsCxlQFWZ7Uiw/mtGa7HgbOTtZpA5z1y/lmVTWRtsYBfJwwg/tyvtn+MVozL3EmO5a8ytDpl/RezEcLQx7ACjHQyERq4qhXU7O+T+tPNt+H8gbsZI2pDuo6qCA4yqL6Rj/1Jx24CVPrtrP7mmuo+fzzPo1NdG6gjeFuz2OrH2NNiUw+JERP5Df4O5wU/JBojaHh25kp1AYt7tq+t81ib514Gqa2CRomf7rmO2ilsNtpme8Ow9Yk+jSnlFYecl0tKAVG124jTauW82rrcADvJs3iqvH3oTt6otCYeD+xfXPvxHqkGDy5a+VOv6dv4xBCdJsk3eKo5ztozdb2tB5p1zmlIMrw4k3qfBby+hkHzmBqjbY1+bfdig4EenBm0RuCdpAFexeEO4wu0Whu//L2Pu25IcSRKtHpaNU7utfYkLmzjuGRbv6RV0JJO+uBfzFpOp9MOY6vxk+iMiYO3cWEtl2NnwW2gjKPwZ9HpYS2heEzwmX7iNCaeuXiO2N+Q2gG0k5ecKVYHTFEPtOau/btzssYDkgd0fexCCG6RZJucdTz+7s2jk8B85iDBiwMLIwu3btowGM2dNxN0AA7Wh+8CSrrqZk3r0vxid734a4Pwx1Ct+yp2cOyIlkuRojuuiQtgWBf5XYG7MyO4Jfr9/B0QWm70x5qw+CeG37Ay6eeg2G17n7eJfuT6uazyLWcTa5n9R4KrfGj2eNKYc7UpwiakV2LQ2v2ulJYUV3f9zEeLpweOPG2jsvcuqV/YhFCdIsk3ULQtZsbBczhC3w4qSCefAZTwKBOE29FF4blWeAoaV3KNhT126TLcLi8uqWTpVkGoNUlq8MdghCHnUmxkZyWGAM62PstwUqBoXi6pILSQNut3PvZhsG6EaOxe9rKrdSBn47K9DNf5DguOvZh8iMyu/b6aos4Xz6FnlT2+aS3Vwsn3w7f/BhcMS23J4+CX5VCVFJ44hJCdEgmUhNHvaio4V0uqwA3ATyUk0x5r01ygwmR81vfZClb06CKe+kkorv21OwJdwjdtqFsQ7hDEOKwY9s2H5VVguqj26LuJrrhaJHuC1oDNjHl/6Y04TJQg7v4UMOGwFbwZLG0qpZzU+P7ONDDTNY0+GV+uKMQQnSDJN3iqBcXNwUw6U6Ld6+ywbVZEbGijZYNQ8PMrN4+oziC1fhqwh2CEIedIZ8tA9PdK3XF1VRz7vxPOHXpQtz+Bv4362TenX0yFbHxR04y3VVKgTbwRR9PdPnTNLjGgiut88OCpdR4xgDwj/xSLGBtjRdTKU5KjOGKQYmkuGSGbiHE4UOSbnHUU0pxzJi/sGHjT/r/5BqiPjGIfdtE2eqgXZq6E2w8sTKJTLhkx2ZTVF8U7jC6ZWP5xnCHIMRhZVVFNUHD1XIcdFs62w/k7M3jwQfvIqauFq/bw20/uI31w0aGxmg3W7e6Rw7l2DDze8YRUfMRTquYAJ0n3dqR3mLs+5P5ByY8XVRZy0O7ivj3hFxmJ8S0PlgIIQYgGdMtBDBo0HkYRsIh19Pd9Fgr2O4eBsHWN1K+0TbVl1hUVa045LhEz4xJGBPuELqtyl9Fla8q3GEIMSD4vEG2LClk3bx88jaWo+3Wn9JnrdrR+Tho6HS/Ydv84dE/E1Nfh6k1f7nyW2zMGQaAbZpdquNQzj9gKYXGicLGcqR0+Zj2rtcGvLbNVWt2UCzjvYUQhwlp6Rai0cknLeOTT4cdUh0KaMDFA9zG93mIOKo77Y7++XEzGP/KHhy2HcraFdScbVF7TmgJsfLy+QQCFTidh/5QQHSdZVu8v+v9cIfRI6tLVjMnc064wxAibLZX1PLBCysp31BJdCACpwq1MUQnujn1mjFkjk4E4NPSqm4/LG3P9PWryCgLrYZRlJDE55NndHkd6yOdob0A2GbvfI9poMHWPLevjFty0nulTiGE6EvybSBEM2OP+esh1+HHzXom8AHnojtIuTXgx4mzPohvThDvTJuar1kU3hNoSrhDLKpr1h9yXKJ7FuxdQLH38JzELmh3PEOyEEeqFaVVPHL7v7n+w/XcMyKaxy7I5B/nxbMrp5AgfuoqfLz9yGoKd4R6g/xsS+NkVL0wY/mEbZsINrZov3LKWZJw76c1hi8PjUGonbqXqgX+VyK9eoQQhwf5RhCimfT0s8nNvaXFtu7eikVTw7m8wTxOZgfDsNtJvG0M/s0NnBT3IVWXWlRebVF7ho2Oa112/fqfdjMKcaieWPNEuEPoscHRg8MdghD9bkV5NS888xX3nDaOLalugiZYpqIi0uTfM47hP3NjsY1atNYsems7AGX7l/DSh54MahRo+HD68bw295xDqsupINoM3aId9l0SlUI7k1DYKN273cGL/dK9XAhxeJCkW4iDDM29iZNO3ERc3HHAgdnKu5p8G8AVPM/t3IkPN2UktTjWwmAd43iVrzOHT0mkvNMu6IFACUuWXtq9CxE9VuOvYU3p4bk+uonJqMRR4Q5DiH73wcPv8e9JzSbp2j8muPHP3UmRvDvDgdZQsLmSuiofzqYyHHJr96pRx7Bz0GDuu/Z7h1SXAcxNimXbnAnkzZnQa93fw0ZrfFEnUJl8M9qM7dWq4xxmr9YnhBB95bB/gCpEXzBNJ1OnPAdAecUSVq26FrS/i0cr4uOnkxs/A4cjhdUVeayu2IayS8hgLwHcjGAL41iHacYREzOdysolHdaogeqaFWhtoZTcZPS1j3Z/hN0LLV/hYGFR5i0jKSIp3KEI0W+21Tfw4ZicTmcfX50xiIsTluGrGIa3JsAZybG8WlQJygy1du/PcHswadnS0eNZ9st70V2ZlK2DGG00H+cv5ixvDT/KHdLFxSwHsMbXIhA5uderLvL5WV5Vx5S4qF6vWwghepMk3UJ0IjFhOqecfGAZpoVfnY/X23qMdUrKhQzN/TYREVmYZkTT9uzs0J91ddvIL/gP1dVrMIxsUlLmMij9IkDzxZdTOoxBEboX3LrzKUYO/XYvXJXoSFFdESYm1mF6u1vuLZekWxxVdnn9bE9yd7ysllLYJlSP3oxn0TCi4l3cmTo4lHQDNE621uNWasPoeat0Y9wOGpjue43kuvdYXurhR6Xfg4hpPa21d/TGUmX7H2IqA7QVesjRC6otzYUrt/Hm5OFMjpXEWxwGnj4P8paA0wOXPgvDTwx3RKKfSNItRDfNOu6/PTouKmo4o0b+tsfnVcAHBWsYObTHVYguSopIwu7FCX/6W2JEYrhDEKJfJTjM0Du2C8lhvRtGT0wmItpFBPDgqCxu3px3oEAPEkyXAn8PM27T9mErJxpFUEWw0HMVHvdFXKX/yZc1i9gc7qT7kNcXDwLqQKLd1KsgCIbrkELTQFBrfr9tL29NHnFIdQnRp+7NBV/5gd99DfDc+aG/314A7ujwxCX6jYzpFmKA6Ox+TQPrA/H47cM3GTxcnDbkNEzj8OzGr1DSyi2OOpNiI4lr6MKs/VqTWQ4zv3ZgecgrMpJ4Z/Jwhnl6ngD2NOFGayzD3WqliwYieNL4CTNjzF6ffKw/KauWFgl30w4DlNm4/9DYwOKqOvZ4fYdclxB94q7BLRPug90rk58eDSTpFqIXlP9vOwX3LGLfg8toqPJ261itNWXR53ep7Nd4jZ2Vu3sSouiGBE8C355weHbjnztkbrhDEKLfGUpxRl1Np13DE+q9zD3zRhIHHeiK7LVs7tlRyPYGf+ubol5YSqxLDm5Fbmxdfltdxul8gAr3HBM9aeW2vWgzuv2u5MpEGxFt7+uBQt/h+3BCHOG68nDpmYv6Pg4RVpJ0C3EIyl7ZRP5tX1I/by+6OoBV5KX03mXk3/YlltX5eODVNfWcunQzP6q7lle5vMOyCjAJ8srKv/Hc0tXUBw/P8caHi+9O+C7Xjb0u3GF0i9Nw8uc5fw53GEKExQOXn0JmZeNDz+bJcuPfDcvm9vhFZA4d3eK4P+zYy6LK0E1xq9T2EIcyd6qjZFYpylUyk1nKbL4AwNBBjP56EHCIHIH8zpdiUyYqWH3oJ9OaP6/fRq23ew+9hehz9w7rvAzAzk/6Ng4RdpJ0C9FDpW9uwbu8pN39+361sMPjN9Z6uWDFNjbVNQDwJpdQS8cTwZjYDFKr+WmtZsJHS3h3QceznoueU0pxy5RbiHHFhDuULnvoxIcO227xQvSGZRfNYnRDPaatWyTe0Q1eHoxdw9Wzbz5QuKGOwFNn8Kv/HMueeSex/cvTeWDTfRhW8xbTvs66O1dHDN/jr9yrb+ZM3mGMXhfukLpE2Y1dyzth2DW9cDLFlz7NWW98yM//8wrlPulqLgYIX2m4IxADhCTdQvRQw6KiTsuUvryp3X1/2lmIz242XZdS+PB0WqdJaNxincvNt70Gi75a2pVwRQ8opfjhsT8MdxhdkhGVwfFZx4c7DCHC7vOzZlEwdzKfjUvh8fQavhwNW8+cztenX4fa37JctAHuy8CZtwiPDuBAE2n7+EbR/9i54EwS/RXhvYhmEikDIJs9XMm/+aG6v/+6vR8CZXfe6qysauze6mKuFFvTs/nEFcsPn3yW94sHzv9DIYSQpFuIHqjZUNylcg0r2m4JrwoE+aC0qlVXxi2MwurgbWlhsIljANCGgVaKBzduQh8GN2CHqyvGXME3Rn8j3GF0SKG494R7MZR8pAux35jUTC4YcwIjMiahDh5X/PiBB1TqoD9dOsi8pdf2S4wd0ppUvY8ctrOEmfyDm/g7P+ZpDo/5JgKeCbjqF3fYxdxdvxTt6MXVFpSiIDGVZTmj+eX85ayqru+9uoXoiZyuzrMi399HOvk/LEQP1H1ecEjHlwesNhek+oBzMDtYqsrA5mPObPrdNky+zDmGrctlHG9fun3G7USYvTfhT2/LjctlctrkcIchxOFhzauhtaLboYDkYBUja3f2X0xtxqG5gNf4OY/wsPoZ85nDImazmFlhjaurtBmNGSzD2bC+cYPVuFRY6LX31HxIwDWk2QG99PBYKaoiovEbBg/sKuydOoXoqete61q5O6RnxpFOkm7RNXWl8PHv4e1boGRbuKMJOxXhPKTjk1yONke6bVWjeYGrAFq0eFsYaOBpvk2+ym5xjK1MtlQ/Q0nJx4cUk+jYI6c8Eu4Q2vX1UV8PdwhCHD6+vL/TIgr4Qd5/+j6WdkTpWm7mPt7gUkpJAcBWDmxlhiZf6+ma2f3MG3s2ZiCf2OL78dR9gdO7HE/t58SUPIzlzMZyD29W2kZZvTC+u1FpXCIfllVTb3Vv5veKQJBlVXWsq6mnwOvjhYJSXtxbyqLKWmzpVSZ64tQ7O94/9LT+iUOElSPcAYgBrqEa7h8JwWZjs5Y/Ffrzwidh4qXhiSvMIkcmULW586eSKr7tdV9jHSZTYyNZWlkHRsubp3fUhWzXI0IT5rABDaxlIu9zLtvUqNZ16Uo8+Nm1+3FSUmS5qL4yM2Mm35/4fR5d/Wi4Q2nBZbq4dOTR+T4Uokfsrq384Ozr9bG1xtBgK5qS6Bi/zTj/Lr4f9TO+4gRKVFrfxtDXlKIh9iwaok/FsMqxHUkElJOGmFPbKGvirvuShuiT4VDHeTd7KPFecSWXDOq8C3upP8jNG3fzUXn7iX+MafDEuBxOSow9tPjE0eWEH8OwufDPNnqpXP02DJvT/zGJfjcgWrofffRRcnNz8Xg8TJkyhS+//DLcIQmAgA/uy2qZcDf3xo3wtxP6N6YBInJiSpfKpf9sarv77huZCRqwWz8536jG8aC6jW+rZ/mOepa/qVvbTLiVtpnL+yhsqqtXEgz2XiuBaG1O1sD6YlQoXjj7BZzmofW8EOKoMq7z9XA18GnqiX0ahsNQPJuSyg27/Chbk1tj8e68Ou5aHEdQO1nONFQH3eAPK4YL25kOqoPPKq1piD0b1csPOx7c3XkX84pAkBMXb+ww4QaosWwuX72D+RXyXSu6KWMs3FHV+kcS7qNG2JPul156iZ/85Cf86le/YuXKlZxwwgmcddZZ7NmzJ9yhiVdv7LxM6Zq+j2MAMqNdxJ6Z02GZmHNzMc32l28aGxPJNfGxqJoe3mBoTTwVnMPbTZts29+zukSXeAMDZw1Yj+nh1fNeZWTiyHCHIsTh5eTbu1DIYEGMC3fNp7jql4Pd+63eGnhB+fnJ6WNwKMXOGJNvT49kV+ZmXCqAHxc6/Ldp/aexdVob0b1a7Q5vx9+LWmuuWbuDsmDXH3DcsknuUYUQ3RP2T/MHHniAb37zm9x4442MGTOGhx56iKysLB577LFwhyY2/7dr5e6I69s4BqiYEzOJv2AYuA8aW+cySLt5MnHHZ3Zax5+mDuMbMTFQ3XmyrNqcAVbzBSdxN3dwu3qYH26pYkONzNbaV3LicsIdAgCDowfzzoXvSMItRE+d//c2N2sgiMHkKQ+y1zkNX8wp+COngK4HHezVECwN/yut4kPlJ9D4NbIpzuRfI0PfB0PYhdHBxJptX8ARMOa4l1dh0MAX7bRgByybOYs3srSqe9+bexoCbK5r6IXohBBHi7CO6fb7/SxfvpzbbrutxfbTTz+dhQsXtnmMz+fD5/M1/V5dXd2nMYouyl8Gme13pT4SKaWInplB1LR0/LtrsH1BHMkROFMiu1XPX04dg7VmJy+VVqLbmxzHsqCmFkdRgCTK8WXFUBk5iAqSeUbv75Gg2FNSzVsl1YyIdDNv2igMI+zP1Y4oSZ6kcIcAwG+P+y1pUYf5WE8hwmnyVRCfDS9fAw2h+Tk0sDx2DBdNeBi/4Wo5WZnROIZX272aFNpAWaBlMl9CKgAn8zFvcXH3KjxMJljrbz9cv4vVJ4yn3rKxtSbKNFBKce26nWztpCW8PcW+AKOiPL0cqRDiSBXWpLu0tBTLskhLa3nzmJaWRmFh22Nw7r33Xn7/+9/3R3iiOxY/DplPhjuKsFCmgXvoobX2/2REBq+UVdGqc5sO4vDvJOjKQcfEEnRZFDkTQn1UggEwHW3eZG2t9zFuwXrWHz8OJTdhvUYpRbwrnsr/b+++w9sq7zaOf4+G97YTO87ee5AEMkiAMMKehTLKKoWyX8IohUJL2KtQoIyyCoUWCKVAKXtlMBIIIQlJyN7TieN4T0nn/UNZjpdk6+hI8v25Lpf46Dnn3E4VWT89q7bYtgxXDr+S8fnRsWWQSETrdRjcsm7vtw+s3sjj6wsbL1yN/XbzNn0YhoOeiXGsraqlLX3LTuCgtOR6x7ZW9aPS7EBWUiGX8BwvcgWG6cU8cK9xCViBx0vvmT9R4fOPHOgc76ZfcjzTi8pbfc1Ulz7UFpHARcQrxoFFgWmaTRYKt956KyUlJXu/Nm7cGI6I0pK1s+xOENV6JMbz2MBuGPjfhAFgenBXLcTj7k3G6iKcPi+OBAPcTnA6MRzNvwEr8ni5f81Wq6O3O1cfdLUt9+2c3Jnnj3meq0ZcZcv9RWJZldfH0xt2tNxTbJpkOn0sHD+Yb8cOokt86xcxdALHd0hnYmYKA5IT9r72H7S6lkUrLsbE4Ag+51ZzKkNY1PzQ8VgYVm6xPQU3wOaaujYV3ACLyiNnjQ8RiXy2Ft05OTk4nc4Gvdrbt29v0Pu9R3x8PGlpafW+xCJTlgTeNsRzsNqjs/Ky+GR0P05Ir8JR6yGu7DvqEkfSZd4aKrtl4HM68O1XaJsOR4tvEP+2bjMLNq3E1BuykDmz35kc1OGgsN3P7XDz3qnv8fGZHzM2f2zY7ivSnkwvKqUukLdEhkGxz0nHeDerKqvZWNO6BdacQLzDwe96dsIwDJ4c2I0EpwMnkLfLi3fzAO7lTtbQhyEs4hbu5iXOYYC5uGGkRtf7EKut1JxuEQmCrZVSXFwco0aN4rPPPqt3/LPPPmP8eA2ftF1GywuB+RnQ+0hLo7QXw1KTuL9bNRlfrcVZV4pRXsPIolXUudz+IrsRTp+HFLNk3wHT9K/QY5rUOtwct7KCSXOWsGjTVuoKCjDrGn+TaJom3xeXc8uKTVyxZB33rt7CmsqaRtu2Zy6HixePe5EpB03B7bB2q64juxzJ97/6np4ZPS29j0h797/txQG3NTGYMGcpJ85bQSCTd87OzSTFWf/1O85hMDEzhbWV1Xh8JkNSk/h0dD/OyM3EdEBGhY/qHX2Zat7PDTzJndzDzTzOMmPI7hD+1/gks5z+/Bz4Dyoh0yk+zu4IIhJFDNPmLrBp06ZxwQUX8Le//Y1x48bx3HPP8fzzz7NkyRK6d+/e4vmlpaWkp6dTUlKiXm+rtLg6uQGXz4ROw8MSJ9Z5PGUc8/A/WTuonG4L80juYDC//+Bme7UTfFXUVDtxrqvEubkSw2diugw8PVMZWb6KCz95lyFrVgDgTU2l47nnknP5b3Ek++cSvretiOuWrafKNGDvDEX//a7rnsstPfM0N7wRpmny4doP+fuiv7OieMXe4wYGZhtmevbN6MuDEx+kb1bfUMQUkRYM/XoxO+pCuzp5oHLcLh4f2I2jsv3vYf776Ro2vr2OggwnLx2VhtcBpmPf66/h82EaBre//AQDz51FdXwCV/IitUYCyWYZk/iCQ5lFDXFM5X4trmaR1ROHkuzSPHuR9iyYOtTWhdQAzj77bHbu3Mldd93F1q1bGTJkCB9++GFABbeEydQS+OZJ+Oy2+scNJ2DCKU+q4A4hlyuVXwx38Gh1CX231LC5Y8+W3zT5IHF2AV6vA8MEX5KTugHpHL98Nr/71/N49zvfWVbGjhdeYPkX03lj6oN8WVXDLi/+Wttgz//s9fj6AnLjXFzSpUOof9SoZxgGJ/Y6kRN7nYjX518Gz+lw4vV5WbJzCbfMvIWNFYGtOxHniOPXQ37NUd2OYmD2QCtji8gBSoLYoznUCus8XPjTGv49og/jM1P4qAP0SDDoUOLl4i9K+fSgJDZ03DeqpmvBVn7z32mMW/QjFV0MzKOq+ZXxDz40T+GP/JF0ijEwWcQIFdwWmZSVqoJbRIJie093W6mnO4x2rYcfXoRVX4LphR4T4eBLoYP2Cg61mroaDv7XdYz4sSed3GW8esLp9eZz78/h9dKhYBsli00wDep6puDtm0ZGWSn/vvVqnD5vo0MgvYbB3047h7cmn+IfqtjkmzOTdKeTnycOxak3cEExTZMfCn5g9pbZeEwPqa5U1pWuY03JGgoqCyivKyfZncxxPY7jvIHn0TW1q92RRdqlsXN+Zl0rt44KBQMYnZbE/0b1Y8zsn6ksqORXM8pIqfaPmSlOdlCc7CCxuo4aFpNZsoaO8W6+6N2DyUPeoouxkSqSSKAa5+69vX9mEPcad9v2M8WqDJeDpROGavSXiERXT7dEkczucMxd/i+xVLw7ntdOuI5f1bzJJS9N57XjTsVnGI0uWOdzOinfYIAJntxEvH39/+iPmzMTh+lrcs5hcUoq/znqxBYKbgCDEq+PxWWVDD9gaxtpnmEYHJx3MAfnHWx3FBFpxoX5Ody9ekubtv9qCxOYW1rJxupaUlwO1qe7ePLEDAZvqKXv1lqcPtiS5WJ+rxTKEw8HDufYnDSmF5YyxxzJxTzLBL6ud81iMm35WWLZ6NQE/jm8jwpuEQmalpwWiVBDOg7k0nFj+CGvF3964XFcXh9O774hkHv+fPL89/GW+N8qegbtnn9vGHTbtsVfqDfhpv+7DdPpDGiLHIAFpZVt+GlERCLXRfnZ9N9v2y67FNV5OCM3CwCPy2Bhr3jeOjSVaRNT+WpwIuWJ+962Ldz9mlxLHIlUNfjAYA6HglY2D4kcp4NPRvfj/dEDyHCrv0pEgqdXDpEIdu2w47j3d5nkPPgHXrznZt494hhmDxmJ1+FkyOoVnLDjIzYMS4DtB+FLcUHcvreMRcnw1qEGP/Zx4nFCv80mx/7oo2cB1LjdrOvcNYBebvY+Xu2L6pkoIrbYtOxn3vvLfVQVFwOQ1iGXY6+8jm6Dh9kbTOpJdjl596A+/GnVZt4pKKbOhpl3BpAf7+as3EweXbut3r7SjdlW61/4zWu4WGv2YQQ/4txdevswWM4AbecZAg7gleG9GZ6aZHcUEYlimtMtEgXeXrqCpZ/cxzGLZuMqA08GVIzz4e3u473aU/nvzKPw5SRQNzIbAHf1MjILHsIwa/HtXvXW4TXxOQ3O/8LLsA2d+PUdjwSV4a0RvZmQmRrqH00kZr0x9fdsXrqk0ccGTJjEidfeGOZEEohPCku4aNHawD6UDBEncFhWKoNSEnl1SyGlawmnMgAAbWtJREFUnsB7qBPNCqbwEEPYt4e3CfzIaJ7jasoNvTdqixSnQbnXJMnh4My8TK7s2pGeSfF2xxKRCBBMHaqiWyRKlJSXM+nbbxjm+I5sRxGlpDGbCRQaHXEv3oZpxuEZmoXhqyBr8xQMswajiRmKV7yfwd1X/TWwG+9+47n1iOGaxyYSoFmvv8Lcd99sts1JN9xC/zETwpRImlPt9fFxYQlLyqp4cfMOKsM8sifOMOia4GZdVS2NraOeG+diaGoS1V4fs0vK8e6O5zTr+BO305M1exdQ28OLg63k8ycepMZIsP6HaAecBiQ4HPxnRB9GpKnnW6S900JqIjEoPSWFxw8ex1kLchs85unrJK7Cgcc0SSj/qkHB7XV1xOPuCqaH+KqlfD24eO9c7UDmdP9O+3SLBKWlghvgg8ceov/rKrrt9tGOYv7v5/WU2TiFptY0WVNV2+RCbrvqvDwxsBvj5izdW3ADjGE2fVjV6DlOfHRmExOZweccF/rQ7ZDX9H9Ac9mSdXw3diAO/V4MqdIda9n+yi/JqtqG13Cwo+dkBp37nLa+k5igolskihySnkKq06DMW/+tWbbhoCQzCQwDd/XPsPutm9eZTVnWb6hLHLqvsa+GORmf+n+JmWaLQyiTy4q4sedIK34ckXbNbGHOrljvm11l/HrxOrtjADS7cnqdafLG1p2UH7Cf+OF8iRdHg17ufdc0OIIvVHSHkBfYWF3LzKIyJmVrhGWo/Pz0ZAZu/4409v1b6LDiTTx3vsWOM1+n0xA9hyW6aYUNkSgS73Dw684dGvzDLXGlUod793e7F9JxpFOcewd1CYPqN3bEU5V2kv/PzX16bJrEV5ax6tSjQpJdpL2I8llb7cptKzbbHSEgTgM+2FHSYOh5JkVNFtwADkwy2GVtuHbIacCi8iq7Y8SMJa9eyMDt3+393tj9Bf4RGx3fOgdvjXZQkeimolskytzQI4/xGSkAGLu3g6lzxBFPNQCVacdR3PGPFHW6D58zA4xGNsHZv9g2DNw1VfuGmwN4vSRWlDK5e2cNKxcJkv7NRIdt1bUsq6y2O0ZAvGbj2zbuJAcvTT/ffBgUkW1ltHbJNP3z8CU0eq75CKDRZ7IBODFZ/fczwppJJNRUdItEmQSng9eH9+bR/l3p56olrraa+OpKavAvlOOJH4Qnvi+mMy3geVB18Yn12zqdVKWkMylLQ+dErFRRVmp3hHbrvIWrW3diW0cymCZpAf7/nmdu4SLf8zxW+9tGF1ibyVF7twlrjIHJTI70/3n/Pbs1GqNNfMDROfr9GAo1WxeTaNY289GRf/xelx0/hiuSiCVUdItEIbfD4Lz8bGZMPJg7vrybhJr9hrkZRuCLjjTzxssBnNIxs21BRaRZf7v0PLsjtEu/W7qBnytrgjrHadZxhPkpg4zFLTduhmGa5BUVcuiCufuONdJuhDmPh8wpTPZ9TKZ7V/2iebe5jGEZA/A1UbJ4cJFKCcPM+Qxlof8apk8LU7XRwOQE+iRpRfhQKN+6tNmCew+n2djHTiLRQ0W3SBQzDCfH3vQkJenZwb+JMk2ceJp8ODfOTYqrkaHpIhJSlaUldkdoV9ZX1fDqtqLATzBNOpsb+DsX8lvjRaYNyWPphCF8PLIv13brQEd3cK+TpsPBrtQ07njhcfIKt/uPHdAmzSxhivmQv9Bw+ue1DmM+jgMKD6/h4iFu50dG4WFfjj3Xc+HhTKZxBY+znVxMwwGG3vq11a66Or7dVWZ3jJiQ2Wt8s4sI7lHpTLQ8i4iV9MorEuUyMru17kTDoA/Lm3w4xaWXB5Fw+OH9d+yO0K48tX57EK1NMHxc5/4n3TufxZhDPqBDh2PIdLsYkZ7Mbb07M3vsIF4Z2pM+iXEBXdHw+cgtKsRhmpw667N6jyWaFUw0p3MeL+MyPfXepZ3Mu5gYDUYo1RiJ/IVbuIbneZTf8x1jMNlXeJtAOmWcw6vEmTX+nm6zTkPM22BbrZczFqxm7Oyf2Vnb9IfX0jJHRmcK3RnNFt4GUDTy0nBFErGE3lWLRLkUl5MslzOoN1CG6SPT3MFyBjfZZnN1LT69KRNpla7DA99mr3h7gYVJ5EAfFxYH3NbA4N0R/bhw4psM6H8XSUm9WVdZzRPrtnHPyk0cM3c5fb5axIWL1rKqqjaga5oOByd+Mx2nz8fon3/afdDkTPN1budPjOcrXN66BmPOB/Izl/MkTrwYpg9j/15vw6DMSMdFLWP4Dgf7VoDe80ZvFN/zW54Ew0F8xXcaYh4C66prOXLuMups3OM9FpjHPoCJ0aDw3vP9TncGvU+YGuZUIqGlfbpFYsApHTN4ecvOwBqbJiY+dhkdmm1W6TM5c8Fqpg3vjduhN2ciwfjlH+7ikbNPCqhtbs/eFqeR/ZXUBT43dOG4QXRMiMM0TZ7ZsJ37126jLsAPIw2fD9NRv2/D4fMycO1qjpr7jb+NadLdXM1AlvAJJ/KWca6/oQveNTfwK15mGAv3nj+RmQxjATM4knX04nvG77u4aXIJz2LS+BxxBzCOb3mnZjzVRS8AJjUpEwP+u5DGFdR6+PfWnZzXOcfuKFGr4+hz2V5XRcLnt5Hqraz3/N2Q1JVuN7dtHQWRSKCebpEYMLVP58AbGwYYgX3e9m1xOb9btqGVqUQkEAcde6LdEdqFH4vLyZu+gECXT4sDOsS7Abh5+SbuWrM14IIbYMSKn3HX1e393uWp4/hvZvDwX+/D7fXidThYNKwPhXTgY+MUykitd/4muvAgtzOf+qMm0inhJPO/HGZOB9++xdUGs5AUKptfBdqECVVP4cBLRuGzJFds1TDzELhhxSbWRMn2c5Gq47hLSPvjVopP/wcrepzI6kHnY/5+qwpuiRnq6RaJAQlOB7d378g96wpCPmTwjYJdJLsc3Nuva0ivKxLrxpz1K77797+ab+R0EpegBYKstrWqmhPmrwrqnFqg2ONlS3Utr24NcCTRfioSE3nrlitZ1r03GAb9168mvaIc8A+b9QL/OOFMKvYU2we+dhsOME2e5Hqe4HKS2bdPt9PwsXNxV06Lf493+50GwCF8F1CuDo4aIAGfw+CXn77GS6ff6C+8Ndy8TY6Zu4I54wbSIc5td5Soljn8NDKHn2Z3DJGQU0+3SIy4plc+hkVvml7cvJN/Bzp8XUQAmHDmuSRlNz+N48bX/humNO3biT8GV3DvYQCPrW/dnPsV3Xvz91N+ycFLf2LkskV7C26cTkzD4IFrL6fYndV8sWsYVBtJ3M5DVJHAns260/7tZNDi1XzQ93hcZi0O04uB2eIq0IYBo5J9JBomuaWp9Nni3feAtEmFz8ek75fxaWEJXo0eEJEDqKdbJIYclZXK50XWbGNy7fKNHJ6dRsd4fYovEqgrn34Jr9fLY+edWu/4BX9+io5du9uUqv3Z0ooVpgckJ5DucrK0onXDhg3gvcMn4x00mN98/Tk5Py0AwyBlwgTOGjCaok6JAfcw7yCXj0pP5fyF/+annSOZ1WMChenZJJXXUJKSSgrlbKNTQLncBpyWUcOq3Il8WtMTh9eLz6ntIUOhsM7LhYvWMjglgTeG91avt4jspaJbJIbc3jufz4ua3gasrY74fhkLDx2M26FBMiKBcjqd3DjtfbtjtFueVq4sfVW3jhiGQbKzda93jw3oyi/zsjCMEfDLffP2TdNk1YyFpJqB789uGg6+YDLpRT5O/vZLDiv3r3rucTiYPmoc35/Zh5rUOHw4cOJr9lqGAYek+OjCbJ7ocgQ+vZ6H3LLyai78aS0fjupr2Qi0WGfW1uDbtBIjKRVHnj6glOinolskhvRPTiDZ4aDC1/ybrtYq8ng54vtlfD1moN5IiEhUcLbipeqKrh04KzcTgF91ymZh2aagzk9xOjgzL6vR10nDMMiPc1FQkxTUNc//+F1+MeOTesdcPh9HzpvNgPWruevmq/AmGQTSZ20AqZSxqWOehpZbwAvML6vku5IKxmak2B0nqpjFOyh7/nnKdw7FRwawizjn56SOMEk8S3t1S/TSx5siMcQwDO7r18XSe6yuqmXQ14t5p6AIU/PWRCTCGYZBpivwtzuP9+/K1D6d9xbMZ3fKIt0V+PDrBIfB+yP74mymmP11lw54jd1DjwN4He25eUODgnsPp89H/o7tTPhyAa9ySUAZTWA7HVVwW8hpwKeFpXbHiCpmyQ52PPwOpTsP3V1w+9V6e7NzXn/K//aofeFE2khFt0iM+WVeJtd3z7X0Hrs8Xq78eQO3rAiu90dExA4vDOoZULvLO+dwdn52vWPxDgefje5HejOFe4IBXeLdXN89l8WHDmFASvMr0l/SOYceCfvN9zWbH510wjfT8TQzDNxp+jj5qy+YzmSKSW/2Wnt8yeSA2knreE34priMUk/g+8K3d+UvPkuttz8NyxP/h17F60bhWaUtxCQ6qegWiTGGYfD7Xp14eUgPy+/1jy07+aSw2PL7iIi0xaHZqTzQt3Ozbf7Svyt3NjFSqFtiPMsmDOXR/l0ZmBxPmstBR7eLi/KzWHfYUNYdMYIfxg/m9706kRJAr3iyy8mnBw/g4LQkMAyyKGyyreHzkVtUiKOFaUNZZSUYPpNH+T1eHE2uZO4DljOArzmsxZzSNgvLqhj09SLuXrVZI8Na4vVSvn1gC41MKt/7MCxxREJNc7pFYtTYjBQMaHELmba6Zsl6Vh6eYfFdRETa5uIuHfhVfg5/XLmR9wp2Ue0z6Zscz1/6d2VQWsvzbg3D4Lz8bM47oCe8tdJcTv43uj8/lZZz5nyDbM9WUqurWJfU078FmM/E63CSUFtDn7JifA5Hs4V3ZXwCPqeT1fTnVvMRLuev9GIN+w8gr8PJF0xmGhfsG94ulvKY8NTGHXywo4R/H9SHrglxdkeKSGbxNrx0bLFdXan+/iQ6qegWiVEZbhcndkjn/R3FgHXz9sp8JjVeL/HackZEIpzbYfBA/2480L+b3VH2GpaWworDh7Omsj9/WLGJndsKySwqxOXzkZ+axMNHT8D3FNQ2U3B7HA4+HTNx7/ebjW78iYdxmnXksYUcCqgilQ30oJoEzeW2wbrqWsbP/pmvxwyge1KC3XEiT2Iq4KH50sTEcGq4vkQnFd0iMewPvfKZUVRGudeLlYX3xT+t5fWD+lh2fRGRWNcrKYE3RvQBGr6Wrs/L4wfTweA1q3AeMP/b63BQHRfPtGNOanCeFxeFdOA+bmYreVSQwl+5nmJyrPoxpBl1wFFzl7PisGE49MFHPUZSGolx86mqPYimyxMXiQMzwphKJHQ0p1skhvVKiufDUf0YmhRv6X2mF5dben0RkfYs/fjjWNKrPzNHjsHEP23It7to29Qhj+tuvINtOY0MzTUMTuS/uPBQQibPci3FhgpuO5X7TKau3Gx3jIiUOiEXfwdBY6M6PLgc60g47aIwpxIJDcOM8pUdSktLSU9Pp6SkhLS0NLvjiESsNzfv4P9WWPeLfssRw/XJvYiIBXxVVfx41tlc9JspxNXVMXrpT8R5PKzs2oOf+gxoZri4SYpZRhKVbDfywppZmuYAlk4Yys8VVXhNk8EpiWS6NfgUoOpfj1G0aBAmCfh3PAdw4XasJueyQ3D2HGRnPJF6gqlDVXSLtCM+0+SeVZv559Yiqrwe6nz436yFoFh+c0h3DuuQ2faQIiLSQO2mzcy5+ffcNvkMVnbvhcPn8/d2t/D6nRfn4pZenUh1OvjX1p3M2lWOZ/c7v+4JcZzXKYv7125r+gKmqTngFnDjH24O4DYMzsrL5M4+nUkNYk/4WOXbvoHKf/+LuiIDw2mSMKQT8SdegKG1YyTCqOgWkYA8uPgjHitIxXSk+N9YQavfXGU7DZYcNjyE6UREZH+mz0f5198yZ+FiFiSn80b3vmxxuJrcpcIBTMhM4c0R++aJe02T7bV1uA0HOXH+3tVblm/k5S07m7ipiu5wcAKDUxL578i+JDo1+1MkGqjoFpGAlXtqeGLlfL4r9fBdZTKtXXDNALZOGhHKaCIi0ozXt+7k+mUbm23zt0HdOS23+VFIPtPk2Y07eGrDdgrrPA0bqPAOCwO4t29nLunSwe4oIhIAFd0i0iofb9/FxUvWt/r878YOpHuitYu2iYiIX43Px2k/rmJhWWWDpaccwMHpybw1og9uR2AFc53PZGlFFaV1Xl7etIP3d5bue1CFt+UMYEByAtMPGWB3FBEJQDB1qMaviMhex3XMZFBy64vmu1ZtCWEaERFpTrzDwZsjenNWXiau/epht2FwXqcsXhveK+CCG/z7mA9LTWJCViovDOvFo/277ntQBbflTGBTda3dMUTEAurpFpEGbl66nle27Qr6PCew8NAhe+cJiohIeBTWephfWoFhGIxMSyIrRKthnzF/JbN3lRNPJbXE4zNcdDbXs5l8MNwhuYfs0znezbzxg+2OISIB0PByEQmJeSVlfFJYxl83bG9yoZ4DfTyqHyPSkizNJSIi1ttZ9C3LVtxNSeV64qnBBBYxnM5s4HmuZJExyu6IMccBXNYlh9906UA3TdcSiWgaXi4iITEqPZU/9M7n1I4ZAZ+Tpu1ORESi3urVj7BgwQVUV67AgYfvGcuTTGE7uSRTxVhm79v1QkLGBzy7qZAxc5by4JqtRHnfmIjspqJbRFp0RdeOAb1YDExOoGdinOV5RETEOoWF01m3/mkAisngjzzM48bv6MoGjuZTEqhmPN+QSKUKb4uYwF/WFzS9lZuIRBUV3SLSohFpSTw3uEeLLxi39OqEocV2RESi2vr1zwP+wu9Rfs9mupBjbudU3t7bJo5a/sjtGA3WTZdQenTtVrz6YEMk6qnoFpGAnNQxg/njBzNqv/nae15AEh0OnhjYjWNz0u0JJyIiIVNcMg+AFQxgtdEPn+FkIjPwHfC2sSPbcdHIvt5Wa0dF6I46L18VldkdQ0TaSEsMi0jAcuPdfDCqH5uqa/nf9mJKPV66JcZxSocMkjWXW0QkpixkJA7Tg89wkc1OTOqPZFrMcOoMLfZltcfXb+OIbC0WLBLNVHSLSNC6JMRxZbeOdscQERELZGWOpWjX13hw7e3dLiUN44B9LKpJaN0NTBPD9GE6WvlhbTubxjSnpBLTNDV9SySKaXi5iDRqeUU1nxSWMKe4HI+v/QzlExFp77p1uxSAzmwEw/9W8Rsm4jxg/nZnNrXuBoaBq273sPR2NFS8tUygSr+HRaKaerpFpJ6fyiq5ZcUmfiyt3HssN87F73t14rxO2QFdY3VlNXet2sJPZVWAybE56dzeO58UDUEXEYl42dkT6d37Ztavnrb32GajG7PMw5nALBy7e7x7sppu5lo20g3TCO71vS5+97B09d4GJMGhvyeRaKaebhHZ6+fyKk79cSUL9yu4AQpqPdywbCMvbNrR4jXuXb2FQ79bxic7S9laW8fWWg8vb9lJn68W8dqWls8XERH79eh+OROH/aXesRe4is84Dg/7CuzLeZJ4anGY3nBHbFd21dmwYJ2wurKSN7cWsq2qxu4oEuUM04zucT2lpaWkp6dTUlJCWpoWmRBpi3MXrmZWURlNvXVKcBgsOnQIqU30WL+9rYirlm5o9h7vDO/FuCz9WxURiQbHz13IgjJPvZ7sVLOEk3mHE/gfAFvJ521+yWwmhKzn2mHW4TPcIblWLPhFbgZPDuyued1hctkPMxldeh+9WI2BiQ+DVfSlMu9Obhp0iN3xJEIEU4eqp1tEACioqWNGMwU3QLXP5L2CXU0+fu+arS3e5/QFq5m/szj4gCIiEnZ/6N3LX0ib++Zzlxnp9GcpJgYGkM8WfsPfcFEbsvv6NAOynv8UFNNpxkKO+2E53+zSFmJWOvfrf/PL0kvowyqM3Wv2OzDpzwqGbzuPexZ+YHdEiUIqukUEgG21dQQy7OXfTRTdPtNkc01dyxcwDI5fuJYVu0qDCygiImE3MSuVv/QwSaQKAKfpIcvcQR9W7Z3bDfANh+MhLnQ3NgwwTeLMqtBdMwYsKKviFwtW88rmQrujxKRdlVVcWHv73s3xGv7X5KCdv7MhmUQ7Fd0iAkCOO7BehTklFSwvb/gmKKh5KobBYfNX4Yvu2S0iIu3COT1HMS37X1xlPsYpvM2ZvNGgzRp642h2rFQrGAa1RqIK70bcvGITnxQW2x0j5lw55wXi8NDUIH4DiKeGP89/JZyxJAao6BYRADonxDEmPTmgtlNXbW5wzGkYwb2gGA7uWLgomDNERMQmIwc/zAnplZzJNA5jRoPHnaEuuPeTS4Fl145mFy1ax9MbttsdI6aM5YsW2xiAc9f71oeRmKKiW0T2+kOvTgG1+7q4nMbWYDw8MyWo+71cFMBwdBERsZ3LlcyokdMYNPDP4Mxs8Pgw5uMzrJmHXUK6JdeNBXet3sLUlZu5bcUm7ly1mdlN/H6WQAX2d+fUenYSJBXdIrLXmIyUgF4U6kyYtau8wfFXhvVqckhWo9fRS5CISNQwDINOnU7nyMPm8kHqg5STgm/3q/5IfiDX3BrU1mEO04NheqGFIrGUjLbEjnl/27SDlzYX8tymHZw+fxUnzFvJjlp9qN0aszi2xTYmcGiviy3PIrFF73hFpJ5O8YFt0fLS5oZ7brsdDn4cNyjge+mDYhGR6OMwDO4beQbzO/2DrziKOlw48fF77iaVhotkGvutfL4/n+HiDN70f9Nc4b1nmyzTrLeKuuzjA7y7/wp/Kqvk3IVr8KrHO2gju59GLa4m+7tNoJoERnU/IZyxJAao6BaRei7Izw6o3Y+llY0e75QQxxWd0lvsuQDo7/IElU1ERCJDgtPB1IEjuGHiU3zQ4b/cxBPcxb3U4GKAuYRO5kayzEIwTYbzY5M94DM4mqP4JKD9vZMp5wymqfBugRdYXF7F9CJtLRasSzrn8AD37i26D/yvD4NhQ/5pQzKJdiq6RaSeX+ZlBdSuztd0UT11QE/SjZqmC2/TBNPkz0P7tyaiiIhEiAy3iz8P7ofP3Y3JfMDz/Jrb+RMPcgNPcDlH8xFj+ZpObPb3eO8pmE0fhunDRR05BLYY2Jm8TjFZYOjta0ucwPvbi+2OEXXyE+J4+pATuc/1d5YyEB8GJuDDwc8MYcDor+nW8SC7Y0oUsmbFCxGJWq4AehsAuic2vx/r8kljOXHG18zzJdcfGrj7z3d3z2B0ZlqbsoqIiP3iHQ7Gez/gVN7Ze8yJv7i+iL/zJFO4i1uZwZHM4GiKzCwyKOZwvmASn1NAHtMCuM8bXEBdKPcCj2E+oMKrEQGtMTglkc8nHsb0ooOYV1KByzA4PCuVa9KSMAJ8jyRyIBXdIlJPdpyLbJeTnZ7mF8M5tUNGi9f64IgJ7Kyq5LJ5C1hc68JhwIQUF/cPG0qHAOeOi4hIZFtRXsnRvjcbfcyByTn8k1kcznF8yGQ+wrF7sK4XAycmq+lDD3M1G+iBz3A2uIZhenHhoY64Rh+XxvVNjrc7QtRyGgZHZ6dxdLY6ByQ0VHSLSD1Ow+BX+dk8saGA5pY6S/RVBHS97MQk3p4wPkTpREQk0ny07jOGUNLk4x3ZwSHM5p9cwDi+pTerAVhNPz7gFJYwjD/wJ+7jTmrMhHqFtcP0EkcN1UaSNeH3G4EVS0zg9AA+HBeR8FDRLSINFJRv9//GbuZ9yC3rirm4Z9giiYhIhKqq2dVimwxK+RWv8hPDeYybWEk/io19C3euN3txF7fwHqcz25yIx3DjMmuZwEzSKOV98zRrernrfBgug5ziXZiYFGZmx0wRPnHuciZnpzKlex7/KdjFt8XlOAw4IiuNi/Kz6ZaonnCRcFHRLSINTCvyQktvbkyDqupKEhMs6n0QEZGokJXah2Y6uveqw4kLD//Hn/mEE/mXeTHm7kXRpvEr7uRWLuMZjuQzZphHU04KLjx4cGFascmkaXLKN19wzmf/o9OuQgAK0zN4bfKpvHvEZExH9C/Y9unOMj7dWYYT/6rmAMvKq3lu4w5eGNKDY3PS7Ywn0m4Yphndm/iVlpaSnp5OSUkJaWmadyESCnnT5+/u6W7+Tc5v85K4a2C/8IQSEZGIVFjrYdrXp9KfZU2Wxubur4UcxDp6kUw5/zB+W69NsllGRwpYa/TBYXrw4cCBD59hQR+RaXLdGy9x2qzP8LFvOx8TqHW5+N/Eo3nqrAtjptf7QAb+hVO/HTuQrglanE6kNYKpQ9XTLSKtVmNqQRsRkfYuJ86FO+9qarfdSBy19QrvPT07NcTzLr/gSyZTYaT6tw47YD51hZHKWlIB9hbavj3lsLm7bA/RdmHDVi3jtFmfAfsK7jqnk38efzrvHHEsZckpIblPpDIBn2nyyuZCbuudb3cckZinoltEGhHIGxuTW3vqF7WIiMBvB53A6y4HpZsepzcr9hbePhwkpo3llurr2FS339vOYItnw9hdeLO7F9y57/iBdrfrs341CR4Pqzp3pzoxsV6Tk7/6Ao/Dgcvn31bL63Bw+xU3MXfQsJgYVh4ILzCjqIzbetudRCT2qegWkQYe7duZG1ZuaWGIuUnGAW9iRESk/Tq333H4+h7LvIL5lJStoGtyFn3zjsbhcHD+um08tHYbje4cHegK4oaD08xpfMWR7CSnyYK7z8Z1TPzxO5b37EN1XDwnzJ5BXF0t/znyBOrc/u0qe2zduLfgBpgxcizfDxnRqp87mkX1HFORKKKiW0QaOK9LLn9YtZXqA5d82PvGyOTrg/rbkk1ERCKXwzA4OG8k5I2sd/zyrh35YmcZ80or6hXeDsAXxLzpBGoYwQ98YRzf8N5eD1P+9SL/POkXvHTq2RimielwsKDfIHwOByd99QUfTjgSn8NBeUJSvbnc/z3saBxeLz5n+5k25QQOzYztYfQikaJ9jJ8RkaCtO2IEQ5IS2Lf8DWD4F1+ZM7offTKSbUwnIiLRJNHp4M0Rvbm5Zx65cf4+HwOYmJnKv4b2ZGhyQkDXecO4sNGCG2DMovk8e+b5bN+97deeYeI+pxMMg/cPO5qBa1YCMGP0uHpzzzfm5rerghvAB5zSIZ2ZRWV8sKOYZRVVdkcSiVlavVxEWuQ1Teq8XhJcGhwjIiJt4zNNyjxe4hwOEp3+wtjjMzn6h+Usq6hu+sQWhqG76+r2Dh9vjMPrpdu2zazr3I3E6ipeuut3ZJfswuXzceEdj7Axt1PMrlYeqJFpSTzSvysDUzR9TKQlwdShKrpFDrCwpIyT5q+mbr9/GQ7g3t6d+HW3XNtyid+O2jo+LSyhzONjXEYyw9PU4y4iEgs2Vtdy0rwVFNR6WneBQOeG79ahqJCTvv6CDsW7WNO5C29POgFfO1lErSlO/KMSPhrVj74Bjj4Qaa9UdIu00ufbizl/ybomHz+nYwaPDe4RtjyyT7XXx+VL1vHpztJ6C790jHPx8pCejExX8S0iEu2219Rx6vyVrK2q9R8IspBuNdPE5fPgczjwGe1rmPmBHMCJHdJ5fkhPu6OIRLRg6tD2/XGeyAGaK7gB3thejM/X6NqrYiHTNDlt/io+OaDgBthe6+HEH1eypKzClmwiIhI6HePdPNK/274DIS64nXV1jT9gGHgdDpx4Af+2ZA7TG9J7Rwsf8MGOEko97fPnF7GCim6R3d7aWhhQu+PmrbA4iRxo1q4yFpRVNvm4CZyxYDVRPnBHRESA8ZkpXN21g/+bEL+ue5uZ820aTuqMOE413+I03uIM3qSbuSak948WPmBna4f5i0gDKrpFdvvzuoKA2i0pb2aRF7HEE+tb/v+mxOPjrR+/DEMaERGx2h/7dKZHgjvsC5sZppe19OJ03uJQZrGRHmG9fySp8aqnWyRUtBSxyG7OAH+xt+91Te2xpaaR4YCmyZFF3/Gbzf9hdOnPGJisT8hj6ece8n81jfQuA8MfVEREQuafw3oz4ftlYb2naTgpNjMxMXiBKzGN9ts/dcKPK/l6zEDyE+LsjiIS9drvK4nIAR7q2zmgdodlasGucMt0H/D5oGly36rH+OfiWzBMH691OoG3Oh7DwtQBVDsTSH1hLOsfGkLVmm+gqhzevQr+dTYs/cCeH0BERILWJzmBq/YMMz/Q7mHnmeYObjLvYag5r97xJplms20cppdkyrmPO1hiDGtN7JhR6TMZM/tnCmpq7Y4iEvW0ernIfvKmL2ixzdYjhmO08308w+1/24u5bL9F7s7a9jEPrHyMv3Y9l99seYcOdbvwYeDApNIRz+dZ4zihcAZ71p9t8P/WKU/DyF+FKb2IiLSWzzR5YM1Wnt64HY8JmD72vKo78DKIxRyyfj5nvPMpH3c6hmfPON+/V3dTv6f3vO1t5vf4FebjfMipbDB6YJg+TIx2vX93ggELDx1C+oEfgIu0c9oyTKSVVpfWcOi8pU0+/seeeVzdIy+MiQT8q5cP+GoRJV7/yvFf/HAJn2eN4dqNrwNmo0N2TFqYCnDmyzDk9JBnFRGR0NtRW8cHO0oo3FmE+dZbVO7YwbzBw1javTdlyankFBdx0tdfkr+jgIcv+C11Thc0ted2U4W3adKJzTzA9VSTwF+4hWUMatcF9x4Dk+J5e2TfhiPPRNoxFd0ibVBRU8PYuSvYUbdvAZFEA94Z3pcRGlpum03VtRwy+2fcvhq+/u58yl3J9Ktch7PBJmJBmFoSuoAiIhIWpmlSNX8BlT/8AMDEvqPZFcIVV54wL+UJfscq+qngPsBlXXL4U+/OuB36exFR0S0iMWlJeRVnfvcjDy19gJMLZ7X9gjevhaSstl9HRERs89KmHdy6cnObr+MwvfTnZw7nS/5mXBeCZLHJCbgdBm4DBicncnGXDpzUIQOXCnFpZ4KpQ7WQmohEjcEpiXxxUG92udJDc8EN34XmOiIiYpsL8nMYkhzfpmsYpn/60plMYyZH7p47Lo3xAtU+H2VekzmllVzx83ouXLSGWp/+zkSaoqJbRKJKflYeBfEdQ3OxjgNCcx0REbGNy2Hwwej+nJSdGtyJpolh+qeSpVLGjTxAf5ayjXxox1uFBaZ+r/aXRWU8uq7ApiwikU+vKCISdS44+z5+TBmAp60vYVk9QxNIRERsFe9w8MKw3uTFBbbQl8P00o9lnM2/uN58kL9yGcP5kbX0YheadtQaz28ooEa93SKN0hKEIhJ18pISKOp/HJ75a8DnwUUrfsl3PiT0wURExFa58W4Kaj3NLrHpML1kU8gUHiKdUsC/44WJwd+5rMHiaYlmBQfzHRnsophM5jKGKkMLqx6owoTuM3+iZ0IcR2en8bueeaRptXMRQAupiUgUK3z3BqqWvk/XmiCHtLlT4bZN1oQSERHbvLhpB7ev3Nxk0W2YPiYynV/yLzIowQC8ODAweZ6rmGUcWa/9ceb/OJvXcFOLFydOvNQRx5ucy0fGKZb/PNHuwk7Z3N+vM86mtm8TiWJavVxE2o+pmRBMT3d6f7j+e8viiIiIfco9Xo7+YTkbqmqb/M2QZJZzGNMZwY+48LCSfnzBZAqN3HrtjjI/5hKeb/Jef+cyvjCOC2H62DU5O43beufTPznB7igiIaOiW0Taj6IN8MTQABu7YWqhpXFERMRe22rquGLJOuaUVDT6uMP04sSDBzdmEwumucw6nuRSUilv8j5lpHA1L+A13CHJ3RgDuLF7Ll8Vl/NdSQUGNDt0PtLd37czG6prqfT66J+cwJl5WaS5nHbHEmmVYOpQTbQQkeiW1Q2u+xkeH9Ry2ytnWp9HRERslRfv5t2Rffm5vIoPdxTz1a5y5pcUUUs8qWYJBzOHL41j97bPNHeSx1aqSWAtvcEwGMTiZgtugFTKGcRiFnGQZT+LCRydk85NvTqxuKyS6UVl/FBSwSc7Sy27p5X27Ke+58ODO1Zt4cquHbixRx7xTv8HIDtrPXxRVLq3MB+bnoxhaA9wiW4qukUk+mV2htsK4d6cptuc9DjkDg5fJhERsdWglEQGpSRyU0/4/Mt+eAEXXmZxBF9yLB3MAi7kRUbwIwYmtcQxnUm8ym9JbqHg3iMlwHZ7mWaDhdqa4gSGpCYyIi0JgCGpSQxJ9f/5PwVFXP3zhuDuHUH29NbXmSZPbNjOExu2N9s+CeieFMe5+Tmc2ymbFKdDhbhEFRXdIhIb3G6YWgIf3Q7f/XXf8c7j4JRHITeAnnAREYlJTocbw1cNgAMf2eYO7uQWHPh4m7P5nMmUGek4TA8us4btdAzoutupPw+cA2dt7l8YmiaOHdWYTgdmdnyDa+0/dNwBdIxz89zgHo3e9xe5WaQ4ndywbAM767wBZY1mlcDSylr+tGoLf1q1BfAXMafmZnBVt1wGpyTamk+kJZrTLSIiIiIxbcGC37CzaAYAO8liCcMYwTzu5m62ko9pHDCv2PTxEFPoxBYcjcyi9mGwlXxu5vF6hbVjexXuJcV4OyaA0wEVdRg1XgynA6PKAzU+fBlx1I3pUO963RPiSHM52VRdS6bbxdl5WVzQOZusFrbcqvOZTC8qZWl5FV/tKmdTdQ3rq+uiet53W8QB8UDnRDcn5WRwbc9Oe4eti4SaFlITEREREdmtsnIDs+cciQ9wYOLFwctcynSOblhw79bPXMpt3IGBD+d+ZawXAxMH93InK4yB9c5xLdmFc3MlRgvvrquP7uQvyvH3cL85vDcTs1Lb8iPuu7bXx12rt/Da1p1U+6L6bX7I/GdYT8ZnpWlIuoRUMHWoPvoRERERkZiWlNSNoUOewkMcJlBLHF8xqcmCG2CFMZC7uYcV1C+sV7D7+AEFNxD4Dpb7tXt+cPeQFdwACU4H9/XrwoqJQ/lTr05obXD4xU9rGTxjIavKq9hRW0eU9zlKFFJPt4iIiIi0C7uqS7jx2yc5lC+5zXgk4PNyzO1kUEwxGRQaTc/3dm4ox7W0hKb6U03ATHRSOzEXDIO/DujGWZ2ygvshgrS1ppaXNhXyxtYiSuo81Fh6t+hgAL/pnMNdfTvjUO+3tJJ6ukVEREREDpCZkM7oPpexir5BnVdodGSV0a/ZghvAm58ETqPZOdXebinEORw81r+r5QU3QKf4OP7QO5+fJgxh/aQR/KpTVrsvAEzghc2F5M9YyLaaWrvjSDvQ3v/NiYiIiEg7cmXXDnTPP5scs6DhauNt5XJQNzwLDDCM+mPNTSAxO4EHj+nPusOGck5+dmjvHaD7+nXhxA4ZALgM/9Zk7bmvd8S3P7OmvNLuGBLjNLxcRERERNqdi+Z+ySfloe1pdphefIaTQ0pn4ltdy+Lt/u0qE91OzhjZmaknD8LtioxZ1j+VVfKfgl3srPXQJSGOx9cXtNtVzwG2TRphdwSJMsHUodqnW0RERETanedHHkHvWQuoM3f387Zlbq9pkkA1PVnNMeZHDEpdxIYTn+X9/uNCE9YCw1KTGJaatO/7lAQuWbLexkT2+mD7Lk7smGl3DIlRGl4uIiIiIu1OnNPBuyP7+YvtNhbcuWzhRc7n99xNNUksz/871/QbG7qwYXBCx0z+2Cvf7hi2uWXFJrsjSAxTT7eIiIiItEuj0lPoHO9mc01d6y9iGAzK6M3c5P+SGZ/BVXm55MW7QxcyjK7u3pEUl4Pft8MCtLjOa3cEiWEqukVERESiSPEX6yj/bGO9Y+5uqeReNcKeQFFuzthBjP52MQVtKLpu7t2Vg9KSQ5jKPhd1zqHC6+Ou1VswIPzzvE0TPD6oqIO0OHCEZ2Cu29Gel5MTq6noFhFpwnuPz2fj0l17v3e5DY6/fAjdhnSwMZWItGdbH/kB746qBsfrNpSx6dav6HL/RBtSRTe3w2DhhKH8dtFa3issadU1uiTEhTiVva7q1pGJmSm8tLmQeSWVxDkMeibG8d6O1v39BMQ0wTAwNlVgZiVARkLoV5dvxuDkxLDdS9ofrV4uItKIp6/6EtPX+GP9DunIMZcMCW8gEWn3yn4soOTNFc22caS6yL8tchfvimRVXh+HfreULUEONT88I4VpB/WxKFXkuW35Bl7cUhT6C9d5cc8vwtMvDTMjPvTXb8HbI3ozPjM17PeV6BVMHaqF1EREDvDiTbOaLLgBVny/nbKihj1NIiJWKnlrZYttfGWeMCSJTYlOB9+OGcjw1MB7POOBO/t1ti5UBLq3fzcWjh9EtzgH0Mwvy2C5ndQd0gEzPfyjBuIMGJeREvb7Svuh4eUiIgeoLm/5Teu/H/iBSx7SME6R9mbzyl18NW0FRVsqAOjYI42DT+hJ9yHZ1t/cF9jgxNrKGuKSwt9TGAsSnA4+Gd2fn0oruX3lRuaXVtFUv/fg5AQeH9iNAe1wWHJufBzfHzqMirpKnljyKc/s6kQtIXrOtWUl+VY6KisVw4b7SvuholtEZD/rFu4IqF1VaRtWuhWRqOPz+njm6hkNjhesKeX9Jxcy/KguTDirX/iDNWL7A9/T5S59KNgWw9KSeG9UfwBM02R+aSWbqmvZWlNH1wQ3fZMT6ZucYHNK+yW7k7h1xGncCjyxbhv3rd1md6RWOSU3y+4IEuNUdIuI7Ke2RkMzRaS+jau2896fFzfbZuEXm+g6KJvug8PQ492SWrsDxBbDMBiZnszI9NhYndwq53fO4aF12/BE2WpRWQ44oUO63TEkxmlOt4jIfnqMCOwNsyteL58i7cG8L1a1WHDvMefd1RanEYlcWW4XZ3TMJJoGaacY8L+DBxAfpm3JpP3SM0xEZD9xcXE43S2/ZTjl2mFhSCMidipYV8Kcf28IuP3OTeUWpgHcgTVz9tMKzGKPqX070zPRvu3TDOCg1ES6xjf/jyXNgFt75rFo4jB6J2magFhPw8tFRA5w0X3j+fvvvmny8az8ZDr10fwvkVj3v6cWBNXe6k1Yu9w9kU23fNViu06XjLA2iEgTstwuPh7dn8fWFfDCpu3UhmmoeUe3k8cHdGdSzr5tm7ZU17KuqoY0l5NByQnU+ExKvT7SXE4Snep3lPBS0S0icoDE1HgufWQCr/5pDjUV9ed4Dzo0j0kXDLIpmYiEU02ZN6j27gSnRUn20zsZVlc0neGErtZnEGlGmsvJn/rk86c++ayvrGF6URlf7ypjTVUNBuAyYGF5dXAX3fOJlmGAadI3wc2pedn0Sk7g0IwUchvp2c5PiCM/YV+ve6IDEl1h+Dcq0gjDNK3+XNZawWxKLiIiIhII0zR5+srpQZ0z4Zd9GX6k9UVv4YKtVL+xqsHxpGsGktUlx/L7i7TVFT+t4d2dpQG1dQD/HNaLI7JSqfOZxDkMbe8lESGYOlQ93SIiIiIhMGxSl7DcJ2dEJxjRKSz3ErHCU0N78sWMhZS10K6D28VLQ3syevfK8fFOFdsSnTShQUREROQAhmEQzDLM43/RU71vIgFyGgZLDx/GkCYWXXMDrw3ryaIJQ/YW3CLRTD3dIiIiIo0YfUJ3fvhgfYvtXAkGgydqLrVIMFwOB5+PHUSFx8trWwqZV1pF14Q4buqZR7wWOpMYo6JbREREpBFjTu7N+p93smNt01uBpebEc/oNo4hL0FsqkdZIdjm5rFsul9kdRMRC+g0hIiIi0oRf/v4QVs4rYPory6ir2beaebehWRx8fE9ye6ZpWLmIiDRLRbeIiIhIM/qOyqXvqFy7Y4iISJTShAkRERERERERi6joFhEREREREbGIim4RERERERERi6joFhEREbGZaZrU1dVhmqbdUUREJMS0kJqIiIiITZYvX87rr79e71heXh4XXnghSUlJNqUSEZFQUk+3iIiIiA2effbZBgU3wLZt23jooYcoL296f3AREYkeKrpFREREwmzNmjVs3bq12TZ//vOfw5RGRESspOHlIiIiMa7K4+XUuUvYXlJAlSOeeF8teZ5izh86hgu7d7U7Xrv0yiuvBNSuvLyclJQUi9OIiIiV1NMtIiISw0pqPYz64mt+qvaxIy6TEnca2+NzWJzUk7tXrOeWWR/ZHVGaMW3aNLsjiIhIG6noFhERiWFHff0dRe40ALzGvgFuPsNJpSORD6riWblpqV3xpAU7duywO4KIiLSRim6RdqK6uprZc05g+owRzJ5zMtXV1XZHEhGLlXs8lHm8GDS+DZXX4WRHXBbPfP1ueINJwEaNGmV3BBERaSPN6RZpB2bOHInHW7L3+8rKn/nm28G4XJkcftgPNiYTESt9XrCTkt293E1x+eqowg3VJZCQHqZkkpKSEtDq5Mccc0wY0oiIiJXU0y0S46bPGFGv4N6fx7OLGTPViyISq1zeqgBaGbhMD2yZb3ke2eemm25qsY0WUBMRiQ0qukViWHV1MT5fWbNtvN5iDTUXiVHH5uaSW7MDw/Q12cbjcNG9aguYjQ9BF+vccccdTT6WlJQUUGEuIiKRT8PLRWLY93OPD6jdD/OOZcKhMy1OIyLh5o5PpGvtTgriOzT6uNPnJbd2J2fs+BLy7wxzOjEMg6lTp1JQUMAzzzwDQHZ2Ntdccw2GYdicTkREQkVFt0gM83h2BdSutlar44rEqncPHctZM6czO/MgnD4PXocLTB8OIN1Txu/WvkCvgUdBYqbdUdut3Nxcpk6dancMERGxiIpukRjmdCQ1OZ97fy6X5g2KxCpXdg/+c9AA7p71Bj+n9GJTQh7J3krG75rPUTvnMDEtDo57ye6YIiIiMcswzeiexFVaWkp6ejolJSWkpTW/QqtIe1NSspof5k1usd24sbNISuochkQiYpuaMvj2r7DwDf+fs/vAyIugz1GQlA2uOLsTioiIRI1g6lD1dIvEsPT03vj/mXuaaeVWwS3SHsSnwqQ/+L9KNsFXj8CHN4KnGhxuGHomHPY7yO5td1IREZGYotXLRWLcUUcuB5xNPOriqCOXhTOOiNitaC08ezj8+A9/wQ3gq4Of3oRnD4Nti+zNJyIiEmNUdIu0A0cduYJRI6fhcCQCDhyOJEaNfHd3QS4i7cr7U6BqF/i89Y+bXqirgrcv1/ZhIiIiIaTh5SLtREbGaCYdsdjuGCJip6K1sGZG04+bXti+BDb/CF1GhS2WiIhILFNPt4iISHuxI8DpJBu/szaHiIhIO6KiW0REJBjV5fDB7+C1s+GzO6Gm3O5EgXMnBtZu7Uxrc4iIiLQjGl4uIiISqOeOgC3z932/4mP45lHoeThc8C44Ivyz7K5jwXD6h5E3Z/03/nndhhGeXCIiIjEswt8diIiIRIhHh9QvuPe3diY80BV2rg5vpmC54gMrpGvKwFNjfR4REZF2QEW3iIhIS9Z+DaUbm29TWw5/Px6qisMSqVVqy8Hnabmd4fQX6CIiItJmKrpFRERaMu38wNpVFMCC16zNcqBd62DFJ7D2q5Z7p10JQAA93Tl9NbRcREQkRDSnW0REpCXVuwJvu+jfMO4q67LsUbQW3r8e1kzfdyw+HQ7/HYy7pvGi2emGfsfBio+av/aE60ObVUREpB2ztae7R48eGIZR7+uWW26xM5KIiEh9Pl9w7WtKrMmxv+KN8MTI+gX3nnt/ejv8b0rT5068kWZ//ef0h6G/DEVKERERIQJ6uu+66y4uu+yyvd+npKTYmEZEROQAX9yJSUCDsv1yBliXxeeDhwdC1bbm2/34MuSNgEN+3fCxrgfD2a/A27+Fukr//G1MMH3QeRSc92bkr8IuIiISRWwvulNTU8nLy7M7hoiISEMLX8f85rHAC26Agy8JfY7iDfDK6VC0KvBzPpwCiSkw9KyGjw08GW5aAT+9CQVL/Pt3DzgRuo3TXG4REZEQM0zTNO26eY8ePaipqaG2tpauXbty1lln8bvf/Y64uLiAr1FaWkp6ejolJSWkpaVZmFZERNqVLQsxnzssuIK78yFw6aehLVx/eAXev7aVJxtwxdeQNyR0eURERCSoOtTWnu7rrruOkSNHkpmZyffff8+tt97K2rVreeGFF5o8p6amhpqafauzlpaWhiOqiIi0N29fGnDTvcPPL/hP2wpubx0s/xCWfwTbfoIdq8DXlv2yTZjzNJz2dBuuISIiIm0R8p7uqVOncueddzbbZu7cuYwePbrB8f/85z+ceeaZFBYWkp2dHdT11dMtIiIhs3oG5qunBtzL7QMco34NJz/W+nsWrYW/HwflLczXDlZcClw+C5JzICE9tNcWERFpp4Lp6Q550V1YWEhhYWGzbXr06EFCQkKD45s3b6ZLly7MmTOHMWPGNHpuYz3dXbt2VdEtIiJt5/PBx7+H758L/BQMqow4kh0mDDsHjp4KyY1/cNykbYvh2cPA9AZ3XjAcThh0Gky6DbJ7W3cfERGRdsDW4eU5OTnk5OS06tz58+cD0KlTpybbxMfHEx8f36rri4iINOvbx4MquP1Mks0a8AIL/gXrvoLLvoSkrMBOL90KLx5tbcEN4PPCkndh1efwm8+hQz9r7yciIiKAjXO6Z8+ezZw5c5g0aRLp6enMnTuX66+/nlNOOYVu3brZFUtERNorTw1883izTfbfOmzPn+sMN/Fm3e6DXv9K47MehuPub3gLTznbCt6jvHwZzrJCctatI2P5fIy6qlD+JM38AF6oKYcPboSL/xeee4qIiLRzthXd8fHxTJs2jTvvvJOamhq6d+/OZZddxs0332xXJBERac82/whVu5ptYgDb4rLpWFvETyl9GVa+cl/BvYfphR//AUffCa44ME3YMJsd2z9mcfm/8Zm1GD7/zK4NWQZpg90MX2IQVxemzURML6ybBUVrIKtXeO4pIiLSjtlWdI8cOZI5c+bYdXsREZH6vIGtEp5Xu5NpHY7h28yRPL7iwcYb1VbAfXmQmg9VxZTEV/HTiN2LmBkGpmPfEm1lKS4WDEnj4PklwW1P1lY7V6voFhERCQNbtwwTEZE2Ki+EGQ/Arg3QbTQMPxcyutqdKjp1GFhv+HhTPDjAMHDv18PtNfzDzV3mfkPQfV4o2QjAuj6pGCb1iu09TIdBWaqbokw32bvqGjxumeIN4buXiIhIO6aiW0QkGlVVwYN59Y+t/gSm3wtdxsMl7/tXq5bAFSxmzwDv5gpvFz4GVawhr7aQOgf4nAbx+w0NP/BcH1CYHdfs/t2Gz2R7Tlzriu6LPoB5L8Hit4I7b9fa4O8lIiIiQXPYHUBERIJUVNiw4N7fpm/hhePDlydWzHma6RmjaWlmtQ/oWrWVw4t/xOWjXsHdGNNBswU3gGmA19nKweU9J8CZL8JvZ8CI8yC5Y8vnGE7whrFXXUREpB1T0S0iEm2eCGCP5S3fQWWR9VliycbvSPHVtDi83AGk+yqAloeiAzh8EFfj9S+o1ozkilZsGZa+31SC/IPgtGfghp8hPr3580wv5A4J/n4iIiISNBXdIhI2c4vLOeq7ZeRNX7D3642N2+yOFV2+eTrwtu/fYF2OWGSaHFy6OKBCek+bWpfRYs+4AXTdUt18GxPyC5pv06gTH2l4zOmGg38DRlO/4g2IT4Uhvwj+fgfy1vlXQS/e2OKHCiIiIu2V5nSLSFj8YflG/r5lZ4PjU1ZtY8qqbSwY3Ze81GQbkkWZz24NvO3qL63LEWsqi6CukpZL6PriPIG177q5ih1ZcZSmueoPNTdNMAz6ra4gvjbIorXrIdB3cuOPHXYTrJ0JW+aD6dt33HD67/+Lv0NcUnD3219dNXz1CMx9ft82a9l94NApcND5LQ6nFxERaU/U0y0ilvtfwa5GC+79jfhhJTN2loQpUTvhTLA7QfT47E+Ypi/oLbsCLZOdPhi5qISeG6pw1+0rgtNLPQxfVEKXrUH0chsOGPVruOj9povbuGT/40feDqmd/MccLhh4Mlz6OfRrolhvSfFG+Gwq/LkPzHqo/r7mO1fDe9fAF3e17toiIiIxyjDN6B4PVlpaSnp6OiUlJaSlpdkdR0QaMfKbxWyp9QTU9vDMFB7u35VuifEWp4pSU1uYq7u/zofAZZ9ZlyVWVJfAw33AWxuW2/mAujgDhw/cAfaUA/5i+6yXocdESMoK/DzTBE81OOPatqL9z+/BW5eAz0OLHzdc8Q3kac64iIjErmDqUPV0i4jlAi24AWbuKueQOUvpPfMnXtu8w8JUUSp7cOBtazRyICA7V4et4Ab/L974WjO4ghv8w8Q7DAiu4AZ/b7g7sW0F944V8NavAyu4HU6Y93Lr7yUiIhJjVHSLSESq8Pm4YcVm8qYvYF15ld1xIsfxdwfeVqtTB8ad2OBQxA4Bq62w575zn9/9hwD+ZnxeWPI2VBVbmUhERCRqqOgWEcu1oX8NgLFzl5M3fUEookS/3kdCegBbhgGc9qy1WWJFTn9I61LvUMQuA9ZhgD33Xfnp7l7uAFXuhAe7w/T7rcskTfP5/F8iIhIRVHSLiOVu6t4xJNfposLbP1T4urm0+PKdfzC43WGJFPUcDhhzhd0pWtZ1TNtWHG8LXyv2EAeY+QB8+qfQZpGmLf0f/P1YuCvL//XiZP9c/HZo+7pdzHlvNTvWFdsdRUREW4aJiPWm9OzEw+u309Z+Fw+wvLyS/ik2FR6RwuGEqbvgL0OgZGPDxzuPhss+D3+uaJbR3e4EzXMlwTmv2Xf/buNgydbgervxD0b3ffs4zuIN8MuXLYkmu719Ofz0Rv1jm+bCmxfAxBvhqPbx4cf7Ty1g/aKivd/P+3A9AL1G5HD8FcPsiiUi7ZxWLxeRsDBNk84zFra58M53O/lxwtCQZIoJ1RXw1sVQvM4/9PiMF8EdZ3eq6OL1wn2dwFtjd5LGdT8UfvkqJGfbl2HTD/DCUa0+3QRqgfiLP4Ye40IWSwBPLTw2BMoLmm/364+g+/jwZLLJWw/OpWBtWZOPd+qbzhk3jgpjIhGJZVq9XEQijmEYbJk0gh9G9mrTdbbUtXKYa6xKSIbz/w3XzIWzX1XB3RrTzo/cgnvS7fDrD+0tuAG6jIbJ9/j/7Ah+kJwBxAHel4+DghUhjdaumSY81Lvlgtvhgu+fb75NDGiu4AbYulI7OoiIPVR0i0hYdUlPY9ukEWw8fDiXds4JepG1iF3gSqLT5vmw4kO7UzQtu20fUoXU+Gv9vaX9T4DETHAEt2aAwe5FFZ85GIrWW5Gw/bm7I9SWttzO54HNP1qfx0Zv3PtdQO3+8+APFicREWlIRbeI2MLtMLinXxcWTRhCt/jAe2cHJydYmErajR0r/Ctyv3iM3UmalxVBRTf4hyef/Sr8fh1c/H7rr/PEMKitDFmsdsc0YWom+ILYX94d26+du7YE9nzasbHc4iQiIg1pITURsVWW28X34wcxYPoCigNof0effKsjSSyqKIRVn8P2pbD0PShaY3eiwKR3sztB07qOgc4Hw+a5QZ9a4Uhgy1/G0OeStzE69LUgXIz7yzAIaoUMAwacZFWaiOBwGvi8LS9TZLR1D0sRkVZQT7eIRIRlk0YQ30KbC/KymJilBRMlCN46+PBmeKQ/vHM5fPNY9BTcAKun252gaYYBF/8Pek4C/IulBSrZV03Pqk0UPHcsvk3zrckXiwrXwtR0KN0Q3HnOOBh9iTWZIsTh5/ULqN0xlwy0OImISEMqukUkYqyfNIIthzfc0iXJgBcGd+fhgRHc6yeR6b1r4ftng97qKmL89yr/6tSRyp0IF70LPScFvd6CCx85dbtY9a8LYb6N26FFi3+dD0+OaN25F7wD6Z1DGifSDBgb2CioXsNzLU4iItKQtgwTEZHYVLAEnomBLZKGnQNnPGt3iuaZJjwxAnPXuqCL7yrDTaJZByf8GQ65zJJ4Ue+HV+D9a1t37kl/hdEXhjZPhCopruaft3zb5OOXPDCexIzYntsuIuGjLcNERER+mhYbEzgXv2V3gpYZBly3EAacRrCb+iWadf6h6R/eBP8824JwMaC1BffYq9tNwQ2QnpHA1X87kvx+6fWOdxmYydV/O1IFt4jYRgupiYhIbKrYCWYwi01FKJ8HyndASge7k7TIOOcfOFfPpOrVU0igFVv8rfrYP2d5qvZT3qt4Y+vOy+gOx90X2ixR4vQbRtkdQUSkHvV0i4hIbErrRHDLe0Wwuiq7EwSu9+Ek3l6IEUTJ3aDl1PTGmrVPBT8Hf05SDkz5KfRZRESkVVR0i4hIbEqLoYWjilbbnSA4Ljcc+wA+2vCxhwpvv2AXQBtzDdwcZc8XEZEYp6JbRERij9cDc1+wO0Xo/PiK3QmCN/oiHI64tl2jpCA0WaJZ7uDA2572Mhx/r2VRRESkdVR0i4hIbPF54Y1zoWCx3UlaltU7sMXediyzPkuouRPh8lkY+Hu7W9Xj/ZfA9l6OaYYBoy8NoKEbRpxueRwREQmeim4REYktH9wIKz+1O0UTDOhxGPzyFbh1M/zfj5DZveVzEqJ0qHXuQPi/+RjxqcEvqib7nPQI9Dqq6cdTOsHUwvDlERGRoGj1chERiR0rPoV5L9mdonGZPeCy6ZCUVf/40LNg1sPNrLRuwtAzrU5nnaxecOsmWP4RvH4BUBfc+TUVEJ9sSbSocuHbUF0Of58M238GTOg8Bn7zMTjUhyIiEskM0zSjemnXYDYlFxGRGFZXBY8Pg/LtdidpyBnn38c6Lb/hY2UF8PQYqC4F84Bdrg2nfxX2q+ZAfGp4slrtkUFQtjnw9pPvg/FXW5dHAvbpp5+yfv16xo0bx5AhQ+yOIyJiq2DqUBXdIiIS/SoK4emxULHD7iSNu+IbyGumSNm2CF77JZRu8RfahuHfn7vDQDjvDX8veSyZmkPAPd5DzoQzX7Q0jjTvnnvuwePxNDjer18/zjvvPBsSiYjYL5g6VOORREQk+r1+XuQW3OOnNF1wez3wwe/g+aP8BTeA0wVdx8IF78JVs2Ov4Ibg5h9XaK6yne68885GC26AFStW8MorUbiyvohImKnoFhGR6Fa4EjZ9Z3eKxh19FxwztfHHKnfBn/vC3OfAW7PvuKcG1n8N3zzu7/GOVVNWBNZu7Qz49HZLo0jjli9fTksDItesWROmNCIi0UtFt4iIRLel79mdoHEnPAITrmu8cDZNeOFoqCpq+vw10+GHly2LZ7uMXOh7fGBtv/0rrJttbR5p4PXXXw+o3fvvv29xEhGR6KaiW0REolddFfz0b7tTNG7zXPA1sSL5uq+haFXL1/jq4dBmijRnvQi5wwJr+8rJ1maRVlu0aJHdEUREIpqKbhERiU6eWvjXmbBjmd1JGrfwDfjfdf5e7QN99ZfArlEaxCrf0SguGc75V2BtfXXwjlYxj0SJiYl2RxARiWgqukVEJDotetPfY0wEb8Ix/xVY99W+7z21MOMhWPNFYOdH8I8WMikdAm+78J/W5ZAGsrOzA2p36aWXWpxERCS6qegWEZHo9MPfwYjwX2OGw78I2OK3oXwHPHc4zLg38POzelqXLVK4EyEhM/D2H9xsXRap59prrw2oXUpKisVJRESiW4S/WxEREWlC0Rowm5gzHSlMH2xdCG/9Gh4dCNt/Du78I/5gTa5Ic0gQPaU/vmxZDGno1FNPbfbxqVOnhieIiEgUU9EtIiLRKSHD7gTB8dUF196dCEPPtCZLpDni1sDbemv8owYkLA466CCmTp1KUlJSveNDhgxRwS0iEiCX3QFERERaZfg5MON+u1NYZ9y1sb1P9/4cTkjNh7ItgbUv3RLcXHBps5tv1rB+EZHWUk+3iIhEp9G/sTuBtY68ze4E4XXhu4G3Tc21LIaIiEioqegWEZHo5IzhwVqj2+Fq0B36B942RUW3iIhEDxXdIiISnd640O4E1uhzDJz0iN0p7NFtfGDtKndam0NERCSEVHSLiEj0Kd4I62fZnSL0jrgNzn/L7hT2OekvgbV74zxrc4iIiIRQDI/NExGRmOTzwnOT7E7Rer2OhLpy2LYYvB6IS4I+R8GE6yFvqN3p7NVxAMSnQU1p8+02fh+ePCIiIiGgoltERKLL7KehMoq3jDr1r5Dexe4UkctTHUAjE0o26e9RRESigoaXi4hI9DBN+CqC5zsnZTf/+KiLVSi2xHAG1m7tN9bmEBERCREV3SIiEj0qCqF6l90pmlZdAif+BdzJgAEONxgO/59HXgQn/NnuhJGv6yGBtfvftdbmEBERCRENLxcRkejhCLAX1C4+D5RvhZtWwM/vQtFaSEiHQadCZne700WHU5+Bxwa13M5bAzVlEJ9qfSYREZE2UNEtIiLRwxEFv7Z+/h9Mug0OOt/uJNEpo3PgbX98FcZdZV0WERGRENDwchERiR7LP7I7Qct2LPevSi6tF+iHKys+sTaHiIhICKjoFhGR6FGxHTDsTtECH9RV2B0iunU5OLB2677xL64nIiISwVR0i4hI9EjtBERBkfXDS3YniG4XvBtYO7MOVn9paRQREZG2UtEtIiLRo/8JEJdsd4qWzXlaQ8zbwp0AmT0Da1tWYG0WERGRNlLRLSIi0SMuCY6aaneKlpUXQNFqu1NEt76TA2vX+SBrc4iIiLSRim4REYkexRth5oN2pwiM6bM7QXSb9IeW26TkQceB1mcRERFpAxXdIiISHbweeOVUqCy0O0nLEjIgq5fdKaJbYgaMu7aZBgb84oWmH/bUwPfPw9Nj4Z5ceKgXfHSL/4MbERGRMIqCDU9FRESA5R9Gx5BtwwGHXAaueLuTRL9j74HkHJj5UP0V4dM6wxnPQ49DGz+vrgpePR02zN53zFMN3z0DP7wIF7wDPSaApxZWfQ6bfoBN3/vbxKfBkF/AkDPAnWjtzyciIu2CYZrRvddGaWkp6enplJSUkJaWZnccERGxyjtXwsLXifjVy/scDee8Dq44u5PElo1zoXQzdBrW8iiCT/4As59qvk33ibDhWzC9TbcZdBqc+RI4NDBQRETqC6YOVU+3iIhEB08VEV9w54+Ec6eBU79eQ67rwUAA+3fXVcN3z7bcbv1XLbf5+V24+3/gTAB8kNkdJtwAg08P/kOV6hJY9QXUVkCH/v69yI1I33NeRERCQe8KREQkOuQOgSXv2J2iecfep4Lbbuu+Al8It2szveDZPbR9xzJ457fwwQ1w9XeQ3qXp84o3wNIPoGQTlKyHFZ+Ct2bf4zn94fRnoPOo0GUVEZGIpHcGIiISHQ66AKbfG7mrgh/3AHQfZ3cKWRtAD3Zb1ZbDX4bBodfC4v9AdTFk9oDRl0C3Q+G5SfsK9aYUroSXToTLvoTcQdZnFhER26joFhGR6JCa6y9oAhkWHE7OBLjwv9B9rN1JBMK4gJ0Xvnls37fbFsP71wdxvs+/wvqMB+DsV0IdTkREIoiKbhERiR4lG+xO0ND//Qjpne1OIXt0HGDTjVuz3oAPlr0PNWUQnxryRCIiEhm0HKeIiEQPXzMrTdvhspkquCPNgJPAiKI+BdMLVbvsTiEiIhZS0S0iItEjUuZMdx0Df9gCnUfYnUQO5IqHo6fanSI4Sdl2JxAREQup6BYRkegx5Ey7E8CpT8FvPoW4ZLuTSFMOvRYOu9nuFIFJzdNzSUQkxqnoFhGR6NFtjL33j0uBoWfZm0ECc+RtcPHHdqcIgN6KiYjEOr3Si4hI9EjMhIQM++7ffXwYV8eWNusxDrL6252ieWVb/KuYi4hIzFLRLSIi0aNojX9PZLtowavoc/bLdido2aJ/251AREQspKJbRESix6L/gGHjry5t6xR9snuDM87uFM2b9YjdCURExEIqukVEJHpUFtp7/8Gn23t/CZ4rHkZeaHeK5pVtsTuBiIhYSEW3iEigygpg52qorbA7SfuV3gVMnz33TsyMjNXTJXjH3g/5I+1O0bRo2ldcRESCpld5EZGWfH4PfP1ww+N9T4BfvR7+PO3ZsLPh09vtuXf+wRCXZM+9pW1ccfCbz+CJg6Bkg91pGkrrZHcCERGxkHq6RUSa88bFjRfcACs/hKnpYY3T7qV0hA4D7Ll3RYE995XQcLrgiq/sTtG4qhK7E4iIiIVUdIuINKWmDJa903K7qenw1Bgo2WR9JoHjH7Lnvskd7LmvhE5iBoy50u4UDanoFhGJaSq6RUSa8q+zA2+7Yxn8ZTAsnGZdHvHrdTh0HRP++/Y8LPz3lNA7/gGYcKPdKeoza6C20u4UIiJiERXdIiJN2fBN8Oe881uorQ59FqnvRBu2WBqqRdSinmnCsg9h63y7kzQ04wG7E4iIiEVUdIuIhNrbl9qdIPblDYXuh4bvfu5kSO8cvvtJ6Pl88OZF8Ma5sPpLu9M09OPLdicQERGLqOgWEWnKQZe07rw1EfiGPhaNvCh89zr0uvDdS6zx36th6X/tTtG06hJ/T7yIiMQcFd0iIk059S+tO09vnMNjXZhWok7IhHFXh+deYo2itbDwNbtTNM8ZD4ZhdwoREbGAim4RkeZMbsXc4ew+oc8hDXnrrL9Hcge48luIT7H+XmKdD2+yO0HLBp9mdwIREbGIy+4AIiIRbfylkDsEXj028HPOfNmyOLKf3MGhvV7HQeCKh4pCSM6B0b+B4ef693eW6LZ2lt0JWmDA4b+3O4SIiFhE7yRERFrSeyxMLYFNC+CFo4FmelgHnwE5vcOVrH075Lfw2R9Dcy2Hy78N2cmPheZ6Ejk2zwdvrd0pmpfVG7L1uiEiEqs0vFxEJFBdRsDUQrhpFWR0r/+YMx6OmgpnvWRHsvbJnQCEaA6szxv6nnOx35oZ8MJRdqdoWUKq3QlERMRC6ukWEQlWSgeY8pP/z3U14HSDQ59h2iMUi9YZ/gJ+2NkhuJZEDE8NTLsITK/dSVpWvt2/AKMWUhMRiUl6lygi0hbueBXcdlk/u+3XMAwwHHD6s5CQ1vbrif3qauDvx8M9HaGm2O40gSndHLqpEiIiEnHU0y0iItHH54Npv2r7dXpNgiNuha6HtP1aYr+6GrgvH0yP3UmC9+1foecR0Pdou5OIiEiIqegWEZHos3YmVO5s/fnOeDj7VegXxKr0EvmemRCdBTeA4YTvn1PRLSISgzQmUkREos/yj9p2/qlPqeCONT4fFK2wO0XrmV7Y/IPdKURExAIqukVEJPqs/7pt5y/4Z2hySOTYsczuBG3njLM7gYiIWEDDy0VEJLr4vLB9aduusWmuv2cUE1Z+Blvm+1eh73M05I8IRUoJt7ItdidouwEn2p1AREQsoKJbRESii7cOTF/brlFbAYv/A5/9yV+sGU7/lk1f3g09JsBZr0BydmjySnikdbU7QdsNPcvuBCIiYgENLxcRkejiToCMHm2/zn+v3Nc7anqB3YX8um/hn6eDN0oX5GqvOvSzO0Hble+wO4GIiFhARbeIiESf7N5tv4a3rokHfLB1Iaz4uO33kPAxDEjJbf35Djd0nwjx6aHLFCxPtX33FhERy6joFhGR6LPmK+vvsfg/1t9DQmtEG/Zu99XBhm+hpsQ/3cAOb/8Wln1gz71FRMQyKrpFRCS6/PQmmLWtO9dwghHgciZt2Qdc7NH7yLadb3rr/zfsfPDmhbBtkU33FxERK6joFhGR6FFW4O8NbI34NBh7JZgBztVO6di6+4h98ob6h4kHJcLeCvk88M0TdqcQEZEQirDfNCIiIs348R+AGcQJBtywDH6/zv919NTATx15YVDRJAIkZgQ3xDx3CHsX0Iski960O4GIiISQim4REYkeyz8Mrv0pz0BaJ0jMBIcT6qoCP7fnYcHdSyLDsfcE1q7LwXD2v6zN0hYrP7c7gYiIhIiKbhERiR41FcG1H3Ri/e/jUgCj5fPcKcHdRyJHfCokBzA1oHgjfHij9Xla692r7E4gIiIhoqJbRESiR22QC6jFHVA8OxzQ79iWzzvx4eDuI5Fl5IW0+BanfBusCkNv8kGtnKZQvSu0OURExDYqukVEJDp4aqBsXXDnOBr5NXfa38Cd1PQ5uUNh+LnB3Uciy9grISHN7hR+8amtOy+uleeJiEjEUdEtIiLR4b/XBtc+q3fjx5My4bqfoPOo+scNJww9Cy6fBUYAQ9AlciXnQHyG3Sn85jzVuvNO/1toc4iIiG0C3KxURETERrWVsGhacOdc3Myiaykd4LIvoaoY1s+GuETofig4g91uSiJWVZTvs95vst0JREQkRFR0i4hI5Jv9ZPDnpOW13CYxAwYcH/y1JfK5E6G2zO4UrXPeW3YnEBGRENLwchERiWymCTP/HNw5nUZak0Wix5gr7E7Qev2OsTuBiIiEkIpuERGJbLOfAV9NcOd0O8SaLBI9Jt5gd4LWae1q5yIiErFUdIuISOSqKYfP/xT8eYNOC3kUiTKGARN/Z3eK4J3wkN0JREQkxFR0i4hI5Fr0FvjqgjzJAd3GWhJHoswhl9qdIDgXfeCfiy4iIjFFRbeIiESuWUHO5QY46g5t+SV+qXmQ2tnuFIGZeBP0nGB3ChERsYCKbhERiUzVpVC6Mfjzxl0Z+iwSveKT7U4QmKP+aHcCERGxiIpuERGJTD/9O/hzDr8VXPGhzyLRq3Cl3QladvBv7U4gIiIWUtEtIiKRqbIw+HO+eRwWvhH6LBLFTLsDtOzwm+1OICIiFlLRLSIikSkuNfhzPJXwzuXw1V9Cn0eij9djd4KWJWRCSge7U4iIiIVUdIuISGT69NbWn/vFVChcFbIoEqWqS+xO0LLjH7Q7gYiIWExFt4iIRJ6airZf45+/aPs1JLoFvd1cmHUbB0POsDuFiIhYTEW3iIhEnsdHtv0axevAjIL5vGKdxEy7EzRt5MVw/n/A6bY7iYiIWMxldwAREZF6SgugcltorlW1C5KyQnMtiT6RuJJ9fDpcO0/zuEVE2hH1dIuISOSorYJH+4fueg71IrZrpVvsTlBfXApc/L4KbhGRdkZFt4iIRI5ZDxHSLZ42zgndtST6fB0hq9gnZMCE6+GaudBpmN1pREQkzDS8XEREIsfsp0J7vbWzoO8xob2mRAefF+a/am+G+Ey46mtI72JvDhERsZWKbhERiRzemtBeb93Xob2eRI/aCqirsufehgN++S8YeII99xcRkYiioltERCLDxnmhv2blztBfU6JDXLK/+DV94bmf4fQv2jf6Ehh3NSSkh+e+IiIS8VR0i4hIZHjxyNBfMyk79NeU6OBwQnpXKF5v7X2ScuDI22H0r629j4iIRC0tpCYiIvZbPcOa606YYs11JTocfJk11zWc4HDBMXfDjctVcIuISLPU0y0iIvZ79dTQX9OVCIMsuK5Ej0Mug2+fgIrtobtmelcYeAoccilk9QrddUVEJGap6BYREXst/Hfor2k44crZob+uRBd3AlzyMTxzKHhCsKja0LPgFy+0/ToiItKuaHi5iIjYx+eDdy4N3fXcyTDyYritALJ7hu66Er2ye8PJj7f9Oqn5/uHkIiIiQVLRLSIi9vB64P5WDM89dAq4E+sf6zUJpiyC27bAKY+Dyx2SiBIjBp8OroTWnz/iV/Db6ZDWKXSZRESk3dDwchERscd710LdruDO+f1mSEyBw26C9bPBUw15QzS3VprnioNfvAjTfhXceWld4TefQnq+NblERKRdUNEtIiLh562Dha8Ff15iiv+/8anQb3JoM0lsG3gSjPo1zHup5bYdB8Gv3oL0ztbnEhGRmKeiW0REwm/Ru8Gfc82CUKeQ9uakv/hHRXzzOFQW7j5oQGYP6H0UDDsbuh1iZ0IREYlBKrpFRCS8vHXwbisWT8vRwmjSRoYBh/4fjL0Stv0Enlro0B+SsuxOJiIiMUxFt4iIhNfdHYM/57pFoc8h7ZfTDZ1H2Z1CRETaCa1eLiIi4VOwAvAFd06v4yGzmyVxRERERKymoltERMLD54NnDg7+vAvfCH0WERERkTBR0S0iIuHx6ODgz5laEvocIiIiImGkoltERKz36R1QviW4c/5P87hFREQk+qnoFhERa5UVwbePBXmSAVmaxy0iIiLRT0W3iIhY65FewZ8ztTjkMURERETsoKJbRESsMzUbMIM75/pllkQRERERsYP26RYREWtMTQ/+nLHXQHqn0GcRERERsYl6ukVEJPRaU3An58Jx94Y+i4iIiIiNVHSLiEhoLfpf6867aXloc4iIiIhEAEuL7nvvvZfx48eTlJRERkZGo202bNjAySefTHJyMjk5Ofzf//0ftbW1VsYSERGrmCb85/zgzzv3LTCM0OcRERERsZmlc7pra2s566yzGDduHC+++GKDx71eLyeeeCIdOnTg66+/ZufOnVx00UWYpslf//pXK6OJiIgVFrwW/DnDL4D+x4Q+i4iIiEgEsLTovvPOOwF4+eWXG338008/5eeff2bjxo3k5+cD8Mgjj3DxxRdz7733kpaWZmU8EREJtdlPBX/O6U+GPoeIiIhIhLB1Tvfs2bMZMmTI3oIb4Nhjj6WmpoZ58+Y1ek5NTQ2lpaX1vkREJALUVsL2JcGdc+MKa7KIiIiIRAhbi+5t27aRm5tb71hmZiZxcXFs27at0XPuv/9+0tPT93517do1HFFFRKQlRrC/UhIhNbflZiIiIiJRLOiie+rUqRiG0ezXDz/8EPD1jEYWzjFNs9HjALfeeislJSV7vzZu3BjsjyAiIlZwJ0D+yMCL79v1+i0iIiKxL+g53ddccw3nnHNOs2169OgR0LXy8vL47rvv6h3btWsXdXV1DXrA94iPjyc+Pj6g64uISJgd+n/w74tbaJQFU9eGI42IiIiI7YIuunNycsjJyQnJzceNG8e9997L1q1b6dSpE+BfXC0+Pp5Ro0aF5B4iIhJGg0+HgiUw62FwuMDn2feYMwEu/RQ6Dbcvn4iIiEiYWbp6+YYNGygqKmLDhg14vV4WLFgAQJ8+fUhJSWHy5MkMGjSICy64gIcffpiioiJuuukmLrvsMq1cLiISrY68HfodB3NfhK3zwZ0Eg06Fgy6ApCy704mIiIiElWGapmnVxS+++GL+8Y9/NDg+ffp0jjjiCMBfmF911VV8+eWXJCYmct555/HnP/854CHkpaWlpKenU1JSokJdRERERERELBdMHWpp0R0OKrpFREREREQknIKpQ23dMkxEREREREQklqnoFhEREREREbGIim4RERERERERi6joFhEREREREbGIim4RERERERERi6joFhEREREREbGIim4RERERERERi6joFhEREREREbGIim4RERERERERi6joFhEREREREbGIy+4AIiIiEgSfD0o3gWlCehdwOO1OJCIiIs1Q0S0iIhINfD54uA9U7ax/vMtYuOQjcGjwmoiISCTSb2gREZFIZ5pwV2bDghtg0xy4K9vfRkRERCKOim4REZFId2d2Cw18MO3XYYkiIiIiwVHRLSIiEvG8LTdZ9o71MURERCRoKrpFREQi2bYldicQERGRNlDRLSIiEqHMzQvxvnis3TFERESkDbR6uYiISATyPNIXZ9l2tCGYiIhIdFNPt4iISISpe3wozrLtwZ3Ucbg1YURERKRNVHSLiIhEELOuFteuDQAYwZx41SxL8oiIiEjbqOgWERGJILVvnoVBEAW3Iw6mlliYSERERNpCc7pFREQiiKNwVUDtTMD4UxE4NOtbREQkkqmnW0REJIL4sroH1i4+WQW3iIhIFFDRLSIiEkHiznkbE39PdlNMwDjzlTAlEhERkbZQ0S0iIhJBDHcCnsyuGDRdePvcCTj6Hh3OWCIiItJKKrpFREQijPu6xdRldGpw3AQ88ck4bysIfygRERFpFS2kJiIiEoHcU5bhKy+k7tUTcJRuxUzKwnnBu7gyetodTURERIKgoltERCRCOVJyiLvye7tjiIiISBtoeLmIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVx2BxAREZHoVOXx0OerxXj3O9Y5zsG8Q4fZlklERCTSqKdbREREgvb4qs30PKDgBthc6yNv+gK83gMfERERaZ9UdIuIiEjQ7t+4o9nHO89aFKYkIiIikU1Ft4iIiARlyKyFAbVbs2uXxUlEREQin4puERERCUqh1wyo3WEL1lucREREJPKp6BYRERFLaFa3iIiIim4RERGxyMGpCXZHEBERsZ2KbhEREQnKuyO6B9TuvdEDLE4iIiIS+VR0i4iISFDGZma22KZPgisMSURERCKfim4REREJ2rZJI2iqrB6WFMfX44aENY+IiEik0sfQIiIi0iqbJo0A4NFVm/m0sJhruuZyUucce0OJiIhEGMM0zcD2/YhQpaWlpKenU1JSQlpamt1xREREREREJMYFU4dqeLmIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFhERbeIiIiIiIiIRVR0i4iIiIiIiFjEZXeAtjJNE4DS0lKbk4iIiIiIiEh7sKf+3FOPNifqi+6ysjIAunbtanMSERERERERaU/KyspIT09vto1hBlKaRzCfz8eWLVtITU3FMAy740iEKS0tpWvXrmzcuJG0tDS740iM0/NNwk3POQknPd8k3PSck3AK9vlmmiZlZWXk5+fjcDQ/azvqe7odDgddunSxO4ZEuLS0NL1YS9jo+SbhpuechJOebxJues5JOAXzfGuph3sPLaQmIiIiIiIiYhEV3SIiIiIiIiIWUdEtMS0+Pp477riD+Ph4u6NIO6Dnm4SbnnMSTnq+SbjpOSfhZOXzLeoXUhMRERERERGJVOrpFhEREREREbGIim4RERERERERi6joFhEREREREbGIim4RERERERERi6jolnajR48eGIZR7+uWW26xO5bEkKeffpqePXuSkJDAqFGj+Oqrr+yOJDFq6tSpDV7P8vLy7I4lMWLWrFmcfPLJ5OfnYxgG7777br3HTdNk6tSp5Ofnk5iYyBFHHMGSJUvsCSsxoaXn3MUXX9zgNW/s2LH2hJWod//993PwwQeTmppKx44dOe2001i+fHm9NqF+nVPRLe3KXXfdxdatW/d+3X777XZHkhgxbdo0pkyZwm233cb8+fOZOHEixx9/PBs2bLA7msSowYMH13s9W7Rokd2RJEZUVFQwfPhwnnzyyUYff+ihh3j00Ud58sknmTt3Lnl5eRxzzDGUlZWFOanEipaecwDHHXdcvde8Dz/8MIwJJZbMnDmTq6++mjlz5vDZZ5/h8XiYPHkyFRUVe9uE+nVOW4ZJu9GjRw+mTJnClClT7I4iMWjMmDGMHDmSZ555Zu+xgQMHctppp3H//ffbmExi0dSpU3n33XdZsGCB3VEkxhmGwTvvvMNpp50G+Ht/8vPzmTJlCr///e8BqKmpITc3lwcffJDLL7/cxrQSCw58zoG/p7u4uLhBD7hIKOzYsYOOHTsyc+ZMDjvsMEte59TTLe3Kgw8+SHZ2NiNGjODee++ltrbW7kgSA2pra5k3bx6TJ0+ud3zy5Ml8++23NqWSWLdy5Ury8/Pp2bMn55xzDmvWrLE7krQDa9euZdu2bfVe7+Lj4zn88MP1eieWmjFjBh07dqRfv35cdtllbN++3e5IEiNKSkoAyMrKAqx5nXO1PaZIdLjuuusYOXIkmZmZfP/999x6662sXbuWF154we5oEuUKCwvxer3k5ubWO56bm8u2bdtsSiWxbMyYMbzyyiv069ePgoIC7rnnHsaPH8+SJUvIzs62O57EsD2vaY293q1fv96OSNIOHH/88Zx11ll0796dtWvX8sc//pEjjzySefPmER8fb3c8iWKmaXLDDTcwYcIEhgwZAljzOqeiW6La1KlTufPOO5ttM3fuXEaPHs3111+/99iwYcPIzMzkzDPP3Nv7LdJWhmHU+940zQbHRELh+OOP3/vnoUOHMm7cOHr37s0//vEPbrjhBhuTSXuh1zsJp7PPPnvvn4cMGcLo0aPp3r07H3zwAWeccYaNySTaXXPNNfz00098/fXXDR4L5eucim6Jatdccw3nnHNOs2169OjR6PE9q16uWrVKRbe0SU5ODk6ns0Gv9vbt2xt8SipiheTkZIYOHcrKlSvtjiIxbs8q+du2baNTp057j+v1TsKpU6dOdO/eXa950ibXXnst7733HrNmzaJLly57j1vxOqc53RLVcnJyGDBgQLNfCQkJjZ47f/58gHr/mERaIy4ujlGjRvHZZ5/VO/7ZZ58xfvx4m1JJe1JTU8PSpUv1eiaW69mzJ3l5efVe72pra5k5c6Ze7yRsdu7cycaNG/WaJ61imibXXHMNb7/9Nl9++SU9e/as97gVr3Pq6ZZ2Yfbs2cyZM4dJkyaRnp7O3Llzuf766znllFPo1q2b3fEkBtxwww1ccMEFjB49mnHjxvHcc8+xYcMGrrjiCrujSQy66aabOPnkk+nWrRvbt2/nnnvuobS0lIsuusjuaBIDysvLWbVq1d7v165dy4IFC8jKyqJbt25MmTKF++67j759+9K3b1/uu+8+kpKSOO+882xMLdGsuedcVlYWU6dO5Re/+AWdOnVi3bp1/OEPfyAnJ4fTTz/dxtQSra6++mpee+01/vvf/5Kamrp3pGJ6ejqJiYkYhhH61zlTpB2YN2+eOWbMGDM9Pd1MSEgw+/fvb95xxx1mRUWF3dEkhjz11FNm9+7dzbi4OHPkyJHmzJkz7Y4kMerss882O3XqZLrdbjM/P98844wzzCVLltgdS2LE9OnTTaDB10UXXWSapmn6fD7zjjvuMPPy8sz4+HjzsMMOMxctWmRvaIlqzT3nKisrzcmTJ5sdOnQw3W632a1bN/Oiiy4yN2zYYHdsiVKNPdcA86WXXtrbJtSvc9qnW0RERERERMQimtMtIiIiIiIiYhEV3SIiIiIiIiIWUdEtIiIiIiIiYhEV3SIiIiIiIiIWUdEtIiIiIiIiYhEV3SIiIiIiIiIWUdEtIiIiIiIiYhEV3SIiIiIiIiIWUdEtIiIiIiIiYhEV3SIiIiIiIiIWUdEtIiIiIiIiYhEV3SIiIiIiIiIW+X+So7+lmHQ79wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 1, figsize=(12,12))\n",
+ "ax.scatter(\n",
+ " umap_embedding[:, 0],\n",
+ " umap_embedding[:, 1],\n",
+ " c=[sns.color_palette()[x] for x in labels],\n",
+ " lw=1\n",
+ ")\n",
+ "plt.gca().set_aspect('equal', 'datalim')\n",
+ "plt.title('UMAP Embedding', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e2d47bb4-4345-497e-9fdf-a0a2a0ac41c5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fig, ax = plt.subplots(1, 1, figsize=(12,12))\n",
+ "ax.scatter(\n",
+ " umap_embedding[:, 0],\n",
+ " umap_embedding[:, 1],\n",
+ " c=[sns.color_palette()[x] for x in labels],\n",
+ " lw=1\n",
+ ")\n",
+ "plt.gca().set_aspect('equal', 'datalim')\n",
+ "plt.title('UMAP Embedding', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "a7ef4871-a108-4071-8411-0ccbcfac5731",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "ca38d85ce9c74a05bdfa8b37dd3523fb",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.613708019256592\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "406a099773e6468a80ffedf3d0864a97",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.648848056793213\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9fbee6b26a9f4cf99e243837210cd646",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.675898551940918\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "420ddbf9a9aa417da6251a88bd20c78f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.641678810119629\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "94abfd97502644bb82464d1c933b8f25",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epoch 0: loss=6.62826681137085\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#patch_list = []\n",
+ "models = []\n",
+ "embeddings = []\n",
+ "patch_emb=[] #ADDED\n",
+ "for d in dates[:5]:\n",
+ " patch = tg_graphs[d]\n",
+ " model = VGAE(encoder=Encoder(64, patch.num_node_features))\n",
+ " model, _ = train(patch, model, VGAE_loss, num_epochs=5, lr=0.01)\n",
+ " patch_emb.append(l2g.Patch(patch.nodes, model.encode(patch).detach().numpy())) #ADDED\n",
+ " #coordinates = model.encode(patch).detach().numpy()\n",
+ " models.append(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "895dffe3-dad3-4307-a4c0-416cc8d65aca",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "99fde5e3-f417-49d8-b884-62d2a8d6f83b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Optimizing...\n",
+ "Iteration Cost Gradient norm \n",
+ "--------- ----------------------- -------------- \n",
+ " 1 +5.4860544744813684e+04 2.04721360e+04 \n",
+ " 2 +3.9670914658422887e+04 1.19337548e+04 \n",
+ " 3 +3.3690066539589570e+04 1.22036296e+04 \n",
+ " 4 +2.7659984168746618e+04 8.89788175e+03 \n",
+ " 5 +2.3084380970704951e+04 6.00719218e+03 \n",
+ " 6 +2.1051996162559808e+04 8.25995709e+03 \n",
+ " 7 +1.7178453237412312e+04 3.79868887e+03 \n",
+ " 8 +1.4889430909452663e+04 8.46747770e+03 \n",
+ " 9 +1.1063015605869354e+04 3.51213384e+03 \n",
+ " 10 +1.0269321962403857e+04 5.68108222e+03 \n",
+ " 11 +8.4364282801562458e+03 2.20447139e+03 \n",
+ " 12 +4.5389774161649102e+03 5.13400935e+03 \n",
+ " 13 +3.3297834617288663e+03 2.41845231e+03 \n",
+ " 14 +3.0841141190005396e+03 2.33844088e+03 \n",
+ " 15 +2.8087353394861675e+03 1.85256425e+03 \n",
+ " 16 +2.5661941746624084e+03 1.28600579e+03 \n",
+ " 17 +2.4236010689123186e+03 1.87642847e+03 \n",
+ " 18 +2.2204893127051105e+03 1.25851284e+03 \n",
+ " 19 +2.1059505362195910e+03 1.67421790e+03 \n",
+ " 20 +1.9539837160030263e+03 1.14241000e+03 \n",
+ " 21 +1.8427236078457397e+03 1.27657565e+03 \n",
+ " 22 +1.8353406278108998e+03 1.93765431e+03 \n",
+ " 23 +1.7880890399795410e+03 1.80919398e+03 \n",
+ " 24 +1.6545357377363910e+03 9.82159589e+02 \n",
+ " 25 +1.5916271563236405e+03 1.46484323e+03 \n",
+ " 26 +1.4661589326336425e+03 6.74197263e+02 \n",
+ " 27 +1.3643189504113859e+03 1.47572431e+03 \n",
+ " 28 +1.2919985714467487e+03 1.38517183e+03 \n",
+ " 29 +1.1975339333440318e+03 9.40694833e+02 \n",
+ " 30 +1.1672354544461873e+03 1.05724199e+03 \n",
+ " 31 +1.0980628035537125e+03 4.87316821e+02 \n",
+ " 32 +8.7163796297994168e+02 7.42861776e+02 \n",
+ " 33 +8.3770039203691317e+02 7.30205033e+02 \n",
+ " 34 +8.3342284246739496e+02 1.02630549e+03 \n",
+ " 35 +8.0553961776280437e+02 8.71763413e+02 \n",
+ " 36 +7.6819887474839163e+02 4.79351607e+02 \n",
+ " 37 +7.4499657553624002e+02 7.45806766e+02 \n",
+ " 38 +7.0971413674005930e+02 4.99980870e+02 \n",
+ " 39 +6.8625475530650226e+02 6.81411545e+02 \n",
+ " 40 +6.6223250245831571e+02 6.73798533e+02 \n",
+ " 41 +6.5057794993496145e+02 7.18454487e+02 \n",
+ " 42 +6.1874305174765630e+02 3.30006053e+02 \n",
+ " 43 +5.9789073035650392e+02 1.31661218e+03 \n",
+ " 44 +5.3332343672681020e+02 7.01296250e+02 \n",
+ " 45 +5.0535915077525738e+02 2.99038697e+02 \n",
+ " 46 +4.8565654292053819e+02 7.43807467e+02 \n",
+ " 47 +4.5736704559040004e+02 3.91042557e+02 \n",
+ " 48 +4.4542384960236268e+02 3.61122523e+02 \n",
+ " 49 +4.3466578249509274e+02 3.25410515e+02 \n",
+ " 50 +4.3006518743594012e+02 6.89982480e+02 \n",
+ " 51 +4.1571157887875859e+02 4.73179836e+02 \n",
+ " 52 +4.1576364944018894e+02 6.80950435e+02 \n",
+ "Terminated - min step_size reached after 52 iterations, 8.92 seconds.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# ADDED \n",
+ "## HOW TO GET THE TOTAL EMBEDDING WITH NEW VERSION OF THE ALGORITHM\n",
+ "\n",
+ "import manopt_optimization as mopt\n",
+ "intersection_nodes=mopt.double_intersections_nodes(patch_emb)\n",
+ "\n",
+ "dim=64\n",
+ "res, emb =mopt.optimization(patch_emb, intersection_nodes, dim) #res contain the result of the optimization, i.e., scales, rotations and traslations,\n",
+ " # emb is the embedding of every nodes using the scales, rotations and translations \n",
+ " #found with the optimization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2c0585d4-2174-4834-81ce-471a65bec069",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f3fc6c14-f13f-4572-b854-7080aa0fc8ac",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "dcd4bde3-651c-4dd5-9a8f-1dcc92e20ecb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9021ade1b6e643f093514b6275f4ee4b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Compute relative transformations: 0%| | 0/20 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2eb7447b9afe4824af2b024f5cdf5201",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Compute mean embedding: 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#ADDED \n",
+ "#TO GET THE EMBEDDING USING STANDARD L2G\n",
+ "pr=l2g.AlignmentProblem(patch_emb)\n",
+ "old_emb=pr.get_aligned_embedding()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3ff0a1c6-1b07-4ea0-88b5-4474fdb3699c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "0d670d22-c6cb-42b0-9f02-b188f29e5302",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reduce_data(data, date, most_common):\n",
+ " countries = dl.get_nodes(ts=date)['country'].to_list()\n",
+ " indices = [i for i in range(len(countries)) if countries[i] in most_common]\n",
+ " points = data[indices, :]\n",
+ " labels = [most_common.index(countries[i]) for i in indices]\n",
+ " return points, labels"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "cee98c96-b390-43d3-88ae-1a1b5f0bc10c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def create_plot(umap_embedding, labels, p):\n",
+ " fig, ax = plt.subplots(1, 1, figsize=(12,12))\n",
+ " ax.scatter(\n",
+ " umap_embedding[p][:, 0],\n",
+ " umap_embedding[p][:, 1],\n",
+ " c=[sns.color_palette()[x] for x in labels[p]],\n",
+ " lw=1\n",
+ " )\n",
+ " return fig"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "1999cb59-72ad-4195-90fb-81de8b8bcc16",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "reducer = umap.UMAP(n_neighbors=5, min_dist=0.0, metric='euclidean')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 250,
+ "id": "600815b4-92b2-4bb3-8e59-73e4201478a0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "embeddings = []\n",
+ "for i,d in enumerate(dates):\n",
+ " patch = tg_graphs[d]\n",
+ " embeddings.append(models[i].encode(patch).detach().numpy())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "c861a582-44cf-407c-9984-6c2b6d5b9b71",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def create_umap(points, reducer):\n",
+ " return reducer.fit(points)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "d37a1a99-0128-4da5-8d25-81705248df4f",
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "KeyboardInterrupt",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[33], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m reducer \u001b[38;5;241m=\u001b[39m umap\u001b[38;5;241m.\u001b[39mUMAP(n_neighbors\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m, min_dist\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.0\u001b[39m, metric\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124meuclidean\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m \u001b[43mreducer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43memb\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/umap_.py:2891\u001b[0m, in \u001b[0;36mUMAP.fit_transform\u001b[0;34m(self, X, y, force_all_finite)\u001b[0m\n\u001b[1;32m 2855\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfit_transform\u001b[39m(\u001b[38;5;28mself\u001b[39m, X, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, force_all_finite\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 2856\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Fit X into an embedded space and return that transformed\u001b[39;00m\n\u001b[1;32m 2857\u001b[0m \u001b[38;5;124;03m output.\u001b[39;00m\n\u001b[1;32m 2858\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 2889\u001b[0m \u001b[38;5;124;03m Local radii of data points in the embedding (log-transformed).\u001b[39;00m\n\u001b[1;32m 2890\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 2891\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_all_finite\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2892\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 2893\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_dens:\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/umap_.py:2784\u001b[0m, in \u001b[0;36mUMAP.fit\u001b[0;34m(self, X, y, force_all_finite)\u001b[0m\n\u001b[1;32m 2780\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 2781\u001b[0m epochs \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 2782\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epochs_list \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epochs_list \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epochs\n\u001b[1;32m 2783\u001b[0m )\n\u001b[0;32m-> 2784\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_, aux_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_embed_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2785\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raw_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2786\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2787\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2788\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# JH why raw data?\u001b[39;49;00m\n\u001b[1;32m 2789\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2791\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epochs_list \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 2792\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding_list\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m aux_data:\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/umap_.py:2830\u001b[0m, in \u001b[0;36mUMAP._fit_embed_data\u001b[0;34m(self, X, n_epochs, init, random_state)\u001b[0m\n\u001b[1;32m 2826\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_fit_embed_data\u001b[39m(\u001b[38;5;28mself\u001b[39m, X, n_epochs, init, random_state):\n\u001b[1;32m 2827\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"A method wrapper for simplicial_set_embedding that can be\u001b[39;00m\n\u001b[1;32m 2828\u001b[0m \u001b[38;5;124;03m replaced by subclasses.\u001b[39;00m\n\u001b[1;32m 2829\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 2830\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msimplicial_set_embedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2831\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2832\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2833\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2834\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initial_alpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2835\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_a\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2836\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_b\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2837\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepulsion_strength\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2838\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnegative_sample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2839\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2840\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2841\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2842\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_input_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2843\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2844\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdensmap\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2845\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_densmap_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2846\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2847\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2848\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2849\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_metric\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meuclidean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43ml2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2850\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2851\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2852\u001b[0m \u001b[43m \u001b[49m\u001b[43mtqdm_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtqdm_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2853\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/umap_.py:1107\u001b[0m, in \u001b[0;36msimplicial_set_embedding\u001b[0;34m(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel, verbose, tqdm_kwds)\u001b[0m\n\u001b[1;32m 1103\u001b[0m embedding \u001b[38;5;241m=\u001b[39m noisy_scale_coords(\n\u001b[1;32m 1104\u001b[0m embedding, random_state, max_coord\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m, noise\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.0001\u001b[39m\n\u001b[1;32m 1105\u001b[0m )\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(init, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m init \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspectral\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 1107\u001b[0m embedding \u001b[38;5;241m=\u001b[39m \u001b[43mspectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1108\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1109\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1110\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1111\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1112\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1113\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1114\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1115\u001b[0m \u001b[38;5;66;03m# We add a little noise to avoid local minima for optimization to come\u001b[39;00m\n\u001b[1;32m 1116\u001b[0m embedding \u001b[38;5;241m=\u001b[39m noisy_scale_coords(\n\u001b[1;32m 1117\u001b[0m embedding, random_state, max_coord\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m, noise\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.0001\u001b[39m\n\u001b[1;32m 1118\u001b[0m )\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/spectral.py:304\u001b[0m, in \u001b[0;36mspectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds, tol, maxiter)\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mspectral_layout\u001b[39m(\n\u001b[1;32m 264\u001b[0m data,\n\u001b[1;32m 265\u001b[0m graph,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 271\u001b[0m maxiter\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 272\u001b[0m ):\n\u001b[1;32m 273\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;124;03m Given a graph compute the spectral embedding of the graph. This is\u001b[39;00m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;124;03m simply the eigenvectors of the laplacian of the graph. Here we use the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;124;03m The spectral embedding of the graph.\u001b[39;00m\n\u001b[1;32m 303\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 304\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_spectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 305\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 306\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 307\u001b[0m \u001b[43m \u001b[49m\u001b[43mdim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdim\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 308\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 309\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 310\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrandom\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaxiter\u001b[49m\n\u001b[1;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/spectral.py:467\u001b[0m, in \u001b[0;36m_spectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds, init, method, tol, maxiter)\u001b[0m\n\u001b[1;32m 464\u001b[0m n_components, labels \u001b[38;5;241m=\u001b[39m scipy\u001b[38;5;241m.\u001b[39msparse\u001b[38;5;241m.\u001b[39mcsgraph\u001b[38;5;241m.\u001b[39mconnected_components(graph)\n\u001b[1;32m 466\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m n_components \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m--> 467\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmulti_component_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 468\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 469\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 470\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 471\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 472\u001b[0m \u001b[43m \u001b[49m\u001b[43mdim\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 473\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 474\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 475\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 476\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 478\u001b[0m sqrt_deg \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39msqrt(np\u001b[38;5;241m.\u001b[39masarray(graph\u001b[38;5;241m.\u001b[39msum(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m))\u001b[38;5;241m.\u001b[39msqueeze())\n\u001b[1;32m 479\u001b[0m \u001b[38;5;66;03m# standard Laplacian\u001b[39;00m\n\u001b[1;32m 480\u001b[0m \u001b[38;5;66;03m# D = scipy.sparse.spdiags(diag_data, 0, graph.shape[0], graph.shape[0])\u001b[39;00m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;66;03m# L = D - graph\u001b[39;00m\n\u001b[1;32m 482\u001b[0m \u001b[38;5;66;03m# Normalized Laplacian\u001b[39;00m\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/spectral.py:243\u001b[0m, in \u001b[0;36mmulti_component_layout\u001b[0;34m(data, graph, n_components, component_labels, dim, random_state, metric, metric_kwds, init, tol, maxiter)\u001b[0m\n\u001b[1;32m 234\u001b[0m result[component_labels \u001b[38;5;241m==\u001b[39m label] \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 235\u001b[0m random_state\u001b[38;5;241m.\u001b[39muniform(\n\u001b[1;32m 236\u001b[0m low\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39mdata_range,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[38;5;241m+\u001b[39m meta_embedding[label]\n\u001b[1;32m 241\u001b[0m )\n\u001b[1;32m 242\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 243\u001b[0m component_embedding \u001b[38;5;241m=\u001b[39m \u001b[43m_spectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcomponent_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43mdim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdim\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 249\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 250\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaxiter\u001b[49m\n\u001b[1;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 254\u001b[0m expansion \u001b[38;5;241m=\u001b[39m data_range \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mmax(np\u001b[38;5;241m.\u001b[39mabs(component_embedding))\n\u001b[1;32m 255\u001b[0m component_embedding \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m expansion\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/umap/spectral.py:521\u001b[0m, in \u001b[0;36m_spectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds, init, method, tol, maxiter)\u001b[0m\n\u001b[1;32m 518\u001b[0m X[:, \u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m=\u001b[39m sqrt_deg \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mlinalg\u001b[38;5;241m.\u001b[39mnorm(sqrt_deg)\n\u001b[1;32m 520\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124meigsh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 521\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m \u001b[43mscipy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meigsh\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 522\u001b[0m \u001b[43m \u001b[49m\u001b[43mL\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 523\u001b[0m \u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 524\u001b[0m \u001b[43m \u001b[49m\u001b[43mwhich\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 525\u001b[0m \u001b[43m \u001b[49m\u001b[43mncv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_lanczos_vectors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 526\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtol\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;241;43m1e-4\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 527\u001b[0m \u001b[43m \u001b[49m\u001b[43mv0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mL\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 528\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaxiter\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 529\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlobpcg\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 531\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings():\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:1689\u001b[0m, in \u001b[0;36meigsh\u001b[0;34m(A, k, M, sigma, which, v0, ncv, maxiter, tol, return_eigenvectors, Minv, OPinv, mode)\u001b[0m\n\u001b[1;32m 1687\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _ARPACK_LOCK:\n\u001b[1;32m 1688\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m params\u001b[38;5;241m.\u001b[39mconverged:\n\u001b[0;32m-> 1689\u001b[0m \u001b[43mparams\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miterate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1691\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m params\u001b[38;5;241m.\u001b[39mextract(return_eigenvectors)\n",
+ "File \u001b[0;32m~/pytorch_env/my_project_env/lib/python3.8/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:535\u001b[0m, in \u001b[0;36m_SymmetricArpackParams.iterate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21miterate\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 534\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mido, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtol, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresid, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mv, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miparam, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mipntr, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo \u001b[38;5;241m=\u001b[39m \\\n\u001b[0;32m--> 535\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_arpack_solver\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mido\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbmat\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwhich\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 536\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtol\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mv\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miparam\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 537\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mipntr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mworkd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mworkl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 539\u001b[0m xslice \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mslice\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mipntr[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mipntr[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn)\n\u001b[1;32m 540\u001b[0m yslice \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mslice\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mipntr[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mipntr[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn)\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+ ]
+ }
+ ],
+ "source": [
+ "reducer = umap.UMAP(n_neighbors=5, min_dist=0.0, metric='euclidean')\n",
+ "reducer.fit_transform(emb)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 254,
+ "id": "e7fc1254-925a-42eb-a9ae-cf8cf17b80fe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "points = []\n",
+ "labels = []\n",
+ "umaps = []\n",
+ "for i,d in enumerate(dates):\n",
+ " p, l = reduce_data(embeddings[i], d, most_common)\n",
+ " points.append(p)\n",
+ " labels.append(l)\n",
+ " umaps.append(create_umap(p, reducer))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 255,
+ "id": "3b1d8ce1-4bce-4089-ad7a-0a6974716bd6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPcCAYAAABcktgjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hcZd3G8e85U7b3bHZTNr0nkISEhIRgQgm9ht6kqfgK0qwoSkQRREVQFFEIHUHpVUBIAVJIIL33Xrb3nXae949NNtlsT3Zmttwfr7nYOfOcmd8ssnPueZpljDGIiIiIiIiISKuzo12AiIiIiIiISEel0C0iIiIiIiISJgrdIiIiIiIiImGi0C0iIiIiIiISJgrdIiIiIiIiImGi0C0iIiIiIiISJgrdIiIiIiIiImGi0C0iIiIiIiISJgrdIiIiIiIiImGi0C0iIh3W9OnTsSyLvLy8eh8fMWIEU6ZMqbm/ZcsWLMvCsiymT59e7zk33nhjTZuGHHfccViWxR/+8Id6H3/mmWdqnsOyLNxuNz179uSGG25g586dTb6vQ889/Hb99dc3eX5zHahz0aJFrfacDTnw76o5Dv/3c6DOLVu2hKc4ERGRo+COdgEiIiJtTVJSEs888wy//OUvse2D30+XlZXxn//8h+TkZEpKSuo9d8mSJSxevBiAp556ih/+8IcNvs7TTz/NkCFDqKysZM6cOTzwwAPMnj2b5cuXk5CQ0GiNl1xyCT/4wQ/qHM/MzGzOW+xQzjnnHObNm0e3bt2iXYqIiEgdCt0iIiKHufzyy3nyySf55JNPmDp1as3xV155hVAoxIUXXsgLL7xQ77lPPvkkUB0E33vvPebOncvEiRPrbTtixAjGjh0LwMknn0woFOLXv/41b775JldffXWjNWZlZXHCCSccydvrcDIzMzvllw0iItI+aHi5iIjIYQYPHszEiROZMWNGreMzZsxg2rRppKSk1HteVVUVL730EmPGjOFPf/pTzTnNdSBEb9269Qgrr+36668nMTGRNWvWcMYZZ5CQkEC3bt148MEHAZg/fz6TJk0iISGBQYMG8eyzz9b7PIWFhdxwww2kp6eTkJDAeeedx6ZNm+q0+9///sepp55KcnIy8fHxnHjiiXzyySd12r333nuMGjWKmJgY+vbt2+Aw/JKSEr797W+TkZFBYmIiZ555JuvWravTrr7h5VOmTGHEiBEsXLiQk046ifj4ePr168eDDz6I4zi1zl+5ciWnn3468fHxZGZmcsstt/Dee+9hWRazZs1q6NcrIiLSLArdIiIi9bjpppt48803KSwsBGDt2rXMnTuXm266qcFzXn/9dQoLC7nxxhsZOHAgkyZN4pVXXqGsrKxZr7lhwwageUPEjTEEg8E6N2NMrXaBQIBp06Zxzjnn8NZbb3HWWWdx991387Of/YzrrruOG2+8kTfeeIPBgwdz/fXX89VXX9X7u7Btm5deeolHHnmEL7/8kilTplBUVFTT5oUXXuD0008nOTmZZ599ln//+9+kp6dzxhln1Aren3zyCRdccAFJSUm8/PLL/P73v+ff//43Tz/9dJ33d+GFF/L888/zgx/8gDfeeIMTTjiBs846q1m/S4A9e/Zw9dVXc8011/D222/XvPdDRyns3r2byZMns3btWh5//HGee+45SktLufXWW5v9OiIiIo0yIiIiHdS9995rAJObm1vv48OHDzeTJ0+uub9582YDmN///vemtLTUJCYmmscee8wYY8yPfvQj07dvX+M4jrnllltMfR+hp5xyiomNjTWFhYXGGGOefvppA5innnqqVrsDx+fPn28CgYApLS017777rsnMzDRJSUlmz549jb4voMHb888/X9PuuuuuM4B57bXXao4FAgGTmZlpAPP111/XHM/Pzzcul8vcdddddeq86KKLar3+F198YQDzm9/8xhhjTHl5uUlPTzfnnXderXahUMiMHDnSjBs3rubY+PHjTffu3U1lZWXNsZKSEpOenl7rd/rBBx8YwDz66KO1nvP+++83gLn33nvr1Ll58+aaY5MnTzaAWbBgQa3zhw0bZs4444ya+z/60Y+MZVlm5cqVtdqdccYZBjAzZ840IiIiR0M93SIiIvVITEzk0ksvZcaMGQSDQZ577jluuOGGBlfY3rx5MzNnzmTatGmkpqYCcOmll5KUlNTgEPMTTjgBj8dDUlIS5557LtnZ2XzwwQdkZWU1Wd9ll13GwoUL69zOPvvsWu0sy6p1zO12M2DAALp168bo0aNrjqenp9O1a9d6h7YfPr984sSJ9O7dm5kzZwIwd+5cCgoKuO6662r1ujuOw5lnnsnChQspLy+nvLychQsXMm3aNGJjY2ueLykpifPOO6/Waxx47sNf+6qrrmryd3NAdnY248aNq3Xs2GOPrfUeZ8+ezYgRIxg2bFitdldeeWWzX0dERKQxWkhNREQ6LLe7+mMuFArV+3gwGMTj8TR4/k033cSkSZO4//77yc3NbXQ7rhkzZmCM4ZJLLqk17Pr888/nxRdfZM2aNQwZMqTWOc899xxDhw7F7XaTlZXVotW3MzMzaxZha0x8fHytgAvg9XpJT0+v09br9VJVVVXneHZ2dr3H8vPzAdi7dy9QvaJ6QwoKCrAsC8dxGny+Q+Xn5+N2u8nIyGiyloYcfi5ATEwMlZWVtV6nb9++ddo154sPERGR5lDoFhGRDutAcNq5c2edEGWMYffu3Y0G1xNPPJHBgwdz3333MXXqVHJycupt5zgOzzzzDADTpk2rt82MGTN46KGHah0bOnRos4JztO3Zs6feYwMGDACgS5cuAPzlL39pcEX1rKwsAoEAlmU1+HyHysjIIBgMkp+fXys813fu0cjIyKj50qCxekRERI6UhpeLiEiHdcopp2BZFq+88kqdx/773/9SUlLCaaed1uhz3HPPPZx33nn17ol9wIcffsiOHTu45ZZbmDlzZp3b8OHDee655wgGg0f9nqLhxRdfrHV/7ty5bN26lSlTpgDVX06kpqayatUqxo4dW+/N6/WSkJDAuHHjeP3112v1qJeWlvLOO+/Ueo2TTz653td+6aWXWvW9TZ48mRUrVrBq1apax19++eVWfR0REem81NMtIiIdVv/+/bn11lv5/e9/T1FREWeffTZxcXEsXLiQBx98kLFjxzY5R/iaa67hmmuuabTNU089hdvt5mc/+xndu3ev8/jNN9/MbbfdxnvvvccFF1xwVO/pgL179zJ//vw6x5OTk+vMTz5aixYt4lvf+haXXnop27dv5+c//zk9evTge9/7HlA9//0vf/kL1113HQUFBVxyySV07dqV3Nxcli5dSm5uLo8//jgAv/71rznzzDOZOnUqP/jBDwiFQvzud78jISGBgoKCmtc8/fTT+cY3vsGPf/xjysvLGTt2LF988QXPP/98q763O+64gxkzZnDWWWdx3333kZWVxUsvvcSaNWsAsG31T4iIyNHRJ4mIiHRojz76KH/729/4+uuvueqqqzjvvPN49tlna3qlvV7vUT1/Xl4e77zzDueee269gRvg2muvJS4ujqeeeuqoXutQr776KhMmTKhz+853vtNqr3HAU089hd/v54orruC2225j7NixzJo1q9a88GuuuYaZM2dSVlbGzTffzGmnncbtt9/O119/zamnnlrTburUqbz55puUlJRw+eWXc9ddd3HxxRdz44031npN27Z5++23ufrqq3nooYe48MILmTt3Lu+//36rvrfu3bsze/ZsBg0axHe/+12uvvpqvF4v9913H0DNongiIiJHyjLmsA09RURERDq573znO/zrX/8iPz//qL+YERGRzk3Dy0VERKRTu+++++jevTv9+vWjrKyMd999lyeffJJ77rlHgVtERI6aQreIiIh0ah6Ph9///vfs2LGDYDDIwIEDefjhh7n99tujXZqIiHQAGl4uIiIiIiIiEiZaSE1EREREREQkTBS6RURERERERMJEoVtEREREREQkTNr9QmqO47Br1y6SkpKwLCva5YiIiIiIiEgHZ4yhtLSU7t27Y9uN92W3+9C9a9cucnJyol2GiIiIiIiIdDLbt2+nZ8+ejbZp96E7KSkJqH6zycnJUa5GREREREREOrqSkhJycnJq8mhj2n3oPjCkPDk5WaFbREREREREIqY5U5y1kJqIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJQreIiIiIiIhImCh0i4iIiIiIiISJO9oFiIiISDuz+BV46zsH71suuHMLJCdHrSQREZG2SqFbREREmm96GuDUPmZC8HAO9BgH3/44KmWJiIi0VRpeLiIiIs3zYD/qBO5D7fwSNsyJWDkiIiLtgUK3iIiINE9VftNtXjgv/HWIiIi0IwrdIiIiIiIiImGi0C0iIiJNCwajXYGIiEi7pNAtIiIiTXNr7VUREZEjodAtIiIirSe+S7QrEBERaVMUukVERKR5pj3TdJsfbwx7GSIiIu2JQreIiIg0z7EXwTmPNfz49OLI1SIiItJOaIKWiIiINN/x11bfNs6Bd26HuFS48i1ITo52ZSIiIm2SQreIiIi0XP9vwB2Lo12FiIhIm6fh5SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJh4o52ASIiIiLSdixZ+j3y8z885IjFwAG/olevq6NWk4hIe6aebhEREREB4JNPBx0WuAEM6zf8krnzTo9KTSIi7Z1Ct4iIiIjw+RffAEINPl5ZuZGdu16PXEEiIh2EQreIiIiI4PPtbLLNmjU/iUAlIiIdi+Z0i4iI1GP3yy+TP/1XNd9OG8CeOpWhf/lzNMsSiTIn2gWIiLQ7Ct0iIiKHWTrhBDyFxbgOOWYBfPwxK4cOZciKFbhcrgbOFhERETlIw8tFREQOsen++/EUFleH7HrYBlaMPiaiNYmIiEj7pdAtIiJyiIrnX2gwcAMYDB6/oWLH9ojVJBIJth3bZJvs7MsjUImISMei0C0iIrKfMabJD0YLCwvYeM2FEahIJHImnPBVo49bVgzDh/02QtWIiHQcCt0iIiJHwF3gYd3pF1K+eUu0SxFpFbGxsZw4cSW2HVfnsbi4AZxy8qooVCUi0v5pITUREZH9LKuxgeWH8RcT2lbMtrPOxkroQs6cD0hISAhfcSIREBsby8lTVkS7DBGRDkU93SIiIofwxbd0VXKDKc9l24mnhaUeERERad8UukVERA5xzJdLMEdyYlUR6049r7XLERERkXZOoVtEROQQbrebzP+8gKF6pfKWCOXnhqcoERERabcUukVERA6TecwYBiyaRzC7eumTZkfvoJ9gXl7Y6hIREZH2R6FbRESkHt7EVI6dtYL+//2AjNtua95JtotQcXF4CxMREZF2RaFbRESkEd4+fcj63v9hxaQ02dbxxPHEu+/y5ptvsmvXrghUJyIiIm2dQreIiEgzuAcNaryB7eG1U0+goLCQJUuX8o9//IN58+ZFpjgRERFpsxS6RUREmmHAf57DzugJVj0fne44Fg8fjhMfX33fVM8C//DDD/n3kqURrFJERETaGne0CxAREWkvBn/xMbuef4GSPz1RHawtKIyL4cOpJ9W0yU1MYXmP/uxMzQQMKRv38qX1BX8YeWL0ChcREZGosYwxR7QdaVtRUlJCSkoKxcXFJCcnR7scERHpBIwx+Nat48WPPmJ7fn7N8VXdejNn4ChsY8iugrN2B+hSFWJfrE1a4k5+fMXFUaxaREREWktLcqh6ukVERFrIsixiBw/GNW8e7A/deQnJzBk4Cgu4c62fy7cFMIBjgeUrwYQ8rFj3NsN+fi62S7O7REREOguFbhERkSPUp08ftmzdCsawokc/bGP4zsYAV2wLYAHBvSvwr30Pp2AjAC5PPJvmvUuvZ36HNystusWLiIhIROirdhERkSM0ZswYbNvGALtSuxDnWFyzxY8F+Ld8TuW8P+MUbDp4QqCCwObP2XjyZCpXrY1W2SIiIhJBCt0iIiJHKCkpicsuuwzHsgA4IS9IrAOOrwTf0hf3tzp86RQDToAtV12NU1UV0XpFREQk8hS6RUREjsKQwYPpd8Ek4vw+4gMOAMFt88A4jZ9YVc6+P/+Viq++wikvj0ClIiIiEg0K3SIiIkfp+pGn0DdlC5sTqz9WQ6W7YX/vd2MKn32erVdfw9oxY1l74hT8Ct8iIiIdjkK3iIjIUbIsi5fGn0qmex4bEyxwxTTvxEN6w538vWwcM5ai/30WpipFREQkGhS6RUREWkF8fB+ePfMagv2XYPUY3fTwcgAnWOfQ7ltvJliuud4iIiIdhUK3iIhIK/F60zn1qlvpftd52Ck5YDX1MXtwkbWQZbFw6DG8P2EyL9z2E0o3bAhvsSIiIhIRljHm8GVV25WSkhJSUlIoLi4mOTk52uWIiIgAULl2O1sunQb+sibbfjZyLH+77CpOWLOKPgW7sSyLkAE71s0dv7iX2NjYCFQsIiIizdWSHKqebhERkTCIG5zDoPmfkXja+eA5ZI637anVbu4xx/G3S6/hivkzyQ6UUpUQT2ViAuXJSeQnpPDnn/6UkqKSCFcvIiIirUU93SIiImFmQiGCeXns/OndVM6bd/A4cM1v/sRl8z7BlxCHsW12J6fzVe/B7EjrCpaFJxhg7NZl/O3M0+nWMyd6b0JERERqqKdbRESkDbFcLjxZWfT8y59rHV/bux9ZhQVUJSVgbJstGdm8PWoSO9Mya7YcC7g9zO87mhNW7uTpv/0jGuWLiIjIUVDoFhERiRB3YiKpN36n5n5hUgrHbl2P5TgEbZtPh4zBYGEOW4DN2DY+Twz3DDyOf333+5EuW0RERI6CQreIiEgEdfvxnXT52b3g8tKlqBBr/yyvTV164He5a3q467AsQi4XT42eQPEXcyNYsYiIiBwNhW4REZEIy/zmFQxduZQp991PbkoKxrYpTEjCbmqZFctixaBhzPv5LyNTqIiIiBw1hW4REZEoSZ54HOcP6ElsRQWeYADTQCf34bZndg1vYSIiItJqFLpFRESi6IJpl5KYGMeA3dvrzOVuSHpxYZirEhERkdai0C0iIhJlt/7yV5yXlsDgPRuxjNNwQ8chZ89OhmzbErHaRERE5OgodIuIiLQBJ9/yff4zaSRZpfvqb2AM2DZX/fdNEqZMjmxxIiIicsQUukVERNqIrjkDmH3CcZy8+AssxwFjqv8JJFRWctu/nuLMhXPJefjhKFcqIiIizeWOdgEiIiJyUEpWV56+8Wq+OO9CZo4eT3lcPF0Lcjlj/hziU5IZMG8urvj4aJcpIiIizWQZ09T+JG1bSUkJKSkpFBcXk5ycHO1yREREWk2oooKy2XMgGCRh0om409KiXZKIiIjQshyqnm4REZE2yhUfT8pZZ0a7DBERETkKmtMtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiYK3SIiIiIiIiJhotAtIiIiIiIiEiZhDd1z5szhvPPOo3v37liWxZtvvlnrcWMM06dPp3v37sTFxTFlyhRWrlwZzpJEREREREREIiasobu8vJyRI0fy2GOP1fv4Qw89xMMPP8xjjz3GwoULyc7OZurUqZSWloazLBEREREREZGIcIfzyc866yzOOuuseh8zxvDII4/w85//nGnTpgHw7LPPkpWVxUsvvcTNN98cztJEREREREREwi5qc7o3b97Mnj17OP3002uOxcTEMHnyZObOnRutskRERERERERaTVh7uhuzZ88eALKysmodz8rKYuvWrQ2e5/P58Pl8NfdLSkrCU6CIiIiIiIjIUYr66uWWZdW6b4ypc+xQDzzwACkpKTW3nJyccJcoIiIiIiIickSiFrqzs7OBgz3eB+zbt69O7/eh7r77boqLi2tu27dvD2udIiIiIiIiIkcqaqG7b9++ZGdn8/HHH9cc8/v9zJ49m4kTJzZ4XkxMDMnJybVuIiIiIiLSMlvLqhg3dyUD5yzjpPmrKPL7o12SSIcU1jndZWVlbNiwoeb+5s2bWbJkCenp6fTq1Ys77riD3/72twwcOJCBAwfy29/+lvj4eK666qpwliUiIiIi0qkNnLOM0pBTc7+00s+QL1bRzetm8YkjoliZSMcT1tC9aNEiTj755Jr7d911FwDXXXcdzzzzDD/+8Y+prKzke9/7HoWFhYwfP56PPvqIpKSkcJYlIiIiIvVwnADlFRvBhIiP74fLFRftkiQMBsxeSplj6n1stz/I2LkrWDRRwVuktVjGmPr/i2snSkpKSElJobi4WEPNRURERI6AMQ5bt/6TTZsfw5gKAByggBRyenyXiYO/E90CpdWsLyvnpIXrm2y37cRheL3eCFQk0j61JIdGffVyEREREYkeYwzLV9zOhk0PYUwFdiG4doMnD7J2FuNb8jv++ukZBIPBaJcqreCypZub1e7yFQ1v4SsiLaPQLSIiItKJ5efPZl/u++CAKxecNAh1hVAXCGWDkwkjdm7gyU/PjXapYefz+Th30VpGfrGcm5dvinY5YVEcDDWr3ZZKX5grEek8wjqnW0RERETattVrpgPg3l0dsgFw1f5nsBsM27SevIp8usRnRLrEiBg4eymlh8xzfiuvhLdmLmFEfAz/Gz80ipW1rjS3iwp/06MWBsTHRqAakc5BPd0iIiIinViVfzuWH0LdOBi2D2dDoDd88OF1rfa6hb5y3rnnLj4/YxwLLh/BvMtG8vaF5/Dxww/jKy5utddpjj6HBe5DrajwceqXqyNaTzi9PnJAs9q9OLxXmCsR6TzU0y0iIiLSiQXwEL8vQKhnEw09kLNrTZ3DxhiKir6ksOhLgsESbMtDXFwfUlJHk5gwEGMM27dvpzAvD7N6NdamLTzaoxvXv/IEaWfl4/uBwfumRdI8Nyn+jZgNG1kxYwbFU09nym/vx44L7wrqy4vKqWogcB+wsrzjDLXunRhLqtumKOg02KZfnEeLqIm0IoVuERERkU4sny4kOLub1dYVAscJYtvVl5CVldtYuuy7lJevBSygdniNjT2WpUvHsm9voOaY33Zz6ZsvEvp2HuRCt9s8WFg1j1tAHEHiPnifr7+Yw3Gfz8UOYwC8YOmGZrW7ftkGnjm2eb3Ebd2ak45l+GfLya9nfnefWA9zTxgehapEOi4NLxcRERHpxL5mLE5iMxo64MQYHKcSgGCwlK++vpKKigOhtW5vcWXlMvr1m4HbfbCnON5XSdqwbRgvdHnUU+9LWfv/F19Sxtqzp7TwHbVMZRO93AcsKqkMax2RtvKkY1h94jCGJ8TSxeNmbHI8204cxvwJCtwirU2hW0RERKQTe4srCKRbuLcCDS1sHQLvGgtncCIuVwIAu3b9B59vL8Y0vBq2ZYHbDceP+3fNsexdu6g40SHlP3ZNuG7wfCzMjgLW3XXLkby1ZmnusM9uno43QDTN6+WTcUNYMWkE744ZpCHlImGi0C0iIiLSifVJSOAZvkUoCVyFgMPBTuv9P9v7LFbG9KVnzyuwrOrLxz1736K+3u36uFyQlbUMALcTwCRA7DIXphnnW1gE3/+U4vXrW/zemuPXA7o3q907I/uG5fVFpONT6BYRERHpxG7M6c6n1hk8lH43ue4MYpZbuPaBVQ6uPRa7vhrAh67TOGa4n969bq45LxBo3grjllV9GzBwKQD7MrOwfECIRnu5az0HsOHWW1v61prl+pyuTbZJsC1iY7WFlogcmY43TkZEREREmu3y7HTe3JPLF8XH8f20f+BKDRDvlOH43FR2S2B0t4U82HU5gwa9itebXnNeQnw/qqp20fCY9Nqs/fm6IjEJ91cxOIkhrKLmB2/3ruYt9nYkNk4YQv95dVdmB/BasHHyyLC9toh0fArdIiIiIp2Yx7Z4cdQg/rR5F0/v2Eux46HUlUZWQiG3pm/m/wZdSGzszXXO69HjKvILZh/Ray6umszYcz4m/cX6F1Krj2M1L5wfiYTYWPacPIont+1j+sZdhIAYy+I/x/bj+PSksL1uW1Rc7uO6ZxaydHsxBrAtmDQgkyevPQ6vV9FB5EhYxpjmTcZpo0pKSkhJSaG4uJjk5ORolyMiIiLSbvkdh+1VftyWRU6sF7uRoGuMw/IV3yc390OaM7fbceCLz6+tuV+S4uf6V1/Dk9/0bEeDIT8nh5M+/rhZ70OOzPIdhZz32Nx6H7OABT87la7JGmYvAi3LoZrTLSIiIiIAeG2b/vGx9I6LaTRwA1iWzYjhj9Kv351NPq8xsHrVeABiqqoY9dVXDNoW5JHv30dpkrsZC6pZZNxct7ddWtcFf60/cEP11yqTfz8zcsWIdCAaIyIiIiIiR8S23fTtcwtdM69k/oLj621jDFhWLKec8jNiY2PplZGBy7axk5P5rmXBFZdTUVrK5uPH1ekNqg7jFruOO45TL7447O+nM3txwVaa2rK8MuCwcmcRw3ukRqQmkY5CPd0iIiIiclQSEtI5adIq6uvPSU09iVNPWcmIESMYMGAA3rQ0XCkpWIf0pMcnJTFo+TLKRgwnZFsYqntWS5KSKbziCk554fla7aX1PTlnU7Pa/f6/68JciUjHo55uERERETlqXm8Mp56y9ojP93g8HP/qqziOQ+G+fWDbDOnSBdtWH1EkhJq5zJMv5IS5EpGOR3/FRERERKTNsG2bjOxsMrp2VeCOoLNGZDer3fUTe4e5EpGORz3dIiJRsqFwAwv2LMAYw+iuoxneZTjGGFblryK/Kp+u8V0ZnDZYQypFRCTs7j57GE/M2dxoG9uCM0Z0i1BFIh2HQreISITlV+bzkzk/YcGeBVhUB2qDoVdSLyqDleRW5ta0jXXFcmqvU7n9uNvpllh9oVPsK+bznZ9THiinb0pfxmSNwbbUGyQiIkfn/otG8PM3VjT4+EvfGh/BakQ6Du3TLSISQb6Qj8vfvZxNRZuasUVO8/RI6MH3R3+fIRlD6JbQjXhPfKs8r4iIdD5z1u3j+/9aTHFlsOZYZqKX524cx9DuKVGsTKRtaUkOVegWEYmgZ1c+yx8W/SFsz29hcXrv0/nJuJ+QGZ8ZttcRERER6cxakkM1HlFEJAIKqgq4+eObwxq4oXqY+odbP+TM189kVf6qsL6WiIiIiDRNoVtEJMwqAhVc8vYlzN01N2Kv6Q/5ufzdy/nTV3/CMdreRURERCRatJCaiEgrcoxDYVUhjy99nHc2vkNFsCKq9cxYMYNYdyz/N/L/olqHiIiISGel0C0i0gq2lmzl8SWP8/7m91ttgbTWMmP5DK4bdp0WWBMRERGJAg0vFxE5SqvzV3Px2xfz3ub32lzgBqgKVTFnx5xolyEiIiLSKSl0i4gcBWMM3//0+/hCvmiX0qinVzxNyAlFuwwRERGRTkehW0TkKCzau4i9FXujXUaTVhWs4r3N70W7DBEREZFOR6FbROQIlfpLeX3969Euo9n+uviv0S5BREREpNNR6BYRaaGgE+Thrx5myitTeHfTu9Eup9l2le/iyaVPRrsMERERkU5FoVtEpIWmz53OMyuewe/4o11Kiz265FFOePEE9pXvi3YpIiIiIp2CQreISAusLVjLWxvfapOrlDdXebCcU189lc3Fm6NdioiIiEiHp9AtItICb218C5flinYZreLa96+NdgkiIiIiHZ5Ct4hIC+RV5rXrXu5DFfuLmbdzXrTLEBEREenQFLpFRFogMy6TDpK5AfjXmn9FuwSJhMLtcH9PmJ4K93eHrQuiXZGIiEinodAtItICFwy4AAcn2mW0mgV7FL46vOkp8OgICJQCBgLl8PTp1QE8UBXt6kRERDo8hW4RkRbIiM2IdgmtqiJYwZbiLdEuQ8JlekojDxq4PytipYiIiHRWCt0iIi1QFep4PYNf7vky2iVIODQauA+x5oPw1iEiItLJKXSLiLRAZlwmCZ6EaJch0rjmBm6AV28IXx0iIiKi0C0i0hJel5eLB14c7TJalW3po6BD2bOiZe2DHW/0hoiISFuiKy0RkRaaNmBatEtoVffNu4/PdnwW7TKktfynhT3Xnvjw1CEiIiKAQreISIsV+4ujXUKrMhhun3k7e8v3RrsUaQ3l+1rW/vr3w1OHiIiIAArdIiItlhLTgvmy7UTACfDND75JIBSIdilytOJbuMJ+j1FhKUNERESqKXSLiLRQv5R+9E/tH+0yWt2u8l18su2TaJchR+u0e5vf9t6isJUhIiIi1RS6RURayLIsxnYdG+0ywuLDLR9GuwQ5WkPPB29S0+2mF4Nlhb8eERGRTk6hW0SkhSoCFby98e1olxEWpYHSaJcgR8uy4M7lEJPawOPx1YFbREREIsId7QJERNqbT7d/SmWoMtplhEXf5L7RLkFaQ1wa3L0VNn8G/5sOFfmQOQQufhJiEqNdnYiISKei0C0i0kJ7y/diY+PgRLuUVnfJoEuiXYK0pr4nwbc1T19ERCSaNLxcRKSF0mPTO2TgnjZgGoPTB0e7DBEREZEORaFbRKSFTu19Kh7LE+0yWlVOYg7TJ06PdhkiIiIiHY5Ct4hICyV7k/ne6O9Fu4xW0y+5Hy+d8xKWVrIWaT/WfAjTU2rf8rZGuyoREamH5nSLiByBm0bcRLm/nCdXPBntUo7KD8f+kKuGXIXH1bF67kU6tPu7Q6C87vHHjgXcMD0/4iWJiEjD1NMtInIELMvi9jG38+p5r9IrqVe0yzli3xz2TQVukfbkH6fVH7hrBOFXWRErR0REmqbQLSJyFAanD+a9ae/xs3E/i3YpLWZhaUi5SHuza2HTbUwVPD4p/LWIiEizaHi5iEgr+HT7p1hYGEy0S2k2j60ebpEOa+9yuC8Dfqmh5tJ+hEpLKXjxJXyrV+NKTSHp9NNJmDABy1Y/obRvCt0iIq1ga8nWdhW4AbITsqNdgoiEkxOE6WlwbwFoVIu0cfPPO5uk9Zs59P+pRa/8G0+/fvR+5mk8XbtGrTaRo6WvjUREWkGyNznaJbTYid1PjHYJIhJ2TnWPt2lfXwpK52GM4fWzzyZ5f+A+9Abg37SJrd+8DhMKRa9IkaOk0C0i0grO7XcuFu2rJ8nr8ka7BBGJBBOCX6VGuwqROvbt2cWMb17G4M1bAOr9FLWAwJYtlM2ZE8nSRFqVQreISCu4aOBFZMZnYlvt58+qQrdIO/S9pUd+7vSM1qtD5Ci988xTfPeFX1DgScUyptGvrQ1Q8u57kSpNpNW1n6tDEZE2LCUmhWfOfIb+Kf2jXUqztcch8SKdXtc+cPX7R3hyED68tzWrETkiD/36Hh70P826LovIKClr1jixQEFB2OsSCReFbhGRVpKTlMNr57/GM2c+wxm9z4h2OU16+KuH+WzHZ9EuQ0RaauCJML2YI7qMm/cIbJjZ2hWJNNvvHn2cT9MWUuotAdtFwO1t1jKksQMHhL02kXBR6BYRaUWWZTEmawy/n/x7MuMyo11Okx748gGMFlgSaZ/uPcKevxcugrz1rVtLGxN0HN7PLeLFXXlsqKiKdjmy39RX/kTBjq/YmbgLYxkwAVb07dusc9NvuinM1YmEj0K3iEgYrMpfRW5lbrTLaJTBsL10O8vylkW7FBE5EpYF9xYdwYkGHhsLe1e1dkVRZ4zhR2u30Xv2Mm5csYUfrN3BpAVrGPH5cpaWlEW7vE7tind/R58le8jPCNasmGYB84YUUpyQ1Ghvd2m3DLxZWZEoUyQsFLpFRMJgXeG6aJfQbPsq9kW7BBE5UpZVPdTcjm35uY9PgEfHtn5NUXTd8s08v6uAwzeXyguEOOOrDSwoVPCOhlAoxNe+ZAZtXgWHLThaxWzu/+allCQkYqBW+DbAxp49GD/z80iWK9LqFLpFRMIgzh0X7RKarUtcl2iXICJH65d7j+y8wvXwlxNbt5YoWVVayUf5JY20MFy5bFPE6pGDXv3kt8QFMrGNoUt5cq1kbRFiS+qL3H7LBP55wSUsHHYsy/oN4rORY/hywnDO/d//ole4SCtR6BYRCYMJ3SfgsT3RLqNJ3RK6MTJzZLTLEJHWML34yM7LXwGlRxja25DfbtrVRAuLqlCAd9Z9GJF65KDt5TvwxcQDkJxXRs/yHljm4JrlFiEqXDP5eNib/OGCDTxykZdQqo/rn341WiWLtCqFbhGRMEiJSeHKIVdiNWsjlGoJ7gTuHHMnw9KHhbGy2m4ddWu72ltcRJrwy0I4kkUc/zi49WuJsE2VvibbOJaLe9/I47XZd0agIjlgSEIPymML2ZuRjbswl+N2DSPFv3/bygO93qZ6jneSP4mrv3Dxf0/8J1rlirQ6XWmJiITJnWPu5IIBFwA0Gb5ty2Zg2kBuHHEjr5z3Ck+f8TRTe08lIzaDeHd82ILx+5uPdL9fEWmTbBvuWg5xGS080cCuxWEpKVISXK5mtcsvT+U3n45h1aY3wlyRHHDWKXeTWPk1n4+biu2ESN28kdPWHMvYfWPIqMogIZBAl6oMJm4axKNjf8utz7wc7ZJFWpVl2vleMSUlJaSkpFBcXExycnK0yxERqWND4QZmrJjBO5veabTd7076HWf3O7vBx/Mr8zn/zfMp8Tc2Z7HlLhxwIX1T+nJ237PJTshu1ecWkSgJVMGDvSDUdO9vjck/gZN/Fr6awuzNPQV8d/W2phv6Qri2lTEiZhkfXvf98BcmAPz9ze/xoN2XvrszOf2zt/EE/IQ8Xow3Foxha7cU/vKrv+D2tP2pWSLQshyq0C0iEiF/WPgHnl31LBYW5pBVZCwsTul1Cn+c/EdcduM9NV/u/pKbPmrdvUoP9KIbY/jmsG9y19i7NORcpCPYuRj+OaX57U+8HabeF7ZyIqH/7GWUh0LVq7ofypjax4zBKg0wIXEVr596fURr7Mz+9sZ3+bOJx+c+jn47K0ktKSBgF+PpAa9d9dtolyfSIgrdIiJtkDGGNze8yYwVM9hSsgWArvFduWboNVw77FrctrtZz3Hbp7cxa8essNV587E3c+voW8P2/NJ+bL7mJnzLlmIweHJ60uu1V/DGHsHWVBI9L14D6xsfZVNj2j/h2MvCW0+Yba/0MWn+Mnxm/9/TQ4J2d7ODs3iHcczHQ4Dt5PAlJ/Dj3v0Z3P+bUaq48wn5q3j1o3tY6dtLV08qN51yH3GJadEuS6TFFLpFRNowYwx5lXmETIjMuMwme7cP5w/5ufeLe3l387thqS/GFcOsy2aR6E0My/NL27f3L/+g4K9/qvexxLPOIedPf4hwRXJUpqc03cYVBz/dAp72/6VKfmUR5z/+Kpt6jcCkx4BlcYxZwg94ABsHFw4AISxcGCqIZcoJn5AUr+k1ItJ8LcmhGj8oIhJhlmWRGZ9JdkJ2iwM3gNfl5YFvPMD/LvkfVw25iuEZw8k8ktWK9zv8m1dfyMfnuz4/4ueT9q3s6xUNBm6Asg/eI++ZZyNYkRy1H21sus1VL3WIwA2QEZfK6MwVWA5gWcSZCm7n97gI1QRuANf+v35xVPH5l+dHqVoR6QwUukVE2qmshCzuHn83L5/7Mp9e9imfXPoJp+ScckTPFSKu1v1yf3lrlCjt0I7vNj21IPePj4S/EGk9CV3gJ1shrV/dx1L7wHdmQ/8j+9vRVl14ys9wuUNgDBOZQyxV2HW+YtzPgMfJJxQKRLZIEek0mp5AKCIi7ULX+K48esqj3DfvPv6zrvn7m1qATSUOHmyqLzr7pPQJT5HS5pmSfU03ClSFvxBpXXGpcPv+LcGKdlb/MzkbjmC0TXtwavdMvCmrCFgWA8x6HOxavdyHOjDtu7x8DcnJx0SwShHpLNTTLSLSwfzihF+0+BwLsPYHbo/tYXDa4FauStqPdr3UizRHao/qWwcN3FA9jee14cdiGQcHG4PV5DmhUGUEKhORzkihW0Skg7Esi34p9Qwjbeq8/f8MOAH+tvRvrVuUtB+WBsFJxzAqO52rv/g3qxmGm1CT7b9efCVLl36HkpLlEahORDoThW4RkQ7opB4nHfnJDry27jWqghpC3Bl5+gxrso2l7X2knYhzgixgPD68OM3o7c7Ln8Wiry6loGBuBKoTkc5CoVtEpAO6bPBl2Ef6J96CCn8FO8t2tm5R0i70fOVpsN24h19GwvmPk3jBEySe/3diJt65v4VFn9dfiWqNIs0V37MLASuex7gTC1Nr8kT9EylCGBNi5aq7cJxgZIoUkQ5PoVtEpAPqldyL+068D2t/z06LZulWT/AmtyI3HKVJG+eK85B0/t+IG3galrX/MsGy8HYdSuIFT5D59+eJ7ZUT3SJFmuk7F11PUkUZX1vjuIPHWcxx+PFgoJF+bwe/P5d1u/4buUJFpENT6BYR6aAuGHAB/zrnXwzPGH5Ea2Pd99GPW78oafP23ju/5mfLsmpuB+5X/bciWqWJtFhGejbXeHcDkGd15Y/Wz7mf+5ocaG6Amev+yoxNy8Jeo4h0fArdIiId2PAuw5lxxgySvUmY+nfLqZ8FO0whO7asCFtt0vb4CqtoYFelWgo/3Bz+YkRayS9Pu4Q7k4vwhAJgDAGn6cUCLWAg6yjZci8f7M0Lf5Ei0qEpdIuIdHDxnnhePOdFYmxvi3q8jQVPP3ITlUFto9NZFDyzslntyudovr+0H5Zl8ZMxU1gxeTQPDkhnWq+hBN3dmvxzaAHHsIw5a/4QiTJFpANT6BYR6QT6pvRl/jXzuWnITc0P3hbE5Jfy382a19hZGF8zF45ytJe3tD8pHjfX9+rNTwYNZVD/O5qxljkYA6cE/8Om4u1hr09EOi6FbhGRTsLj8nDHCXdwUbdLmxe8HbCNxX+3KHR3FrEjM5vVzk7yhLkSkfDq3f1iZltnNd3bbYF3B5R+7woqFi+OSG0i0vE0PalFREQ6lPvO+CWfPfoheSklDS/fa2DgDjdfDfRj+UsjWp9ET/pZ/aiY3fTQ8YzbRkegmg5ieibgr/45dSDcsSiq5XQmK7at5fWZTzG8bANuE2JzXA9iB5zMdydfim1ZJPb4Pv4dnxBz4N9PfQwEc6B03F42f+tqcu5/mOQzz4zcmxCRDkE93SIindC7N7xH353x9T9owB2EM74OsrqPm/4p/SNbnERV/PisRh93dY0lJjEmQtW0Y7/qCdNT4NBAV7S++tjLt0StrM7ioTcfJeGlC/nl5ic4P3cW5+TN4bbtL3HDrP9j+nN3Y4zh5r79qSKh8Sfa/8Wkb5gh/3t+dv70J4SKi8P/BkSkQ1HoFhHphBKSU3nisuc4fm06Hn/t7u6uhV6u+9jDM6cbQjhcMviSKFUp0ZB+0SASTupe72Oevsl0u+v4CFfUDj06HkwjI0TWvABL50aunk5m+abFXL76cXKq9gLgIYQbBxuDxwS5Z9Pf+cUrD5DicTNu1NMYmjHjxgWBvobKgVUUv/VWuN+CiHQwGl4uItJJdRs4mMd+/i73PfEdSrdtw+UYkqpCbOhRyYyzDMayuGrIVYzMHBntUiXC0s7pT9o5/ancWYJvVQExfVOIG5AW7bLaj8I1Tbd54ywYqR7TcHhv9nP81Le73sdsDCHL5oS8eRhj6Jl+DMXZF7FnzxtNP3EIKo43/GvmJ3SdMpFpOf1xWc1Zjk1EOjuFbhGRTiw+IYlf3/4cM1bM4MXVL1Loq+6d65HYgxtH3Milgy6NcoUSTXE9konrkRztMkRa5NiydQSxcTew6bzHhJiaP4+8ilIyE5IZNvT3FBd/TWXF1obXuQBwgZNoKHUn879FH/LxxiTuP/FKMr1aWFBEGqfQLSLSyXlcHm4eeTM3HXMTu8t247JdZCdkY1uagSQSVntXQdawaFfR4cQ4flwNBO4DPCZIld8PCdX7eJ8w/gNmzxmDE6psOHgHIG6JRWZRASe+t4Ljqxbw8N5cfnv5XVjq8RaRRih0i4gIAG7bTU5yTrTLEOk8incodIfBtthuhBrp6Q5hsT6+F4NT0muO2XYM/frdzob1D9Z7jisf0h9z49lrM85eWn3MCXHtV//ki0+3Mukff279NyIiHYa6MURERESiIWt4tCvokAI9xjU6StzC8EGXk7Ds2pfBPXtcjcebgTl8VbUAZDzqwb2vur3bCeF2QjWvkT7nY7Z95+ZWq19EOh6FbhEREZFoSOkR7Qo6pO+ceyt/ybkSgOAhl7oOFg4WM9PGce3F0+uc53LFM3z4nyizEgiYg4NBvV96cOdZWPUscW7tj97lc+ZQsXhx674REekwFLpFREREWtP0ZqxKfvXr4a+jE7vjpr/xQL/vsiDlWJz9wXhrbDf+2vMKRl3/El1SMus9Lz1tIhneeO6xfsd93Mcv+B2rVo0j1Mic7QOP7L77Z639NkSkg9CcbhEREZHWdk8u/GU8FG867AEXXPY0DDw1KmV1Jnd/83cA5O9ZT0lFCX16j+L7Llej51iWxYD+P+G61TN4mJ/gI5YYnx9XnTHndfm3bKHotddJvXhaq9QvIh2HZUwz/oq0YSUlJaSkpFBcXExysrY1ERERkTakZBcsfxUqC6D7aBh8DrjU59GWhUJVzJo9nHUM5F0zjbFvrOPSTz/A5TS+IrrBYLk9DJwzG3d6eqNtRaT9a0kO1V99ERERkXBJ7g4n3hbtKqQFXK5Y3O4UBgXXc1fod1QNS8L+X9OB20kwuCpCFL/xJhk33RihakWkPdCcbhERERGRQ4wd81r1D25IsksJpVWHbkNDA0Qt3r1qIrOOG0/ZxsOnFIhIZ6fQLSIiIiJyiISEvowf9xEuVxKBQVB6rlM9fPywzcjM/ttrU87gz6Nv4Vffup0zppzHR3nNWExPRDoNzekWEREREWlAIFDCylU/pGj9pyS/YhOz2sYKgsFiW1Y3nph2FfOPHUtWpUMXn6EwBvbGuXh19AAmpCZGu3wRCRPN6RYRERERaQUeTzLdsi8gP/8TCv8vBITYR1fu5G9gWQwtDvH3LysYWxiqOWdJqs2/A1uZcPrw6BUuIm2GQreIiIiISCMyM6fi9XbB7y8AHBYwERuH4UXwxMIKXIets3ZsUYgRMwvY0X0zPUf0jUbJItKGaE63iIiIiEgjbNvLscf8HZcrFgsXZSRiGYe7V1bhcuDw3b9tLFyOQ+gfX7Pn0YcJ5uVFpW4RaRsUukVEREREmpCSMprx4z6gZ851dHdVMLAMBpU5dQJ30Bj8jgEsXPFdKfz3LDacfTaf/fvfzJw5k9zc3GiULyJRpIXURERERERaoCQY4rZXF/ObJZU1x/YEHNZVhTgwtTvOgn4xNlvZybbEdYTcB1c+93q93HTTTWRlZUW6dBFpJS3JoerpFhERERFpgWS3i4t7ZNTc3+gLsaD8YOAGqDSGlZUhfCU+uuzbC4f0c/n9fh5//HHyNOxcpFNQ6BYRERERaaGzRnanyqmgPGRYUenU08ICyyLg6U3f7SGG5i2GhAoq4t0ciN+PPfZYJEsWkShR6BYRERERaSFXkpdVeTPZ4newGmtoGdb2P5fVmaOxKmKJrwhgYQjtnwz+m9/8JhLlikgUKXSLiIiIiLSQZVmsL1/OjspcGl8gycYVTAAsjLEBC7BwhQzgEAwG+eCDDyJQsYhEi0K3iIiIiMgRSM7uTnkwv9Z87foYq77Hq8M3BhYsWMDGjRvDUqOIRJ9Ct4iIiIjIEfjmg4/iC60Dq+EB5gYHf0zT24S98cYbhEKhJtuJSPuj0C0iIiIicgRi4uIZcNIwgqYQ6hlkbvYfq0jY2cAzHDynrKyMDRs2hKFKEYk2hW4RERERkSN00be+Rbfzkwi4SgCwnBCWEwIMWA4laSsJecobONvmwCpslmWRm9t0j7iItD/uaBcgIiIiItKeXXbO6ewdvZ2Vf1xK6b59hEp2EZOxhQ0jPPhLMqm/n8tg2Q52yE3IMhhj8Hq9kS5dRCJAPd0iIiIiIkcpq3sOE354EqP69mdUjEO/pSsYlLgAlysIHL6Pd/Ww8lQnntD+RdYsy8LlcrFt2zYcp759v0WkvbKMaWK5xTaupKSElJQUiouLSU5OjnY5IiIiItKJOVVBKr7aS/nivZRu/Yo1g99nU0U6BQU9OTCWPDaunBEmFdeIV/GF3Ozd05/ikkwqyjMASE1N5YwzzmDo0KFRfCci0piW5FCFbhERERGRMMirzOPkf5/MxL0JnO4MxIpLJ83twt3jK3xJO7Cs2ruNLVs6lZKS7Jr7l112GcOGDYtC5SLSlJbkUA0vFxEREREJg/TYdNJciczNKmPRkC9JHvEuoSFv4U/eUbPLmGXtvwHDBs6pdf4HH3ygoeYiHYBCt4iIiIhIGNiWzTXDrgNgaGywJmDXywJPvI/MqoPbi5WWlrJ58+YIVCoi4aTQLSIiIiISJjeO+hZjkvsS01DYPkRlVQKl8bWHqb744ovs2LEjTNWJSCQodIuIiIiIhInbdvPUBW8SG5PdaLvi4kwWLbyQKiex1nHHcXjyySd57733aOdLMYl0WgrdIiIiIiJh5LJdTBn91wM7hdVhDCxfdhrVM7vr7xJfuHAhn3zySdhqFJHwUegWEREREQmzlJRRxO5NqRu8HSiZ3wtj3DQUuA/4/PPPKSoqCleJIhImCt0iIiIiIhEwatRTuLfvv2MAP6Q/5sY9P7H23mGNWLp0adjqE5HwUOgWEREREYmAhGGj6bZuPGlPuYhZbZH6nIuYtTamiR7uQxUXF4exQhEJB4VuEREREZEI6f/rp7F7ZZPxmIf4r11YBjJzcxvZS6y2xMTEphuJSJui0C0iIiIiEiEuVwwj7n0X4tw1x9KKiuiybx+W4zR5fkZGRjjLE5EwUOgWEREREYkgd2wySSdPrXVswrz5JJSXV8/tPjC/u5553mvWrIlEiSLSihS6RUREREQizDN4UK378ZWVnP7hR4z6ejFevx93IECvrdsYsG492bt3Y4VCAGzYsCEa5YrIUXA33URERERERFpTwRtvYqf1xynaDKZ6WLknGKQ8IYEB6zcwdPVq3KEQhuqNxCri4lg47nj2ZGVHtW4RaTn1dIuIiIiIRJgpgbjxN2PFpXNgf26f10uM388xK1bg3t+zfWB5tbjKSk6a8xmZufvYtGlTdIoWkSOi0C0iIiIiEmGe/qdjx6aSMOUevMMuxIrPZHe37gxdvbre9hZgGcOxy5bz3HPPRbZYETkqCt0iIiIiIhEWSu8GgOWNJ2bQWSSefj/J6cOw6lk87QAL6JKfT3xxMevWrYtQpSJytBS6RUREREQirDwrtc6xlEoHrKYvz0+a8xnvvfdeGKoSkXBQ6BYRERERibDsy4/BGIM5pGc7IS4byzS9V3dKeTlVO3eGszwRaUUK3SIiIiIiEdajf0+q7ACWZdUcc3c/DlzeZp0/cd58fD5fuMoTkVak0C0iIiIiEgWh87tiONjTbXliiTnmsibPs4CMwkIe/eMfw1idiLQWhW4RERERkSgYNH44Iav2wmnePt8gdsxN+7cSO4TtqXXX5Ti48vLYtm1buMsUkaPkjnYBIiIiIiKdkW3bxOUk499WisXBYeaenPG4ex6PU7gFE6jETuhC5ZdP4JTsqHW+weLDDz/k29/+dqRLF5EWUOgWEREREYmSxIndKdxWd/svy7JxpfcDwAQqccr31TxmgMq4WMoTEyjftStSpYrIEVLoFhGRVvXLT2bx/rZ9WBiuHtCFO046NdoliYi0WfHHdiX39YW4/Mm1ersPMMYQKtgEh+3fvXbIEIxt1zkuIm2P5nSLiEireGLRYvq8MJN/mBR29BnE9j6DedCXRv8X/8e7KxdHuzwRkTbJsi3KRnxZJ3AfupWYq+sw4qf8DLxJAGzu25d1gwZFtE4ROXIK3SIictQ+2bCFX231UdU9FVyHXDi6bMq7ZfDdNZWs2rs1avWJiLRlSWnD6hw7sJWYZVlYloWdmE3sxNuYefIUFo47Hg7Zamyn9uwWadMUukVE5Kh977OVOOmxtS4Ca1gWwfR4vvnf+ZEvTESkHeiSc3KTbSzbhSe1N1WZfer8rX377bfDVJmItAbN6RbpwPJnz2HDHXfiDQTAsqiKjWXCwgXRLks6oNKUDHAM2PWEbgBj2JPYM7JFiYi0E/EDu5LHaly4mmzbzUmjxK6sday0tDRcpYlIK1DoFumgFoweS1JlOclUr3IKEBvws3LIUJg4keEznopmedLBOLHuhgM3gGURivVGriARkXbECYbYG+Oiu6/xdob6F03zeDz1HheRtkHDy0U6oC/HjiepsrzmvrX/VvPz3LnsWbgoGqVJB2X7Q42voGsMtj8YuYJERNqRwjfW091Xe/E0x/IDYHAwhGqO+znkb+n+9sXFxfj9/sgUKyItptAt0gHFlVcPM6uv3/FAAN/03f+r99zg5i+peGwSxS9dgwmF6m0jcrj4oqIm23Qp3R3+QkRE2hkTcihbno8J+qjauQjjOAQ9xVimeqi5hY1VM+zcYXJwKClOfJ3nefbZZyNYtYi0hIaXizRi7doH2LX7ZcChS8YpDB/+J2y7bX9XVfDue7iMqTdwH2CA5IryWsd8M/+Id/Z9uIB4gLzlmF+nEwJc9xbVv0CWyH53Dc3i17kBTFw9w8wdg1UR4Pfjtb2NiMjh/FtLcYcMb+z9nFMXvwE9PMQFRtXb1sKFywoxMpTDHHutVjAXaSfadnoQiZKdO9/kk0/7s2PnkzhOGY5Twb7cd5k5ayAbNv4l2uU1qmrNmkYDN+zv7T5kCJt/1iN4Z99X89ihXIDzq9RWrFA6ou+NH8X5lOAqqqo+YEzNsEd3UQXfSSjm9MEjolihiEjb5FQFmRPj0Hvd5xCTRIw1vNH2lnHR38mmvundwaCm8Yi0RQrdIocpKlrGmrU/aGCpEti69RH27P0wojW1ROoF5zdY+wEGCLkOrpDqmXUvUDdwH7hvA+WPTWqlCqWjeuLcU9l58QRG7N5K6vZdpG3fyYTcjey4+ER+dcrUaJcnItImuTPj+JPLR1fHIWnKL7FpelE0l3Fj1fNhr3ndIm2ThpeLHGbR1xfVWnisPitX3kZ21tpIldQi8QMH4nN7iAkGGnwPFlCUmFR9p7Sg5lhDDBCft7wVq5SO7H9XXRDtEkRE2o1Qeiy5/iCegWeAJ7ZZ5/jdpZh6us7a+hQ4kc5K/2WKHOLjT/s3OTS7WtsevhV74gSg3pFnAARsF+M+/V/1nc8fbtZwdBEREWl9tgUYSO15PFYz1k8xGLanLD/4IX/IdLHY2OaFdhGJLIVukf3mz7+0w4TLoU88QXDMWEKWVSt4G6DCG0P3N14jNiGh+mDOhGYNRxcREZHW57VtYpJsYuzm77W9zHfIYqiHBHXN6RZpmxS6JWKqKsuY/fmLzPnsRXxV5U2fEGHlFV93mNANcOyLz3PM6lUEJ0wgPzGZ/OQUkh96iDHLltBl8OCDDUecAzQerC3ACWu1IiIinddlw7sTavZX3A4jykfUHoa2v7d74cKFrV6biBw9zemWsKuqLOOdZ7/FxMJFTPblArD7s18wP+04zrnhWbyxCVGuEPbt+whDS4ZRu5pu0kYc+/SMJtuELDcuE6z3d3DgEiB0y5J29K5FRETaj592z2I3hbiacSVi4aKnSa/3sY8++ojRo0drmLlIG6OebgmroK+Kz/8xjUv2fEC3/YEbIMufzwV7P2b+388l5PNFscJq6zc82OzAbYBRI18IZzkR5743v84w9EPvl/ecgDezb4SrEhER6RxCJX5im3lZXlS+nUWF/yWuvJzYykpiyytqHjPGMGPGDIzRxDCRtkShW8Lq1Vd+wGmFC7Co/X82e//tG0Vf885Lt0SnuP3KyzdTVbW1WW0N0DX7m2RkjAtvUVFgTy/GP/bmWsPIg9hwx1YSv/XfaJUlIiLS4Rmn6ZBsjGFN4ee8nrqadVnxVCYkUBUXhy8uFiwLe/987n379rFjx45wlywiLaDh5RJWOfnLCeLCTajex4PY9CxYEeGqapu/4LRmt3WAY4fdG75ioizm3Ifg3Idq7usPhIiISPhVLsttsk3xvq+Z27MCx7ZrLZ5m9m8T5rgPfmovW7aMnJyc1i9URI6IerolrHr69jYYuAHcOPTwNf1BEy6ffDqs2W0NMPXkDeErRkRERDqdwJ5ygnsrGm1jjMPS4LI6gftQluPg9vsB8LWBqXsicpA6siSsKuxYHBr+dscAlXZMBCs6aOeu14HmfyiNPOZfzdo/U0RERKS5KpbnVa9i2sAI8yoCfGovYle/nAYDN1T3eDv7e72zs7PDUKmIHKmo93RPnz4dy7Jq3fSHouNYmziAxtYEd7BZm9g/cgUdYs2aH7WofVpa83vFRURERJrDVAUbDNNBQrzlXcgub3mjgftwo0aNaqXqRKQ1RD10AwwfPpzdu3fX3JYvXx7tkqSVDJh0MwWelOoFuQ4TxKbYnUjfk74Xhcpazu1OjHYJIiIi0sG4u8RBAwuprXftptSubFbgthwHrz9Q/ZxuDWYVaUvaROh2u91kZ2fX3DIzM6NdkrSSEceezuJRt7A7pvrfacByEbCqd3ve501n2cibGTLyrIjXZYzTdKND2Hb3MFUikRaoqOSrb5zM8uEjWDr8GF655AY+XrmHUDNWjhUREWlt8aO6grv+UL3Ctb3BYeeHM7ZNVWz1lD3Hadl1joiEV5sI3evXr6d79+707duXK664gk2bNjXY1ufzUVJSUusmbdvUc35M5m0LeLP3JcxKG8fstON5N+ciuty+iCnn3ROVmiyrZf/X79JlTJgqkUhafPZ5rD/uOOL37cEdCuENBTl2xXx6XHwyt337ftbs0d8TERGJLDvOTdqFA6rv7M/em2KDGAwVlq+xWXrV9u/JHV9eDvvndMfERGe9HBGpX9THnowfP57nnnuOQYMGsXfvXn7zm98wceJEVq5cSUZGRp32DzzwAL/61a+iUKkcjdiENC684alol3FEDFBYuCraZchRWnrDt4jdVP/q8xZwyxcv8v37u/Hib6+ma1JsZIsTEZFOLWFsNnaCh5KPt+Lbm8dLXbbwvZ298Bg3AUINB29jcAWDeP1+KhISag5r4VeRtsUyxrSpMZXl5eX079+fH//4x9x11111Hvf5fLW2QSgpKSEnJ4fi4mKSk5MjWaq0c5982vwF3Bxg6ikbw1eMhN2qIUOb7Cwoio1j/u9f5s6pgyJSk4hIfSpCDm/vK2RJaSVuC05OT+bk9CRsBalOYeem13jli7fZs2UwPX1uCtyNbyd2OLfbzT33RGckoUhnUlJSQkpKSrNyaJsYXn6ohIQEjjnmGNavX1/v4zExMSQnJ9e6iRyJoUMeb3ZbC1i+8ufhK0bCqmTr1iYDN0BKVSVvf7kl3OWIiDToi8JSjvlsGXes2c4zO/N4ckceVy/bxEkL1rCtUnsvdwaOp5ThWV9S4fWS766oGT7eXL169QpTZSJypNpc6Pb5fKxevZpu3bpFuxTp4Lp3Px2Iadb6JBawd+/LYa5IwiXvpVea1c4CQuVl4S1GRKQBn+eVcPGSjZTX88G0sdLHeV+vpyqkBbIaU7B7KUtvPZkVI4ewcvgQlo8bwpbXHot2WS0SG9sdt9vP+H4fELRsjGU1L3jvb3LBBReEt0ARabGoh+4f/vCHzJ49m82bN7NgwQIuueQSSkpKuO6666JdmnQCJ09Z1txFQaUdi+vZo1ntDJCdXXctCRGRcJu1fTeXLG94IVmAvf4gT+/Mi1BF7c+W9//MnpMvx/PJblw+Cztk4S6xKH3kLyy4cyC797wX7RKbJSNjCm53Kt0zttC/95f4LRssq+nrFQsmTZpESkpKJMoUkRaIeujesWMHV155JYMHD2batGl4vV7mz59P7969o12adAK27caOHR7tMiTMUkYMa9aXK7sTU7h28sCw1yMicqile/O4Yv2eZrWdsX1fmKtpn8qKtlFx19+wsOpsseXKs0j60MXGl29n2/YXolNgC9i2lyGDfwVY9O61hp5dNgCm7jQpc/AWFxfHRRddxGmnnRbpckWkGaK+evnLL2vIrkTXySe8yaezBjY557ehx4PBUsorNmFbHhISBmHbUf/PSg4TN2oUweRk3CUlDS8AC7x52U955BhNbRGRyHEchzNWbodmLpK20x8Mc0Xt0+Z7vo0LMJjq4H0Iy1gYDEnvuVh/zL30yrkmOkW2QFbWudh2DBs2/I5Bg+fi9vjYs3swxhzsL0tPTOGss88mp39vYmO164ZIW6Z0IJ2ebTdvwIdtx9W6HwiUsHT+D/l0TymfpJ1Gnt2VFOcrphTN4urep9D/+KvDUa4cAcuyGPC3v7L2+huJCQbqBG8H+O+07/OnH5yPy9bqwCISGYWBIEM/X97swA3Vf6+kLnvWtjph+1CWsfBut3DvgW3b/kWvXldGsLojk5k5lS5dTqOsbBXHjS7AcTLYtStAIBCga9eu5OTkaGswkXaizW0Z1lItWapdpCF5eUtZsmxao73d445/n6SkwQAEg+XM+fgMHvB8i+WuUdgmhGO5sIyDsWx6OVt4uPITJp37l8i8AWmWyqVL2fO7hyhcvgwbi5Btk5vdmxMf+jVJI4+Ndnki0onsrPQxZv7qFp+X6rZZc5L+Xh1u5dChWKZuL/fh8m4L4Brdl4kTPo5QZSLSUbUkh6qnWwTo0mUkgwc+xLr1P6738aFDH60J3AA7djzPs9ZZrLCrL3wcywWAsap7zXdYOdzvHckHYa5bWiZu5Ej6vvQiPXftIpiXhzszE492ShCRCFtbXsXkL9cc0bm/HtC8hSE7HRdYwaZ7fZ0Ug+ewkWsiIuEW9YXURNqKnJyLmfyNJeTkfJuYmG7ExHQnp+d3mDJ5Od27nVur7eqlM/jUe1pNyD6cY7lY7BnLa6+cH4nSpYU83bsTd+yxCtwiEnGOMUccuL3AJdnprVtQB5H+kx9gGlky01gGfw+HYDYcc0z72kJMRNo/9XSLHMLtTmLQwJ8yaOBPG2xjjGFDoAcBK6bxJzOGpd5sLm7lGkVEpH0qD4WY9Pnylp9oDFgWmycfqzm8Deh27bcoeOCPWPVMejdWdRgvuSQElouE+F4Rrk46kyeeeILdu3cDMGXKFKZMmRLdgqRNUOgWaSHLsjDNvOZxNJhERESAXH+AsV+sxHdEZzvsOXlMK1fU8QxdsZKVxw3HxmBXHfygDqVD8ZVB/IMNk05cFsUKpSN75pln2LJlS61js2bNYtasWdx444306qUvezozJQKRIzAsycJtAo03siyGWzsiU5CIiLRZeb4Axx5p4HYc9pyiwN0ctm1zzJLV9HjuX5SPdSg5M0jBDQH2/SJA7ITjOfWUjcTEaGstaX1vvPFGncB9qBkzZlBRURG5gqTN0erlIkegsnI7N855mdmeU2oWUTuUbUIMcVbx0ZQrcbs1oEREpDMpC4b4z95CPswtptJxWFxSjv9IrraMYes3jiFGnyMibdr06dObbONyufjFL34R/mIkYrR6uUiYxcXl8OOMANuKN7KRgVg4GMsFxsECMtnHT+z/4XZfG+1SRUQkgtaUV3LJ4o3kBYJH/Vw3dUtX4BZp45rbfxkKhcJcibRl+ksucoRGj/0ZL2/7H/9c/Dc+STyNPLqSbIqZUvEpV/bqyXEjn412iUfMGENhsPrDIc3t0sI9IiJUrzy+vcqPYyAn1ovbrv23sSrkcPmSjRS0QuAG+H6/7qwpr2RThY9kt4txKQl4bc0MFGlLfL4jW6lBOheFbpGjkNPrNO7rdRr31Tp6YXSKaQXGGO5avY1/7S2sdbybx8WCE4bhddcdSi8i0lEFHMOcwlJ2V/lZVlbJp/kl7PBVr+cRY1uMSIzjzt5ZTE5PwsLivo272OtvncBtAed+ta7m9QDSPC5+2CebG3t00ZehIm1ETEwTu9mIoNAtIvsZY5gwdyVb6rlg3B0I0WvOMtZOHE5KrDcK1YmIRNZb+wr5ydodFAXrHxLqcwxfFZdz7eJF2KFiYuP6U+603jI5Btjpq71gZ2EgxM/X76Qi5PD93lmt9loicuSa+wWYvijr3DRGSUQAeH5XXr2Bu4ZlMXjuEewvKyISbo5DYOV7VL30TaqePp/Kt27H7Pz6iJ/u5R0b+d6SeRQFgtV7ZDfEsjDuDOxgAVWVGxtvewQaerbfbd5Nfiv1qIvI0evdu3eTbe66664IVCJtlVYvFxEAes9c0vR2Nsbwwy4BfnjsuEiU1GaESkoofvNNSj78CKeygtghQ0m78grijjkm2qWJdHoluTvxP3MhXcrXEcTGjUPAcuExIVYPuYJBl/0Nl928qTF5lXn8dsFv+WDXegq7/ozYynl4K5cDDgFvf6oSJ2NcKbVPOnAZFcFeLAv49cAefKtnZsReU0Qa98gjj1BUVFTvY+eeey5jx46NbEESdi3JoQrdIgJA9swlzWtoHPacclxYa2lLdtz9M0rfeKP2QcsCY8j4v+/S9fbbo1OYiFBcXMy+P0+lX2g9Lpw6jxvgjWNu58Jpv8K2LIKOoSAQ4PldBbyxr5DSQIju/nKOXT6f2L07+KxvP3ZlJFEe4yO54Eksp4zqiGv2/9NFSZdb8MdH9+LZY8HNOV25p3/3qNYhIrUZY3jwwQdrFlfr06cP119/fXSLkrDRlmEiEkYW/9qwlCsHjIx2IWHlKy5m0/gT6n9w/3eV+Y//nZgBA0g555wIViYiB3zxzvOcHVrbaBvP7sX0mbUELBt/Pf0Me/Gy+NjJ1XeMwTIVpO/6AZZTSXXftcEAQW8/gu5sYsrnEnRn43h7tvK7qTYwzsv6Sn+jbQIGfKG6XzKISHRZlsXdd98d7TKkDVLoFhEAPECgyVYAhkd27OPKAeGtJxry/UH++8YTjHj0MTwFBoumh4vmP/WUQrdIFJSXl8OG/+FgYR82+3l9bA5/6H09n2aMp9STtP+Lsv1tjKk9FPywn2NKP8cfM4hA7AjAheWU4Is7vnbINs37a9lS2R4XH4wZxKQv17CniTnbT+/M4+oeGQxJiAtLLSIi0noUukUEgOdG9ObK5VuanJeYyV7ODT7HhsKBDEjrE5HaDuWrqGDbymXsq/KR2qc/g3v0qLNX7gGVpaV88srrBNesISkulrGXXoQnlEjhm4sJFQYwIR/utCrSr5zCv1NS6Db9QkZ/XoSF1eACRnXqWbWaUFk5rsSE1nuTIgJAeTCEARJcdp2Vf4uKinARqvXfagAX00Y9wsLkYxoN1o3xJUygKvkMMEHAAstVd4E0y3NE76cxGW6bd8cO4oplm5q17VgQ+MW6nfxndAf8BlREpINR6BYRAE7OTMPFekI0viXYlTzHWHsRXy++jNBxrzM4NTxDLA9YsGsv35u3kriQhcf2MrjcxbTtPjIKdvN5wmJeJo/E8ZO486zT8bqqN2QwxvDCU88T9+p/GL5lA87+i+y8lT5iBp2FcTKw410Y4+AELLbP2EhFr+fo+XlRzes2p5e7hlP/lkIi0nLGGN7YW8jvN+9hc1X1MOsUt4ubczK5s3dWTfje6li81v1UdpLOhOJlDC3fxHmjH2NJ8rCje33X/nl51iGXSGFeJM0F9IqL5eqlm1lbUdXs8z4rKqMq5BDr0mY0IiJtmRZSE5Eaq4vKOPnr9Q1eYA41y7mH6QCEsJnJVEYP+w2XZac3+dwlpSvYvft1Kiu3k79nL67Pd5C4oxwAfx/Y3bUbqam/4aRTR+PtmoAxhps/+YL/mlj8Llf1UkaWhcsxhGyLb62v4rubAsyz17DSu5PSnH787oZrcNs2zz/3Ct3++ThZ+bm4nep5j+5eE4k77vp6awu4Kij97HY8+1p+Ye3p3Zv+//1A+2+KtJLp63fy9x259T7WK9bD26MH8L3V25hbVF49BxuDsWxGlKxlRfLgCFcbfR8cN4DRKYnRLkNEpNPRQmoickSGpiZyaxcfj+XFAAas6t4Tj/FxOh9wJc/XtHXhcBIzuXnVBrp6hzAlvf4/No4TYNXqH7N379uARe7Knox4YQ+uYguzf1h4wjyLlIQ95N98A3/86xXcOPBK5vQp410rvnrBYOvgcO/Q/nOeHBhL3wrDGXuGsMspgu2beP7Lr7lmxBCWrFjFcbn7as3z9A48E2McLKtuj5AvfS3u+q/xm5Rxw/UK3CKt5Ovi8gYDN8C2qgDj568hyMFtusz+USkrkgZGosQ255U9hQrdIiJtnEK3iNRyz7En8Nini7mWpxlhluIlQCb76h1sHYOfZEr505a9DYbuDRsfYu/edwAoyk9lxDN7sCurH7Ocg89qVUDGX12c8PN/8dTiY3kpuQtOUlqDdVrG8FxfL6fv8jEs2IMvPGtZvmgRswoLmbR0ERwSuK3YFFxJ2Q0+l7EDNHsSNwc3D3IPHUrqZZc1/0QRadQjW/c02cbX0AC9er5Q6wzmF5VFuwQREWlC5/yEEpFGeUNlVBFHN3bTtYHADdXhs4I4FhSXk1/Pwj+BQDE7drzAgUSb+UUIu6J22D7AMhZWABI+t0nr+gyFcUlYTsNb4hjLYm2yi3Kvi+xgcvWqw8UF5JVXkVpaUvuPWxMX4zGlOTgxzUvdNRW5XPR/7VUsW39GRVrL4pLKaJfQ7migjYhI26erRRGp45TgFuYxCRcNh94QNks4jkorHoCKegJyYeE8jDm432zK6spGe5QtxyLua5v+vbfWWSy4IQHA2V+nY7vomZ7Mri5dCR1yJWoqi3CqimloCQtvRTeqTmze6uN5XTIoSUtjyIrl2ArcIq2qNFi9KKEVKiWu5EMSCp4nvvh1XIHdUa6s7ZqQqqHlIiJtna4YRaSOZ866lqDPYT4TcOrp53aonkf5BpcCkOiy6eqtO1vFcXy17lv+pve+tgJg2QZvRRWmkS4cyxi6VzikBBy2ePIxxpDYtz8nTprAvJFjcdUK2IbAxk9oKPEb4+DJvptgbMN1GWBrz558PWYMYz75n+Zxi7SyHVV+qowhtvQjMnZ+n4SiF4kr+4T44rdI3/1jkvL+vn8bLznUbb0bnjojIiJtg0K3iNRryVkXsjl4Bl+YSRiqg3YQFwBlJPEH7majNQgXcHX3DGLq6fVNTBxS676/u42xG+7CNrYh0MNQlJ/MKdu3V6+h1sAQcwNctcWHMSHWuHbh2C4unTwJ2+vl3AnH89Xg4TVbhQH4N3xMcM/y6nMPeU7jhCDkJ6lLkPd+9SsqY7w1z3/oP/dkdWXhCeMZtG8fnvj4Bt+DiDSuJBhiW6WP8tDBrfaMMTy4cTcx5fNIKnwei9D+r/ZCWDgYXDiWGztUFL3C26ARCTFkx7T+nuEiItK6tJCaiDToydOvBa7lmU1LmbXlHWKpYic9+JrjCVluXED/+Bju6p1V7/mJiYNJTh5NSckyIMTGMdkc+1XDCyVZjkX5N4Ks3HQFd5DOl70KKUhMxXIcnP2h3jYGx7KYuifAtC0VvB+zlDJ3iCnTLmVIt+oenzPPPo2PXTb/e/nfnPTVPOL8fjAhihY/hSfpClKThmOCsRDyYbn2kXLhsSRNmspPgd0DRjB7+r0kl5aSUFZOZXw8m/v2ITczkxHr13P2yy+37i9ZpJNYWVbJQ5t281F+CQbwWBYXdk3l4uw0blu1jX3+AGnFr+FYXqoST6Yq8RRC7sz9Kxe6qycvt+9dTltVggUvjewf7TJERKQZtE+3iDTL54WlPLJlL5/vXyk3yWVzTfcM7uidRYqn4e/vKio2s+irywgEigCHhH/HkTIrhLEMlqnuiT7wc/mJIVaN6s24nb+g54UDqRro5VtfLGYjCVR4LLBs+hf7OG9TIQP37mJJ1zKyx4/h0okTSIirOzbccRyWL/qavJWryUhN4ZjTT8WV0Ly521/+9gHWrVxJyGUTHwgw8eab6TFlSkt/bSICLCwu55IlGwg6htAhx11Qc9/l30Fy7iMUZ92N40rn0G0LO7pesV5yfQECGILNuCo7p0sK9w/qqV5uEZEoakkOVegWkRYpDgSpcBy6eDx47ObNa66q2s3Wbf9g167/4IQqcWZ2oev8Irw7qi+oA9kO5VNgU8IoTnT/iKypfYgb0aXmfJ/PR15pKQlxcaQ2MzSLSNtgjGHM3FXs8geaanjw5060ZkKiy2bNpBG4bZuQMTy/K58/bt5DbqDu/PXT0hP54+DeZMUqbIuIRJtCt4i0ScYYHMeHZXlwnAq++moW5UXbOXbkNFJIwvK6cKXFaJEykQ7kb9v2ct/GJlYfN6ZTBe3DvTKyP5PTk2ruG2PI9Qf5ILeYXf4AqW4X53dNpUesN4pViojIoVqSQzWnW0QixrIsXK7qYeC2ncT48edFuSIRCafyYIjfbWp4HYca+wO3VRGEgINJdIOrcwwtt4D/7CmoFboty6JrjIfrenZp+EQREWk3FLpFREQ6of+s+pCnlr5IQWArcR4vk3qOY1DaILaWbiXZm8z5A86nX0q/o3qN1/cV4mtsQN3+Hm47rwr3+hLskuoh6L4xGZgujezh14EYYI+viaH3IiLSril0i4iIdBJrln3Jx5+9ynO+3VRlLKkZ1V3ph7c3vl3d7brfUyueYmSXkTw+9XGSvEkNP2kjFpdU4LIg1FDutiysQh8G8I9Mxwo42HsrMWmdaxh1stsV7RJERCSMFLpFREQ6KKeykqI33mDlu+8yKyebYGwyH8TEUdVjCXDYNOr9P/tjhlGZNJWgtz+fEmTSpy/w+knX0z8hrvHXMobPC8v4X34JfmM4NjGOfH+w8V2+jMGkxYBjwLYwxhBK7nyLhL2fV8ydq7fx0OCcZi9QKSIi7YdCt4iISAcUKilh6zevY2tBAbNPngxY5JpEStNm4mpg3bKylMuoTDkPTAis6t7Xva50Jn+5hueP7c/JGbUXiimsKuRvS/7GO1vnsiP1OwS9vbFMCCwLg0WtrvPGHAiaB4pq32u8HpGX9xQQY1s8ODgn2qWIiEgrU+gWERHpgPb8+tdUrV/PgrPOACywLDYGU3HFbas3cPvixlQHbqgJ3Ad+DhrDlUs38uDA7ry+r4SyUIgediFrl/2IKsrI73E/IU82AObAucY0nbkbWrG8E65kboDnd+VzV59sumr/bRGRDkWhW0REpIMJ5uVR8v4HFCYnU5V4cD62zzT8sV+ZdGatHu5aLAuM4afrd9X8vIpYrN6PMHjDUvZ5e9R/TkM6+RZhDXGA/+YV880eWrVcRKQj6Rz7cYiIiHQilStWQChEeUJCreNJVhATSK3uVj2EAQIxA+sP3IeyDhkGblkY282aQWPwVK1u/pBwBe4G2UBZyIl2GSIi0soUukVERDoYy67+eI/x+WodH+jKxZc/uYFh302F5oYfD3p7E1v6YTOLU+BuSAgYEB8T7TJERKSVKXSLiIh0MHEjR2J5vXTJy8Pjq6rphU62fQwp7U2oKrtWewv291aHGnnWhsOyseOxnbJOuQBaa7GBrl43p6QnN9lWRETaF4VuERGRDsaVkkLKxRdjWxajFy+pmYcNMMa9kxHbzyemrD+Gg/3X8aXvNzy83Dhgqhp9zarEKa1VfqdjU72A+1+G9satLcNERDochW4REZEOKOsnPyZ+/Hj6btnKcYsW1fRiWxiGufM5e88xdAvcQXnKVRgsPFUrSCj8V/XJB3q8jdkfuH3ElX7U6Os57i4aOn6ETkpN5K3RA5mcntR0YxGRRuzxBXhmZx6Pbd3LB7lF7KnyUx5qbBSTRIJWLxcREemA7NhYej35T8pmzSLx1dcYsmwl63p3Y313DybDS//Bg+kxt4x/Zk8lL9VFUtHzxJe+j6dqJZVJpxL0DsAyAbyVXxNXNpPirj88+NzBfOLKPsFbsRDL+Al6elKRdA7B2KGRCd4HhrEf6MFvp2F/fEoCjw7tRZ84zeMWkaMTcAz3rN/BC7vyqS9ix1lwd7/ufKdX14jXJmAZ074nYJWUlJCSkkJxcTHJyZoHJSIi0lyluwrZ+bcVfHtsDHt9f8ZbtRQ4OHvb7P+5IukcytOuAMDtW0fKvoewTACL6pW2HctLUdavCHm6gxXmQXT7L1vcywux91YSGJGG6RYf3tdsZTd278K1PTIYmhgX7VJEpIO4Y/U2XtlT0OSSmNd1S+d3Q3pFpKaOriU5VMPLRUREOqmk7mmkZSbw0gIfN+R/F1/SJTh2Ss3jIXc3StK/TXnq5dUHnCpS9v0Ry/hrAjeAL34CIU+P8Afu/VzrS3DvrsR2wGpnXQd39cnit4N7KnCLSKvZXOHj5WYEboBndxewp8of9pqkNg0vFxER6cSSp/Ym/7lVXLPN4fxdp3D2N84lQAFYbhxXaq2h27EV87BMRZ11zKsSTuJgv3iYFfvxbC4DwLgsnKzY8L9mK/lZ32xu65PddEMRkRZ4c18hFk1v/HjAt1du4Z0xg8JZkhxGPd0iIiKdWNywDNIuGUTIBclBQ1oAHE8mjjutzlxpT9Va6rt0MK6UiPVy47EJpVfPgQ4OTgFX+7iUibMtvt87K9pliEgHVBAINjtwAywpqQhbLVK/9vFJJSIiImGTMDaLqruO4z+pXxEb9DW833YDC5bZwdwm9vhuRXFuAsd3wTchk1BOQmResxVMzUjCaqcLvolI2+YLtWyeTSBMdUjDFLpFRESEIRmJzB08gO77NjTYxh8zFA6Zy31AbPmshvf4bm3797E2yd7IvF4r8doR+v2ISKezvYVztBUAI0+/cxEREQHgR5Mn0zt/D4m+Siynbrj2xR2PsZMwh10+xFQswg7kNtxDLlTV8/sUEWkNVaZlf19GaiHHiFPoFhEREQDGpyfTe9QYzl36BenlJQBYxqkZOm47hRRn/hBjxWKwas0hjC2bGYWK24/jktvXtmYi0n4MjW9ZiL4pJzNMlUhDtHq5iIiI1Bg38hiWr1nFyO3rSfRXMq9HCRXuCjy+Nbj86ynNuIWCbr8jrnw23oqFWMZP0NuboKdHtEtvs2zgxh66yBWR8Li2RwYzduU1q+25XVK4KCstzBXJ4RS6RUREpMb7ZX4qYxPoUpTHrCFjcEruJt5U1jyenP93ylKvoCL5bCqSz8db+RUGN4HYYYDZv3OYFgw71D39uhHbTlZZF5H2Z2hiHDf0yODpnfmNtvv1gO7c2DMTl/5GR5xCt4iIiNQoCIT4YsCxnL58HtOWfMY7vQz+Q9YAswjRLfctPHtnUph8PLldLwacgwupGYeI7NfdjkzLTo92CSLSwf12YE96xnh5eMseyp2Dk3+6e1w8d2w/hifFaweFKFLoFhERkRo5sV6CLjfvjpxEr/w9xJXupMK9G9spJKs8hhEFI0j37w+Ru2Dn7i+Y238E+Ump1ccitV93O1IWDEGMJ9pliEgHZlkWt/TO4js5XVleWkGVYxiUEEsXr+JeW2AZ076XGi0pKSElJYXi4mKSk5OjXY6IiEi7trnCx4QFq+sc75W/hzNXzMfCYB3Sk+1g4dgWb476BnkHgrfUMjghlpnHD8ZWL5OISIfRkhyqr6NFRESkRt/4GKZ1Ta11zDKGb6xbggW1AjeAjcF2HE5avzRyRbYza8urmFNYGu0yREQkShS6RUREpIZjDF+VVNSK1j0K95Hor2pwprYNZJUWklquYFkfF/Bpvn43IiKdlUK3iIiI1JhfVM7WKn+tPbiTqypozly05Kry2geMIaO0iJPXfMW4TSvBmOpbJ+TvpO9bREQUukVEROQQWyp9dY753N5mrUde5fHWPmBZ1QusOYb1mT1rjnU2IWBUUly0yxARkSjRcnYiIiJSI9ntqnNsa0YWAduFxwnVe44BymLi2JeUVs+DhpnDxnbaHm6L6t/pBV3r+d2IiEinoJ5uERERqXFyehLxdu3Lg6DLzVe9B9fb3lAdLBf0HdZ4L7Zlha2X2+UYjisIcvLeAINKQm0q4HsseGpEH+JcuuQSEems1NMtIiIiNRLcLu7ok8VvN+2udXxJzkAsYxi7dS22cTBY2BgCLhdz+x/Dhqyc+p8wzMPJz90Z4NZ1Prr4DwbttUk2Dw6LZXlq3V77SIm1LC7JTuPmnK4MTIiNWh0iIhJ92qdbREREajHG8PtNu3h06z5CVG8ZZu2twrW1DHtgAn38ucT5fZTHxrM5I5ug2xOVOi/e5ufu1b6a3vYDQkDIhm+Ni2dVSnSC95cnDKVXXExUXltERMKvJTlUPd0iIiJSS9WyZZx9y62cVOXjk+Mn8mXSQJbZfcAYzNcBNnZLIdQzARPnAr8DLhPxBdLigobb11Uv+nb4K7sAHLh9rY+bx8VHtC6AVJdNz1hv0w1FRKRTUOgWERFpZz7MK+Lu1dvJrcrFYwKc36M/3+vTk0GtMIzZv307W66/EaqqSDUOU+bNY8bpp1Y/aFlYDrh3VuDeWQFUz+kODkoi1Deyo81O3hckrv513YDq4D2mMES3SofdcZGdT31ZtwzsTrhKu4iI1E+hW0REpJ34sriMC7/egKd8HvElb5Ea2AnAx3vieWfdKYzJuYqXjhuO2z7ykFnw9DM4vipcxql+7l5j63QlG6+Nk+wBB+xiP+5NpaQmV+AJBilKTqcqLvy9y5lVDiEL3E1MksusMuyO8G5dUzOSIvuCIiLSpil0i4iItGE+x2FBUTkf5hbx1M484kreJbH435hDkrBtKogreY9l61fTs/huMr1x/KRfN67u3gWrhT2uxe++i+04Nfd3JmZWrwZugfHYBIam4GTH1QwnH7hhBSfN+4iM9QVAdc/3xt6DmTnhLIpSuxz9L6AB+TE2rmasSpMf08o9zqbpofT947VwmoiIHKT9K0RERNogXzDE+V+to/fsZVy2dCNP7crHDu4jofjfAFjUTpwWBrd/E3Fl/yM36PDDdTvpN2cZ+3z+Fr2uU1Fe635CoAoLMC4L/7guOFkHA/eINV9x4f9eJr284JA6oN+2dVzzxhOkFue3/I0308yubnyNXMWEgGUpNjvjW/lSp5HAbQNTM5LprvncIiJyCIVuERGRNqYy6DBs7kq+LKmodTyufBaNf3Qb4ko/Pvg8jmHsvFU4TWxUYozhq+JyXttTQFVawiHPBifsXorH+AnlJGAS3GBXh05PwMepn79XZ+VwANsYYvw+vjH/wybf65Eq91g8MaD+1cFDgLHgz4PDvHr4Yb/XdI+b+wf2CO9riohIu6Ph5SIiIm3Mtcs3Uh5y6hx3BfYAdY8fYAGuUD6YEFjVW2X5Dfxy/U5+M6hnvefMLyrjh2u3s6GieiXwX3cbyAl5X7E5M40tmSkE3C6+ve0Z9pR1Y4F7Muv6jwBg8MYVeIL+OoH7ANs4DNyymrjKcirjEhpodXSe7+MhYMPNG3wkBQ8e3xNn8dthsSxJi9xlTprbxYdjB9FDvdztnjGGquXLqVqzBjsmhoQTT8TdJXxTJUSk41PoFhERaUMCjsMXReX1PmbsWKp7uhsO3gYPh/eGv7A7v97Q/XVxOZcu2UjokB7bdTm9MVW5lMR5agXqroV7uODjl5lVegYLR51ESmkhjm3jchquxTaGpPKSsIVuLIuXe3t5o6eH8fkhUgKGnXEWi9NcmEisHn7Ia/y0XzcF7g4g952P2PDHR7CCPpL8Fp6uwzG//TPJZ55E1s9/hu3Vv2MRaTmFbhERkTZkZVklDQ0G98WPI7b88wbPNdj44sfXmXdc5Rj8joP3sFXN79u4i5AxtSL8zrREsg4L3FAdoAEmz/+Q9X2HURUTj9XEsHWAypjwLx3uc1nM6Rq9SxqPZXFFt/Sovb4cveWPPMnKeZ+wYUA/glPGARBbWcmQNWsYVF5I8dwdhH7wQ3r8+dEWL04oIqI53SIiIm2Iu5ELen/sSAKePph6Pr6rVzO3qUg+u1mvs6PKz/zi8jp95n23rWkw9AMYy+LY1YtY229Eo8/vYLGra09Kk1KbVU97FjKGmKPYpk2ia8Ft05mz9ivWDB5I0OOpOV4VG8uSUaNYNGo4zo4FVHy9harly6NYqYi0V/qEEBERaUOGJcY1PAzNsinu+iOC3gFAdc+2oXrutrETKO76I0LenDqn9Y/z1unl3ucP1H1+Y0grzm/04sAyhozCXMoSk/l6+An1BnQDYMFn46c28kwdR6rHFe0S5AjlrtxA7sZF5HbtCod/cWJZYFlsGtCfvIxUSMym+M23olKniLRvGl4uIiLShtiWxSXZ6by8p6Dex42dRFHXn+P2b8JbtRjLBAl6e+OLGwt2/fNNf9i3W51jXb2eug0ti6DLgydUTyA/8PqWhd9T/TqzJp6FsSzGrJiPZRyMZWMbh6qYOP475SK29ejfjHfcvrmAy7M1tLy92vLLP7Gxf79G21iOw8b+/cj8ahHBgjCtTyAiHZpCt0h7ZQw8eRbsnHfw2NQHYeJ3G91HVkTavoeH5LCytILl5VV1H7QsHhjYk2sT++IrHssybwL378xnUVk9bYFv9ezChV1T6xzvGetlQmoC8wrLav3NWNt/OMPWL8M29S+QZhvD+tQBuFcXQdAwp9dkvhx5EgO3rSbGV0VRSgYbeg/GcbXyJYYxZLGHWKrIpSsVVvTDjwtI8bj4Tk5mtEuRIxSXu5PSwcMa/dw0tk1pUjKE/HiysyNYXcdWvmo1W6ZNq1k/wgAByyL9L3+h12mnRrM0kVan0C3SHm2ZD8+cUff4xz+tvt2TC26tsCrSXtmWxUfHD+Zfuwt4dOsedvsCuCyLcSkJ/HlIL7L2r5LtTktjAvBu90y2VFbxy3W7mF9chgHGJCdwa++uTEpLAsBxHEpKSrAsi6SkJGzjcGfJZ8xjdK3XXjjqJIZsWA7Gwj5s8HjIsilMzWDD6JE4to29txLXljIqMjNYOvT4sH3hN87M42Jepic7AAjiYp6ZxMtcS5GVFpbXbI4hibH8fVgfusXo7227Zdl4AwGCja1Kbgxevw9sN6kXT4tcbR3Ylu/cTMWcObWmslhAjDGU3XorX3m9jFm2NFrlibQ6y5hmLD3ahpWUlJCSkkJxcTHJycnRLkckMqanNKNNcfjrEJE2LxQKMW/ePObPn09ZWRkAaSlJfDPmY1L3zefcUX/hq+QRtQJz7+0bOP/jfxHj9+HYNhhwGYe9Gdm8dvY3KU/Y/3lrTHX3VMiAJzzLxJxq/suN/BOH2l8ChLApJI1f8BAlVmpYXpsDl0iH/G5cwMTURH7ctxtjU+K1knU7t/CK29kU2s2aoUMwjSyGN37+fPqEEhn68asRrK5jKl+zlq0XXghQZ5eEAwxQGRvLmCWLI1WWSIu1JIeqp1ukvfl94ysG18jdApl9wlmJiERZbkUun277lBJ/CdmJfRjffRJdYmKx9wdBx3F49dVXWb16da3z+hbPJZV5WMBd257n6mMeqvX41pwBPH7tTxiycTlZubsIudxs6j2Ibd371e7Ntqzqq2Y7PMEz0ZTyTWYA1Ol1d+GQRiEX8wpPc3NYXh/LAicElovB8THc3juLUzKSSfXo8qmj6P+bH+G6/BI2DuhPwOOpE7wtxyGxtJScbTsYvFw9r61h22WXNRi2DxVXVYXP5yMmJibsNYmEmz41RNqb8u3Na/fXkXBvUYPDPXdW+flvXjEVIYfBCbGckp6MO0wXziLScouKy/nnjlw+LyzFwuKktES+3TOT41ISCDgBHljwAP9Z9x8cKxHLVAAQiBmEnXIG/zfsPG7OyWT9qlV1AjfAOJZgqM7LJxd8Sb/ybWxK6FWrTdDtYcWQMawYMiYC77Z+JzIbu86mZge5cDiJWbxgbiBghWmIt2VzWVYajw7tpV7tDih9QE+2XnQdJ7/7Il+cOJ6ypCQsp/r/c8a2Sc8vYOIXc+k793Nsl1apbw3G7wca7uU+9LHV557HqI8/CntNIuGm0C3Skc17HCZ+r9Yhn+Pw4zXbeWVvYa3jmR4Xjw/vUzP/U0Si56kdufx8/U5cVvXIbYC39hXy5r4iHhjUk0VrpjN7x2wALFOBtT+YenzrsPat4ZGqzTy46VIuWvYFmZZ1cJj0fiVx8fy7y9WUuePpX7GN44pXsCmhFwlVDiesrWLUJh/xfkOF1+KTkXEs6Rcb0fd/QBZ7cLCxCTXYJgY/yRSTTxgWMzOGHrFeBe4ObvQ9/8e2CWM4+Y+PU+JfRX5KQvXWeLkF9Pnpj+jz18eiXWKH09z/mpyC+ndxEGlvFLpFOrJZD9QJ3dcs28RnhWV1muYGQly+ZCPvjx3EyKT4SFUoIodZVlrBz9fvBA4GbgBn/2XqT9dtJ23v5poPcOuQnuADPyeUvE0gdgQJZSW1AnfQtlk4YBDuwJlctfs9MgOF7PVmsDa+L90LS7lsTpAEn8Hef0q831ARY2M5BhOFkTAVJGDVuxP4QcZApRWmv1mWxS29uipwdwK9Th1Hr1PHRbuMTsGCmpE2TbFTm7GGjUg7EJ5VT0SkbfDXDtfzC0vrDdwHhIDp63aEuSgRacxfNu3BaixnGofKpNMwjVyyGmxiSz/Gf9i2XUv79+Mf26Zz9+Z/0rdqJ0mhCvpVbueezU/ww9krSfA5NYH7gNxkV1QCN8B8TsTVyPDyEDbLrZFUEJ7QPToxlmu6Z4TluUU6q7RbbmlWOwMMeeml8BYjEiEK3SLtzU92Nb+t7al196drNzd5yrySCsqDDQ/lFJHweXPxTt7dUYBpdLKjC3/M0EZ7gC0cPP6NbOjasyay7k1M5Qd5T9Ojah+uQyK7DRQHu1HoG4RdzwvHBEyd4emRssPqxXwm1PTyH+rAsde5LGxblU1MS8LbyIrWItJy2d+/FezDl0asqzIujtisrIjUJBJu+iQRaW/iEprfdvj5te5uqAw06+K5JKTQLRJpy3YUcde/lzQz4Db98W0sN6u698Xv9uBg8PX2M6VwEe565kfnBfo1+DzDt/ubPf8yHP7ObcxlEobqoB2kejGrChL4Ez9hvTUkbK+9oLg8bM8t0pkNW7USKzEJA3XCtwEq4uIYvfDLKFQmEh6a0y3SHk0vbt5e3afcU/OjL1BJ0LGasbWPIV3b4YhE3FOfb8ayLOw8H6E4d8P/rRqDHSrCYNeaz12rCTb+uDFUxMTyzshJXFf8DF2CPRp8bdsKNvjY0E1VzOsCPheEUmMgNrIrOAcsL49zB6+ZKxjLAmKpYhc9WcQ4gpan6Sc4CmUa9SMSNkMXVYfqdTOepuzhh7EsC+P10v/PfyblxIlRrk6kdenKWqS9ml4Mf50MuUvqedCGa1+HtD41R55bvgl8DsRaDQ/FNAbbMsRoOKVIxH26Zh8hx+DaVk4oJ6G6x/vw/1b3Hwu5s8DyYIy/zjDz6oHjLiqTTgPAm1DK8wlXMHHf8gZfu4d3OS4ChDgYYoMYZsUFWOYN4ayoxEP1RYPTNZbA8FTwRjZ877OyeZ8LIvqa3WLCG+pFBAbdeAPceEO0yxAJK11Zi7Rnt8yGH22C4RdDam/IGARTfgZ3b4f+J9dqumCLD8+WksbnPloWx1h7w1y0iNQn6FSHZ7siiGdpQfUYy0OHmhtTMw7TuFMozvwRxorF7I/d1TcLLA/FmXfiuLsCkMk+8shkbtpogg187Mfa5QyP/wD295wbDG8l+FniDRE65E+GBdi5VXgX5EGw4QXOOoo15VU4UZrPLiIiHYd6ukXau4QMuHRGk83iXG5c28sJ9EqChHp6b4yBgMM3e3YLQ5Ei0pjZBaVUJrowBaHqfup9Vdif7SWYk4CTHgMY7Hw/WIZQv2QAArGDKejxJ2LLP8dTtRowBGIGU5XwDYyreu0HG9hCfwwWud4MXsuayiV7P653RfDxSS+wwnsMTlFfNnkcNnnqD9WWASqCuLaXE+qbdORvur6e/KNxIBy34nPu9gf5JL+EqV20bZGIiBw5hW6RTuL8gVm8M38jp4fewxNyCNkuPuU0/Fb1MFaryE/ist1c/PPzol2qSKeyo8rPN5dvItg7EU9BQc1xqyqEZ30JcHChIf83aq/ka+wEKpPOoDLpjHqfe7jHz2p/fE0QvXvgnfSo2suk4iUEsXHj/D97Zx0ex3Xv/c+ZmQVpV8ySBZZlZozZcZiZ2iZN2qZtCrdt+t4y95Z726aY3jblpsE2jE7iOI6ZOSZZzKzV8sx5/1ihpZVW5sTn8zy2tDNnzvxmdrW73/MjwugYmKxNnc2Ppk4lvVVH392CCDJsFXW9yntyovtUC24hiPd24XPGIXvmPgXneLi2RYluhUKhUJwUSnQrFOcJq+t/j/PSZbwqbujdliDbuTz0BC+/tQQ9bHHpBUU4bWc2T1OhON/5W3UTYUtiZjgRhS6M8i4k9FYMlwKQEJqWgoyL/WNbA1wb38I5dT4eZ0Q0evU4bpv5cy5u2cRtdS+RG2ii2pnJI9lX8WbKfCSC6nSBPV5DC0WfWwAEzqEiY93i2hvf3d3hFIaEV/gCp2wuhUKhUJyfKNGtUJwHfHP1d/izvG7Q9k4Sec52K9cte4LK0qt44NoZZ8E6hSI2pJRUVFSwdetWGhoacDgcTJ06lWkzZvBCu48/VTVyqMuPU9O4NjOZj+VnUBLvxJIS7TT1cT4VrGruiDTxEoLwxCSsVAd6uQetLQQCrAwn4UI3Mtk+uoktC0vY0Mq8iIkJSBHJ57aEzqq0xaxKi14dWOoMEP6D9gPSroEl+wadS/f4FNmiARl2VUxNoVAoFCeHEt0KxXucYCjEf+RCQII4roiSECAlq22X8fJ1OdgNVVtRcW4ipeTFF19ky5YtaJqGZUXyjcsqKvnv6nYOp2SiESkD5rNMHq5p5uGaZuI0DY9lkWTo3JGTyifyM8k+xypS+wP9PKlCYGXGYWXGDRonpEQKgWZJLE2MmBNtCYHNGyDQJhGFYXDqSBFDJIuUCE94xN7cZm5894kA/RwS3KcQC7gtO+Vsm6FQKBSKdzlKdCsU73F+v/W3NIkLow8Qgk6S+NP+h/hB3g/OlFkKxajYtm0bW7ZsAegV3AB784o5nJwR2d5vvGlJtAYfwRovmS1tJIW7KKWJ/1eUyfc+eAtjXXHUBoL8s6aZ9W1daMDSFDcfyEkj8wyK8j2rXyXhQAXaxNlY2tCCWEiLeG8lyaYDTc8g2y+5vjrE2nSD17INzKH6eUuJYYbJKS9HpE/FtqmZwAUZMFjLD0JrDqAFo1cmlwKkQ8csdPf1Ej/VRdHOAXRgsjuOazOTz7YpCoVCoXiXo0S3QvEep9HfHtM4L6otjuLc43B9J39bdwxt/+toxwk7CezIKxl8UMjCvq0JrT2EkBYdIg6PtFOppbNk/S4qHrmKsh/8kLvDcYSl7BXrG9o8/LK8nr9OH8uFqYmn/dpaaqpY9X+/ZnZaNnsmz4s6TgqNP89ZRLHPh/lYBVqnhSY1ZrWabEnTabcxUHhbFmgaF+xYQ33+GAIzM5Auo08gD4PoCmPfFSnm1p1KPijM3EqxE5qeCrZ+kTHvMcENsDItkV9PLsCuqQgghUKhUJwcSnQrFO9xcuJSwTfyOPeIwaQKxZmj3Rfi6l++RVWbn2zZwgy7QYBU3CJIuuhCCDhIBsHaMIavDew6Zk4c0m3Dtq8V0R6pAtabx9ztRV6fO53crmbu+NQnyPjaj6jO6KsGbgEBS3L3nmOsu2AyY5yjzKEeJbtWvQRCkNVUy8r1L7J68VUIy0R229rz+9eKc1iRG+m5bX46h5bHDxI40ka2X/L3jV4emODgjSwjEnIOpLc2sHjr62yaexH1admRk8Uiii2JY0sjWjiyENGzDCf6/R6akYKVE3/K7sEZYRRe+E/mpzM23smS5ASK4x2n2TCFQqFQnC8IKU9hic+zQEdHB0lJSbS3t5OYePo9EwrFu41QKMT8tauoJ7tXgAxASpJp5fWpJeRlFZx5AxWK4zAtyezvvkqHPwxY2CyTkNYX8h2Pn0QC1JGIRET0lIz4Y3PtHSyiFENIGi03B8wsaq2Bnw3OcIB/vPJdXl+4jAfe/5FB59eBTxdm8ZXi09uz/p9f+Rz1pUd6H1fkjmXr9EVU5I0DAfk1x1h8ZDf/+73BaR9rfv8MTVs2IJE0+iqojdNoTM0mwdNGZks92+Yu4c15lw/9Nx8FvaYL2562qPtld1G30Oy0UV3n6cYIS8JGdFEtLImMwcsPsHvx1DOaXqBQKBSKdy+j0aHK061QvMex2Wzcom3lt9Y1CGkN/BIuLUBwrfkKeVkXnTUbFYr+/PntUjr84e6wZo3QcV5KL068OIHusGfZ+xs1wQT2iByKba00Wi7ShQebCFEh+4Si33BQmjSGSzetHVJ0m8CrTe2nXXRrx+VwF9Qco6Dm2IBtruShi3hVVx2i1rOfxpR01i+6mqOFE7FbJiGhsfTQW+wtmYMcZfSK1hgY4NU+HiFBa/SfU/nbjqDF1IogO4odUYW11AQpHSaticMXkYvXhBLcCoVCoTgtKNGtUJwHfP3Cb2Kt/jb/kfOpI693ezqNXGO+wY8u/fFZtE6hGMgf1pYCILAAbZQCT3BIZnIomIVAdgvIwcc/Ov4ivrPxz7j31TPO3Y7dCtMan0B5aiYhw074DASBjZ09j7qjh4gWcCY0nbGzh8711u02ajPzeOHS25hVdZQV619Clxam0EiKa+FNxyWxG9ItokvawxwbcWzs054JclpMFr3jZ2+hgxCDPdrCkhQ0hkn0WiOK7k8WZA27X6FQKBSKE0WJboXiPOGbK7/NFwN+frfpFzQGO0jSnHxqwWdIcF9+tk1TKAbQ7gtjECRMv5zqE/CuDufp3ZE5gd/MvglRFSDdqGOc0UJPDIjfsKFNmUEwOA67/eTzujv9ITaWtuAPmUzOSaAkMwGA6RdfzuZnn8QMBocU3pYQuC++mr2dXkrinTj1iIUBy6Ju2RJebZvKDbvWYbPMSJE5QJcWTaGMUdnn9Hu5rMkg16dRzsAq8P2RgHQb54yXGyJ9tFO7LD64uoMnF7tpc+uI7t7hUggmVoe4brOH5xa4h56g+3V1QZKLzxRmnlHbFQqFQnH+oES3QnEe4XQ4+fzyr5xtMxSKYbHrgsRgCzUiq1vgWSMIvUgguhsfHpwM5dkehBCsyp/PLL2acXoLWr8S3Y5wCLF7G39tquWee+45YeEdNi1+vuoQD71dSjDcJ6rnF6Xw01tmUpSeyo1f/BZP/eQ7A4S31HW2zFjCrgsu4X+rPFB1iARd4+68dG7NTuHO3ceoxMaNpfuxmSbace5nRyhEclcHbfEJMQlkvzMeQZDrsfEPAsOONQuiiNcTRFgW8iSqg1ekG/htgpxWk0+/0M6xLIO6FAPdlJTUhkjzWIQ1KM3q/rpz/OKNEHytOIeP52eoKuUKhUKhOG2oQmoKhUKhOKf4yn92s3vtq+xzTD6Bo49vcDX82IVGGRP1piG1qUSQVjydj9x+HS7H8GvUUkrKy8vZvn07zc3NxMfH81RLNlur/YPGagKS4+08/19LyU2Oo6utlT1vvEr57h2YlskzF1zJmvjUwccBNiEISUmyp53btq2Oas/unEzWT1g84h3oNh6XCa+s9vCGFeQH+NGJ5LZH7kMEK9NJaFZqbJ7u4SITpMQIhxCWSZy/i47EtJPyni/d7+PCPb4hn3UJbJjk5PWZ8SAloj2ITLBBd9RAlk1n19LpJ3xuhUKhUJy/qEJqCoVCoXjX8gHzEDt1e0QkCdkdJh6rKBudePNYDkSUT0KBpPboPhb+II4H75zP0vHpQ46zLItnnnmGXbt2oWkalmVx1Exjayh56PES2rxB/m/NUb5z/TRcySksvOl2Ft50O2+3drJm59GhjwMC3evkqd7OYa+rTnuauPYmfEnXDTsucqGCLgN+MdHBh44JvmvqvBwKsJFwpHWYy8AsdGOOiY9dHB8/rr8IFwJTN5CGjbD95NtyvT3ZSVzAYuGhAJboWyTQJewotvPG9LhuGyKF4ESVl/C0SIG6j+arkHKFQqFQnH6U6FYoFArFOcWqbVsp1S8AIUZdgXt0nm5Bm4wbdoRDmEi/j7v/upmffWQe14/NQBwnKN9++2127doFRAQ4wJZQ/rC2WBIe21LJt66ditav+Nc/a5oHeJmjEdKiFwXrsHXSaa/F3f4Edt8u2rO+HpNY/neBnX8XRELpc7wWF7aEeDHXHnHNnyzHnb8npFwiIoL8ZCqiC8Gq2S7WTYojvzlEdquJJmFPkYOm/sXTNIHWZaI1+AhPSCTeafDJAiW6FQqFQnH6UaJboVAoFOcMdWVlNDpcBAInWsBsdMKtTTpHHBNGI2xJPv3iPn6xIIffTylksjsi1sPhMBs2bBgwvtWKw8/Iraf8YQtvyMTdL3T9qDcwouAGqE7JIKTp2Ky+0aYQVKVkUhEXYvahJCZUJBAXDPDQbQ20pmQOG+7tDsO11SEubAgTZ0oOJGo8mW8f7e08Mfrb1ZPxdgIC3BuncXCMg4NjhtgpJYQkWoMv0vqsJch3VhSinUNF4RQKhULx3kVVDVEoFArFOUNbezt6JKj5JGeK7XgvDnxy6PVnS0KTFY8fG0KCXu/jSJef63ccpsIXKThWX1+Pz+cbcFyXjG3BwKYJ4m0DPdYpNj2mD+awbrArv6T3Ko9k5PKPhVfwVvE0lmw4zPQjSQhc7Jw8n4BjeG9+icfiqbUe7j8YYHaryZQOi+urwzyywcs9x4IxXcspQXYXzBOCqfu3nsJ5I3fJtq8V0X3Drk5P5M6ctGEOUigUCoXi1KE83QqFQqE4Z3CnpaELiZtAdyXy0ZOEFx92gjF8xFkIVgUncK19/yDnqiZgdyi3b4MZCfvuMi1+V9nIjyaMGbLVl0OEY7JzcUnagNBygBuzUnir1RPT8VsLJ+EIBXEF/bw2ZQFIyfVvPEmC18fOaYt4c+EVmPrwvantpuQ3W30khAauwhvdl/Xpw0FK3TpvZQ5zL08mNLw/os+CfVPmnZTXe8C0bUGMIx3oLX0LCN+cO3ZQmoBCcT7y1t5dVLe2sHLaDLJT1EKUQnG6UKJboVAoFGeVMl+AP1Y28lxjG/6wyU12BxOCDWw3809AcEkcIoxOmBYZS0cLQYt0UWslkq11DNizI1yAz0rFgSSAJBE/srWZppQ0Hq9t4Yfj88jIyMAwDMLhPqGdLrpwCz8e6WC4+OxvXTt10LYbMlP4TXkDZb7BYea6gDhNo8u00IiEk68rmUFhQ4jrNnaS2hkip7GY7VPG8PrSFTFcO1xSHyY9GD0qwATuOhYYXnSfLvEqRJ/wPlECJo7NTQOmXDkxk/zU+JM0TqF4d/PZv/yFrXoKR/OLgBTiNh5ietlBvn7RBSyYeCKdIxQKxXAo0a1QKBSKs8b6Vg/v332UkJSY3fpqnbOYiwIH2BfIImDYRynqBF5pY2r2XjbVzY/xCItyM5lMrZMKKwWsOJaZY/gwLgwEISSvE0Lb/SIXPPUmr81fwi/e9xFCUuJwOJgzZw5btmzp9XoLAfONKlaHSohWTO3TF5VQnDG453WcrvHv2SV8ZO8xtnV40SMGYkoocjr4y/SxeMImv61o4OWGNq7f6GFqZQhTRKp1m47xrJ+bErP3eUFzmLDo82wfjw7MbrMwLEn4VBRUGy0nK+htPQXbIqQkOvjxzTNObk6F4l3O3b//I6+On4vol4bjc8axdfx07ttZzu+RLJg45SxaqFC891CiW6FQKBRnhS7T5J69xwhaEqt7m+gMUdng5g1RcgKCO4IHB/MydrKpbn6MtcwFptAwhCQUzuHbMgsHYHQfaUNwqTTQJl6Pt/4dLt6yjpz2VmyXPw7AxRdfTGlpKU1NfR7VQr2V5RxlU6iQQL+PWruh8eUrJvKhJWOjWpPtsPHC3Ans6PCytrUTU0rmJ7lYkuzuDYn+0/SxPPKvfTRXhoCI4AaoTbXRGT98SHl/NElvnvNI4951SAlBC2kIpEPHHBPP32+YQ0bCybcpUyjerby1bxerx85ECoEUAytIWLpOXVoG33tjM88q0a1QnFJUITWFQqFQnBWeqW+jI2z2Cm6ArD3l5HmraArZTtDLKREIOg/PYG5cFeEFqUi7NmxZNQkkCx9SwqeNVJz0Ce4edKGB7sAx64PoUjL94D663n4bgKamJlpaWgbNW6y3cJtjFzNSGwlNSiI4I4WOFVl81+xk2eZ3+OLBSvZ7fIOO62FWQhzXWl7G7txI+YvP8sILL1BdXQ3AxsYO6tfXD1pQ8Nti+FiXMlIlDtiTrA+7KGECh90aQT3G58KSw4eEn2y4+GgQApw6gYtzCS/N4qr5Y5ie4jpz51cozkF+t2YzIZsR9f3V0nX2Fk6gobX1DFumULy3UZ5uhUKhUJwVtnV0YQgId+uwmVs20dGcxgSKCAcla41YmmcNxnTbeCN/DpU5OZiGHTkuEduBtiijJRqSEr2ZdJlAYSh65XGh6Rhp49AScjC76ml7+hncy5ezZs2aIQuqAejCYo63jNzDh3l25Y2gCfyW5Ig3wBFvgL/XNLMwycUFSS6EEExzx3F5ehIyHOKxxx7j6NGjaJqGZVlomsbWrVvJnD2PR/xZ3DFEvbbUzhjumRDoh1qxZW1gnb6D/9Luw2HZGco/rgP/KoqtGrtW58M42kFwUSYwRHh79z0yAn7CdsfpywXvfz5pgaazJMXNA5MKTu/5FIp3AZ2aA820MI3oC3TeuHjWHNjHrYuXnkHLFIr3Nkp0KxQKheKsoPcTXRkN1cRXZ3BNIAkAj5Csleao+kRLAaEpKVhjXBzpl9NsFbgIOjVsO1oGhHf1hJ4vsZXhFGESzME51kOhJeRgddZiNjURCAQ4fPhwVNHd7oxnb14xB7MKsDR9SKG5sb2Lje1d6EQ8y+k2g7taKvGXlkbst6wBPx/1WlhDnK/VpdGaoJPVGqY+SY+UXx90kyT4TYwyD/auGrxOi6/qtfzYKkDS5+E3iQjup/IMnssd+auC1hLAtivi7Tf2tBKeMUReeffvYceJVaWPmZ4WYQEfps2OBaxt9XDx1oN8piCL9+WkqsrlivMWw7Jiel/NT009/cYoFOcRSnQrFAqF4qywPCWBv9c0g7S45JUNFNtXIgCBIFEKJoQ0DtssZIz6KFySgJXXXZX6OFElM5yEFqRj39mCCHaL2FQH6S3NjNObATjoSueS9pHPI8MBLCGw5ebS5euKKrirk9J5cfoiLCGQWrfc7xGiATNS5KtHGEuJJSWp3k5a4hN4wJVFycQ5TK0pJaujtfc7sgSOZOaR1BlASgshNJrdGi/NjedYdj+PdE8IeX/hLSVIsO1tQyAINi8HK56tSO6mi5uxcSE27MBhLB6Z7mJNTmxh/vqRSOV3AeDs9pmfDWErLSCM3beLYPzAQnrlviCfP1hJuT/IV4pzzrxtCsU5wJRkO5v06F//NcukuLqChStvPINWKRTvfZToVigUCsVZ4ZK0RJJ9HhZueg2HPVK0R/RzwVzus9OqBWjsqRLWT8NphLEwEEgkAs1mIoviows9IZApDgIXZkNIRiqaGBqtq/x0WHYarCQOzxzDh7cEibOGngJAhnyYTYfQpCTxphv5ypZvkSSSMOTAj9OQpvPKtAuwtOOKFfXYZ9cwDrYjXTbMfFfEPiGYU3GIMa0N7MkrZkf+BA5n5ZPfUs9l+zZjs0zCmo6l6ZQc244ZFHSkTOaPlyUROv7TXIjI/ervbZZARxAzL55wcQJIid7kR6vzUZbh5KfJDn5KxGst2gKEcpJjE85BE721rwe2mXb2CpUZwTJcrX8HYRskunuWRn5ZXs+NWclMcsWdeQMVirPM/9x6K+sefpYjY4qw9OOSSmTk/XSe1Xl2jFMo3sMo0a1QKBSKM86bLR18Y9MubvnPH5lZWkrZhAVox8U8OqXgTo+DA3aT3fYwHZqkS7O4c/LjLMrdzNG2Yuq6snAafsxMJ7/XPjfyiYUAu+gNs5aW4MkJs7mm8nWuqMjjH2Nz+OjRYNToy+Chl5BWiNaly3k2weSNg9uZnTCW4o5itH7B64ezxhDUoxcrAjDHuLCva4CQhVmcgLAsqlIyKGmsZl75QdI8Hbw6dQFVKRmsnjiHyw5swbBMHMEAMw5sofhoOV+9/0eEbCMI4x6PtyYgyY6V3OddD6c5YGJS9+Pu4XnxEB5m5eE4hHmcp19wxr3c9q6NxHc8gy1UBUDIFj1/Wwcermnmf8aPOUPWKRTnDobNxvcXTuZrGw9wqHAcuhlGSDB1DVsozEVle3jg4x8522YqFO85lOhWKBQKxRllQ5uHD+wuZUxTPSmdLSQEQhiWOWQ/DQPB9KDB9KBBk2axZ/wGLsxfD8CUtENMSTsEwDpGX/DHqPAggGBcCrvzs7nrWDvfnl5IQkhye0Uo4kO3rIgAFxqhI6/SUfYG/7nsOv583a2YdQbk/YrNrjXk7K8jLuzsFd71iakIKZHDed7dNtAFxpEOzDHxYESC6+n+v7i5lsLmOsrTcyjNzKOtbD/xAT8SeGfSIrbPuoTG5BHyo3s83v0fH/97jze8/7hYq5UD0q4jNYHoroiutQYxU2MslBZjP/Gox8ogKXXfwAjX9m1Gw7TlRj3MBEq9gRM7p0LxHmDZpCm8OWES33j8Ufa2BAlrGglWkM9espRFlyvBrVCcDpToVigUCsUZ5ftHa5ASAvaIYAxrGiltB+hMnTvI292DiaTSsBhrrx9SpxVQHvP5hZRkdLSSW1XGAVs2MslGTfxMtLJ6pBD8bLKTRwvtXFUdZFpVFa7mYxyWbaxaNJ799zyI3x3fbzKdjuQLeWpmJfMrKilpakaXEhFraywZ+afX+DALXWR19LUesxBMqS2jPD0HISV78oo5lFVASDfYMGM+lhZje7D+zcqHErjRtsV6DbrAzItHr+pCSDCqujCLExiygnks544VITCCFQMEN4DAwu9eGd1cIMGIvZe5QvFeRNM0vn/H+8+2GQrFeYMS3QqFQqE4Y1T4Amzt8AJQl5GL1xFHTbKbGaWr2JoyN2pVXQ0odXZyXTg4pE7Lp5ISeZBSSrBEdEHlCAWZWnOM2RWHsOkmHWnJlOo6QZlIdUrfxNXxGg+NszO9po4WeyZNjinQBLKlFSM3QHh8Ith7CoZpeNyFrJ6czzozTKLPi9dmjxRPk5IZR95hQsUxwrrB5ikzqMnMBksiOkIISyIFCH8YRzhESUNVv2uWJPk8AEgpOZAzFksIEGJwLuZwnIFw73BJAlqTH/wmImBh291CaEZqRLgPVUX9VCAldt+OvofdP/2uFYQck6MeZgLXZyafHpsUCoVCoRgCJboVCoVCccZoDvXrIy001l5wKZe/9Sx+rZYJhx/l8Pg7sJBo3cXHLCQCeDkuRLa9lpaWbAKBOOx23yAd+XF+w3f4AV4ZP0B4C8vCboa4Yu8mMjtb0bs9uBYwK1BBqRxLUsDkqbEDW+Ro1T4O+ceC3eo3F+jVXrSWAMELMvqEd/f1BA07TQmRKuJF1RV8+4+/pLC+BlNESsRpUrJ25nx+dPd9hMp8keMkCJvgir0bsVl990cCAaO7IrmmRdqEjVY8n6QnOWbsOsGFGRiHO9BrvOj1fsSGBkIlich056jC1WNCRkIEHN5tvZssPRVfwlX4Ei6NarsuYJLLyaVpSafWHoVCoVAohkHIaL1O3iV0dHSQlJREe3s7iYmJZ9schUKhUAxDXSDErPX7Bmy79tVHmXp4NzMqG3BZaVTmraAteSIgqdKCvJySSJ1NcIN9D8man5SUaqZOewMYqK2kFDRYGTzUfj+HkosJ6waGGWZiXQWzKw/jDviGtOkvi64kz69Rmmjr3Sb8YRxr6ojmepcCzAIX4UnJQ+7PbGnioe9/mXi/D90aWJTM1DT25RTz5Xkf665sLrki4TDZob5+ZSmWi/FmDn5XNocTBb+d4CRocw19U6PR8/F+plt3hS1EwETqWl/7sNOFDKOHG5FoWEYGiMEh9z2Z8hawIMnFn6YVkWG3DRqnUCgUCsVoGI0OVZ5uhUKhUJwxsh02VqQk8HZrJz0+3ecuu4PK7BTat6/G8mcys/JNFr/zDwRwIKWQv674L4Bunze0tuaxZ88ljB27g4SE5t6529syOXLsAmYkvsmyfXsIaQ4MMzxUfbYB2E2TUrcBUiKkhdR0Ug7V4JVa1HB3IUGv8hKekDRk+PQtr784pOAG0C2LGdVHmFNwiG1ZE5mkN/QJbgmLQhOYauVjYvKY7VUec71ESPwcGIXolhLag5Boj3oNpw1DQxox5JufCoSBaRu553aiofPglEJWpqnFeYVCoVCceZToVigUCsUZ5VsluVy97TABy6JHku6cfgml4hiy8gqu3v+dXp04ubWcWw+9wRMTLqLKTCRJ+NAEtLflsHNHDk5nB3a7n0AgHp/fzX4zkzun/Z79TZcjgsN5WSPVxfyGnWkVBwgG/LQnpOAM+Jl0ZDfHfLkcSJiERfQ5hCkhZIFj8JjLN64dUnD3EBYaF1Vu5/C08UwKNkEgYtFMs4gpVqSV1RNpq/hH5nP4XcuQmnvYezoUxjEP4dlpww86merhp4tTbJMEOk2Tp+pblehWKBQKxVnhDC1FKxQKhUIRYYo7jmfnlDAnsV8V8BAEa6+mqKOWhJB/wPgP7X+RL259GF+rhYUYUFTb70+koyMTvz8iSrsCkgR7F9k5R4Dhek0LLCBYMokv33wjIVci7Qkp1KfnUJZfgrRpvZ71aEiImqvs8nUNe6whLVzOIA2zxvDoBZfyzIwl7MueSkGgAJ8JXZqPR9Jfwue+mM60j4EY5Rq5EBEDfeFIn+4hL6B70eBc5BRnvpkSnmpoozUUPqXzKhQKhUIRC8rTrVAoFIozzvSEeJ6fO4HDXX7K/UHe3lHL3+TQDcMEsLJqByurdnAsL5+tiy/A1DRARByiUqJbFovXrePWuhrqL4Pc3HeorxtHIBDP4PVlSXx8G0e1YjyZ47n57cPIgqmYtsi4ptRMRGEI+6ZmoiEBK92BYdMIS0hvbWbOwX3olsk7heNoTEkjq6UpqmwPC41GMwH72gZSc92srHYwrj6NTZG9aHY/yd4Sqgve130TRu/5NYvc2LY3E5qfDjatbw4rUlFca/RjpTpGPe9p5zR53kNSUuoNMDdJffVRKBQKxZlFffIoFAqFIiZaWlpY/+pL1O/fg46kcOIk5l1xLQlp6Sc853iXk/EuJ290lqNrgvKEbLyGg/hwYMjxY6sryX6ukd9c9H5sLg2HFmSsRxKq8bAhcznmjGksaHgSW9Y2Zs56mcOHFtHamktPYrMQJtk5h9ksp7G6qgTr1QoMIoXRRG484YlJSJuOTNIw0+0Yjf7uYmf9kBJdE3z50oncVpjI9i9/jdw1b6D1887WpqYjhYjar9uQFi8XXkCWx+ID2wPox8lzK+iiuPPT7BP2E763MtWBVeDGvq4Bc4wLKycOaWiIrhB6jZdwoRvOVO71AMOGCR8/zeHuTl0F+CkUCoXizKNEt0KhUCiiIqWka/Nmdjz+BDX7dtLi1OlyRCo/Nx3cx/bn/sPy99/D/OtuPqnzuLpbbwUMOy+MXcTNh9egMViwhoVGlSONN4xJiAAIJBPcHn46PoGUYDJShPGXXU1F1g7sdj/Tpr+Bz+fG40lDCIuExAZKuwp4bcusATJXyO5WYO3BSCswQ8OckULy+lI6/S6EtBBILKGT4DB44H2zuWhCOgfv/Sg7jHh+9tmv0RnvoqCumuvWvs6MowfRuvt0c1xutwReLFrI0eQxvL/Ths5QuV6CzjgdISMLAieKme/CSnWgV3Vh7G8DTWBlOCNV121nUID2X3wYTlSfiOCOUajnOmxMcjlHP79CoVAoFCeJahmmUCgUiiFp2r2PY//1Odz1Vb3yVwB1iS52F2QS7uc1vOozX2DykhUnfK5t5a3c/OB6AGxmiG9v/DNzGg9jIdCQ3dnZgmZnIt9e+GEW1+5lSc0unh+7lHW50/E44rki6GGB4cSjuVmfto9bZvyFBHsXYUtDCIkuJLsap/CH3XfjN+OGtEMC4fGJmMUJABRq8Plj+9jaZseemsncqcVcNSMXp03n4Oo13NHkpzYtEyElUtPQTRNT17n67Tf4/CN/Im7CBAJHjkI4BEC73cWT4y/k3yUrSLF0PtIZXQTuGGvn+fmuc6/Q2YlyOluYxTD3jyeM4e68E4/KUCgUCoWiP6PRoUp0KxQKhWIQ9UfKqLzpJpyhALoc6Km1gDaXk43jckEIJJCaO4YP/fxBxAkKKikl7//jJjYfa8GUEs0yWV69i2uOrWNKSzkSaHIm0WmPJ9/TgN0ysYSgIn8MW2fMoTMpAWGG8FomW8Q46gLp6MJkduYexrhrCFo2djVOo9qT2123PIodAE6dwIpsAMbG2dmwcMqQ9q54ZjVH3UmY+hAVzqXkU0/+gzv276D913/hW798jrCmcyR5DKYWGT82pHFLV/Scap9N8PMbkrGGaEkWM6YFowmp7i9eezzIUrJiw0tMKt1HY2oWO6deQGnBhHNvMUDKSL569/UKIhEEFvC5wiy+ODb7hF+fCoVCoVAcj+rTrVAoFIqTYvX//JJpQwhuiAiZ1C4/6Z0+mhLjEUBrTRXt9XUkZ4/cM3kohBD8/q65fPKf21h3tBlhGLxdOJc1+XO4rGY7n938LzIDHWT6I/2sTU1j7bKl1OfkgJTEmyGQkjihsVjW8hJJ+KSdrfWz2Vo/e+C5hrMDkP5IB3FdwLKUhCHHbWzv4lBS6rDX9NglV3PT+tWkZqezL7140P7ACPrPGZLYwpKA/SSEoq5FKpg7uxcGekSnjNRml/1EqJCS5KDk91u8HE7U+dUEBw1OAUIwvvwgiZ52XF2djKs4xO4Js3ll5U3nnvD2m+CKiG4J5DhsPD5rHMXxKqz8vKSpFn4zmZ4WgXzmAKSe2HuUQqFQnAxKdCsUCoViAA2dfoq3rxlScPdgAbltnTT1a/sVDg5d/CxWkuJsPPzRheyqbOOlvXX4gmHGZyVw/azLENsuoum3v8O3fTsAu2fPpj474o3uFX7dP90EWGE7ysuhySdmiBGZx5LwoSjhyGtbO9Etq7uK+hAIQVNKGg0TJ7Myw8203ET213YM6N5Vq1t0CIsEKRBDLAWUZhkE7Kcg79qpI+p8iJCFld8drt4dodDfmy2BoCYIaYK9SToNzr5zh/XI14We18T0QzuoySlkz+R5kQGx5myfZrSuMJbL1vu4KhDi79XNfHt83lmzSXGW+HbScRsk/GpS9772M26OQqE4v1FlPBUKhUIxgIN1nbiO65V9PBpgD5u9j3WbncTMrFNy/pn5yXz5ykl85/pp3LmwkASnDfeSJRT962HGb1hP/ksvcWzK5KjiThOQrXtIEd5Rn1sKMHMjCwk3ZqUwLn5w+LfftCj1BmISlwlXXwXAV66KLACIfgsZUsDauPCQghugLsU4Nf2qhUBmx2Er7USr9Q3ah5TE+b24fB68usU9C+N5tLCvaroRDpLU0Tpo2oXb10Tsk5JL68LktHdEdhxXOI5hFm9ONVrj4NftX2uaCEfrVa54bzJIcI9yv0KhUJxilKdboVAozkE6gh2srlhNW6CNPHceK8aswKbbRj5wBAKBADu2bWfHlu10+bwkJyUxb9ECpk2bhmFEPhJsukZTXBIZvraoodgW4LP32COYduEl2J1DFyc7lRgpKbR0dhIKhYYdJyVkaZ20mvHRRnB8oLkE0AXhIjcAT9W3UhcI8q8Z43DqGlJKflfZyANldXSa1oiiO8nbxbQbrgdgSUk6D909j8/9dT0d2Hs9zPsdJvUJIbI8Fm40xtgMvAk2doxzUp514u3CBiEEZpoTo6yTYJYzsjIhBJMP72LBjrfIbKkHoNOVyLbpi9g6YzFS08GymP7Oduzh4MDpgOTOVlxdnaR22hlfb7JxSkKvF70HR8DHzH2b2TVlPgFntOfiFCAlSNAaB0db+C3JEZ+fSa7T//pUnAOs+0Ns46r3Qt6002uLQqFQdKNEt0KhUJxDSCn5/e7f89DuhwhaQTShYQtAgS+FD0y9i+uWfACbc+j8VMuSvH2kiVX76/GHTCbnJHLznDEkxduwpEVHSyt/+eNfaPd7ejWnx9dF1dNPs3XDZj74kXuw2+3Myk/mByVLuH3Pi4gh2nZBxNNdmZqIBJKysllyx12n7Z4cz8nU/9SkRXagkgkzZ/HmwdbeemEAMt4gNCsV4iIfjRLY2NbFL8vr+VJxDj85VscvyuuPN2ZI8S2k5CPFuTgT+3LCL5qUxfOfmMfL9/43m4qmsapwAZonTFMwRJMNwGJ9voPwlMRT4+E+3k4NhCfcW2hsyZbXWbxtNVa/xQd3VwcrNr7CmNoynr78/WiWxZzdG6JOGxY6lckGv8sZ4jVpWQjLwuuMJ3wKFoyGRQgIm1jZQwtr5eg+j1j1hdjG/XGJCjNXKBRnDCW6FQqF4hzi97t/z+92/g4Ae0gwf38K42pcaFJQtu4pfvPX55l75fUsue1OdKPvLbyh0889f9nC/poODC0ila1tlfx03b8oGrOB6lA5QgoyE7OYwAQy/BmRA7v1VnVdDS8//SLX3XYDTptO5t13UfGdreR7GgfldkugIi0RT3IiM1ZeyvLb78Tpcp+BuxMhOzsbm802rLdbCGgwB9okkMRbAf4ruIH3feiTHGvq4rfbynmkphkr0Y5MsQ8S0Bbw1+omPpCTyq+OF9w9J+pPtwi/KC2Rz00sHDS8oDCfpT/4Ej99rRbRHo5M0d2IWzp1wpOThp53GNI87YxtqsFmhmmNT+BI5pjeHOz+dmrtod4llIymWhZvWw0woB96z1lLyg8y5fAu9o+fyUsrb+IDz/xx4GUC6+euJOByRTdM0/DHudg7ZX7M13JSGBrhosH2GAKK46JXiVcoFAqF4nSjRLdCoVCcI7QH2vnj7oi40U3B5RuzSfHY0GSfALOCIbY8+28q95Uy68p7yS1Jw9dZxfd//29SPD5KbOmUusZiCQ1H9r8xUrZSHQSpgRSS+vh66lx1zG6aTXFnX0VtKWDX/t1c5r8Cp9PJJ66awbdav0/GP/6PlVXbsVmR/O12ezw75l/GTd+/n8sz0xHRComdRhwOB/PmzWPjxo1De72lBJ+X8e372JswBa8ej1MGKNGbuLRlJ1dcdwsAY9NdJJckIxzBYR3LrWGTv9U0R/H5H4cQTHfH8bfpxRhRWn3tT84j1F47KHQ/PCaG8Ot+htrMMBcf2EpRSz1Wd2E0TUqWHNnD6klzKM3I6z1GtIfQOkOYSZHQ9pn7t2AJDS1KvrUlBLP3bmLfxDnU5BRSm5FHTmN17/72hBTWz7toZHvPJEKAc/DXmqvSk3GOpm2aQqFQKBSnGCW6FQqF4hzhjYo3CFkR7+2ESjepnbahi2xJSd2R7bz8608CGkLPpchsRhJAxyLQZONQbohtKeWR4f30hhQR0bYjbQeZvkzc4T5vsIlF9ZEKxk2bgK4JvnfXEnavnMrTbx0gdPQoLnccy69cwn0Ts854v+O2Bi+7Xqvk0JZ6QoEwCRlu0lNyaGyrQQjRJ76lxOHzMnb3NlJdDha0bYtsBixHHAUBHe/s2YQbG0lPT8eI8TpaQmF0IbBiCPve4/FR4Quw2+Pj8boW6oMh8p0O3p+TyiVpifxhW8WQx8mEGEKwu+3Nb6plWk0Z+a0NQERs92BYJpfs38LzM+3UJGeAEOjVXQCECyPVy9Nb6qMK7p750rrnFpbFsfzx5DRWYwoNXVqsWnbtyLZKSXZ7M6bQaEpIRp6FBZoxDhu/nlJwxs+rOIsUrICKNSOP+8DTp90UhUKh6EGJbkXsNB6CA89CsAvSJ8CU68F+GgvjKEbkUEcX160/SJtBpDCSBHvQ4n8mjuHu4lNTSVpxZpDBIA17t6IhsJBMqBg+XLsvldhChivREHRmjMHwe4jztFFe0ASWAG1okSgQHEs4xvTW6QO2W77wgMczxiQz4/2LgEUncXUnR11pO888sAMzLJHdybkd9QFkwzjyC7LRspppLivD3tpC4bEyCsvLsIfCSAHv5KRRlpGMALSAj/3Zhez8858BSElJYfz8CwjL6D2cBTA2zkFxnANzFHnWt+08QlUwjEYkRH2/x8/LTe3MdDmpq29AkxaWOE6E9k889psIbxhsGtJtDAo3n115mNyOlqg2SwRzyg9GRLeUmHkCo0qCQ0czTRwB/xCl5AYSMiKF3KSATncSLUlpNKZmsXPqBVTkFccUAl/UVMvGcVNHONOpx6UJ3peTxjfH5WI/C2JfcRa59Y/wswkjjxu/8vTbolAoFN0o0a0YmaAXnrgHDr8ycPtLX4AbHoTJMXg8FKec7U2dXLXjMNj79SgWEHRofKmshgOdPn40swiAt9ddRCAQ8XoaRjozZjxISvKcs2S54ng6Xn6ZY9//AeExkDcvGXdHiCRPFC93NwP0TveDhMZKWjPy+dsNH6PTnQjSwu7bQXzH89iCRwYcL4Wk1TGwDZQuNfLGjjll13UqME2Ll36/BzNkDQoBF1IQqHCz+MBqHFteGVR8TEiYUtNM0NCpSYkUNDNaGwimRPLZW1tbaX31Za6aOINXsosxGYwEPl2YyUWpiXy/tDZmu6uCkcWLHl9yj2W7PD5u3PMWL6UvH3SM3uBHJtgwDrSjNQd6n30rXic8PmlAkbAUbycWYkA+dn80JGPamrCHgwQNOzIpAUfRH7Ea7+K69S+T0TpEfno/LKHxTkn3gozQ2D1lPrtPIDd7Y8n0kQedYv67MIv/Ls454+dVnCMkZMH7H4d/3RZ9jCqgplAozjBq+VcxMj8sGCy4AQKd8NidULbuzNuk4Noth0AXg1r09Pz+16ZWNm/5IK+/Ma5XcAOEw01s334r69ZffKZNVgDSsrCsPnl35PHHePhf/+CVoiz8ViIXb07kgnfShhXcURGClMZKLn3r6UhvZKERjJtFW9Y38McvOM4Q0AbEncO0hGLi0xNP7MJOE2W7m/B2RM+5tvnbsG8eLLh7kMD4upZIXjMgwoOLrxUc3M1kERHJPXdE7779nynI5H3ZqWQ7bNydm3pyFwNMO7yfj697gcSAZ0DPbgCt1od9QyNaS2DAsy+8JvZdLehVXSAtstqbaXYnI2N4idjMnteaRiizkCVHH6Kw6mjkXkQ5xgJMXWf79JOMbjjDKQg93JSdclbOqziHmHA5fLkKSi4buP3KnyvBrVAozgrK060YngdmgRy+Hy5vfA8+/NIZMUcRYXNTB6ZDi/6lVghyqaSjc13UL9Z+fxnbtt/F3Dn/OG12Kvoo27Wd9U88TO3hgwC4U9IYt3gZ2zZuxgi0D1oBPWG5IgTjKg5RXHGY0sKJIHSQFp1p92H370OzunqH5nhzeuPUc2Uql99y9Yme9bTRUNaJpgssc2hRndG0e9jjBeAKhknwB+mIcyCNwXnTQgi+IjvpnDKL5xra6DBNSuKd3JWbxhR3n3e5Kxw9BzpW7nn+SWzS5EtbH+abi+4lLPqeawFIUyLdBuF8F1a8gQhL9DofosEX8YCn28jsbKUsLZu8tsZhzxXUDXy2vqrdobgFTKvdgYY+7HEhw86/r/4gbUlpJ3m1J0iUNmyxkGHTKY6Pni6gOI9wJsCdT5xtKxSKs8qnX3yYcunFLjW+N+cyJufmn22TzluU6FYMT9uxkcdUrAdvC8SfvBdIERu/Plw74pfST/PzEYVbW9t6LMtCUzmPp5Utz/2Ht/755wHbPK3NbNi8jtLEo1SN8yE1SXaTkxlHktBPNv9VSlZseIm6zDy8cW4QGkjwu5YR3/kyQgrslp2CznwSgoJFyXOZfdsy4oqSB0wT9PvobGrE5nCSkJ5xxounAWiGGLayuG4GkIio/cR7x3XnS4eS04fc397ayk1ZKdyQFd1LurXTO7LBwyElM0oPowEzmkuxzXARqpfQGAAtEpxgjk/ELE6I5HdrkQJxVnYcojOEfWsTc7buZveCaZhCY2HpPnRpDflqsRAcyC7E6vnbFgK318IZGl5wW0Kwe8o8qnOKTu5aT4TuJ/o3W32M8VrctMyFFaUCfDQenDK4TZtCoVCcb9z3wj/YEeeiPG5q77Zr3znGuD2v8tSy9xEfr2oynWmU6FZEp3xL7GODHiW6zyCOEURynPRSwNAVko+nsfEVsrKuPBVmKYaguapykOAGaEgOsmr2DkJ6d/ivgIK6+FNTbkoI0tqa+Ng//5cXVsyjPuUQWri76JYEm2ljWd0y7NLOBz/4UdIn5Q4Q1L7ODt5+9O/sW/MGZigIQFJmNotv+wATFi3jwIEDHD16lBYpOJiRB2npZMU5uTkrhcJT3A+5cFoaW18oi7rfG5+FxvAeaAl02Q0su5NQ0mDRLYTA6RzZO9oYDI84ZjiElL3h3utmzqUtLw3yAFMiPCH0yq6I4IZIYcSIcZFrcBkEZ6fSdaAJnz1i69oJM7nw4A4sBuaKWQg64lxsL5zYt1GaaGbTiDZKBGE9hirqp4Pua53gsXgi3xab4O72iqcEW/lJQjNLU2edXhsVCoXiHOezLz3CK3HjCDDw89gjEtlln8v16x5j1aUfOkvWnb8o0a2IzroHYh/ryjxtZigG891p+Ty/6UBUb7ebjpjFm99fPfIgxQmz5bl/D9oWMExWza8nrFm9scXCgvGVbrRTIbulRAiBYYa54Y2N7C3qYOvkVmR3sb2EUAKusIurr70G97hsHt1SyTM7q2nzhihKcZC+8xlSavcMyJNub6jjpd/8jJf+/mc6csayvXgKWwsmQhBETQtoGj89Vsc9uWl8b8IY9FPkFc8qSiS7OJH6sg6O73AlrBBOXyNSaIPyo3uwgPokF76UNPw5RaAP9vRalsX06SMX/DKt0YeXO/0+/M5IiLrUNMqzcimor2H/2PEY4TBhwwBdIO0a5tiE6KHVmkAmO6jLzujddDC7EK/Nydzyd8jujBTFC2k672QXsLVoMgGbve94qeEttWg3EkkMR39/0KVF+Zhxo77OU8mDJTaeGmMffpCU5PtquafmaSb4yrmwdRu2aTcAt5wJExUKheKcZbsdAjiwxNCRTfv0Gfxq3So+s+TSM2zZ+Y0S3YropBSP2FKmF5vKoTuT5LqcxAcsvFHyuj24Y37u0tJU25RTybGd29j31mp0QyMhNYOjWzcNGnNkTBchw+rp7URWi4PxlW7s5ikK8+9+TfQ8/9PKEvE5TfYVdwDQ4mxmr30Nt8tbuPKXb1HW7O0xhUN1HWBfyAeMMpJD7Rz/KpIdrZiGna0rboiIeOj9CfCXmmZchs7Xx+WeoksRXHnfDJ795Q6aq7sikfIW6DLMjF2/Jbn9SPTQck1Dc7sY86Mfs37dOjDNwRXOhaC4uJgxY6JXbQ9Zkv85WoO3p6XXKBYUgoaBLRQiZIt4j59aeTmfffQvaJY10Oo4Y4QAeUBKmgoHtgKsTMuiMi2LuKAfm2nSZXdiHr+wIC0ce48i2/LYljSLi5rfGnJ6S2g0pmZSmTs25us75UjJU/nDR0ssat3ON0t/z2zPwb6NQo9aTE+hUCjOF/6zYwNHxYSoghsiEU3PdlXxmTNol0KJbkU0wmHCm341QrmdHs5OhdrznZ0Xz2DiG7uRDr3PO9b902e5CGs6tiGbIPVH4HafXa/We4X1TzzMhicfiWlsTboPACMsuGRLJtmtTuTIkismLARdhgtvfgkuw0Lz+7C1NjLtqMmBog4sLdJ3uTS7jU88t4PacETEyX7HT/IcJjnUwVB/2wJIaalnXPkBjoydOmg/wB8qG/l0QSbJtlPzEROfaOfWr86nbHcTR7Y1EPSGyd3/DPHeKmzFF2IrWIJwJGL5WgiXryVUuQmsMInXXkvm/Z/Dlp3NnWPH8uSTT+LxeNA0DSklUkomTZrEDTfcEDVfvTNscs22Qxzs8nffgJHf73TLJLu9GcM0aXUl0uHsy517ZtnF2EIhxlYfwzRGeX+EiPp267M78UHkPaC7cj2AMD04W1Yja2cCGvsSppASamN2x+7elmM9P9sTknnqyjtPX9VxGcOixTD7hDRZ3rqNR/d8YfBtkCYULj5pExUKheLdzNv1FViOicOO0bAwNSUBzzTqjiuG5p83xf7i+NTW02mJIgqJdhuVl8zkjo1HWNfVhdQFWFCgaTy1cBJt5TdQVz84tLk/M2cOzjVWjJ7X/vQgu159IebxuimYeiyRWYeSMKwer/TohU5PNEOPYBZAeVw+r2dchIXBVdoBklw2THcSRlsyGS2N1KcHIsdqUOeoxwwOTg2Z2TF8RXCARdvejCq6g1LyRksnNw1TlGw4zHCIw5s3cHTrJsLBIBmFY5l+0WWMm53JuNmZyHCYwxd9Ecfyr6C5I4sGQgiEMxE9ZSy2wuV41/8C16KF2LKzASgqKuL+++/n0KFDNDQ0YBgGEydOJD196MJqPfz3wUoOeiP3bEQxKiWzKw8zq+IQDrMv//vNkpm8k1sUOV7TefLiqwYcA6CbYQQQHqK6+kjnHNQy0PLh7FyHw7sZW/AIwfa5BJnTu//ttCUcdpcwtWM/qaFWApqdw64S9i2/gJDbPbrzx2pjf/tOqDq55LrGN/n5wZ8M/ksRGjgSYMbtJ2moQqFQvLuZm5bHI50WUkSPnLMQaCeQLqU4OZToVgyJv3wtDob3Ycvuf9ruR+Hir58ZwxQDMAyDJ5dOGnJf3tSfEAq30Ny8esj9kyf/lvS05afTvPMCn6dzVIIbYMXODDR5YkK7PxLY755IgyMTiaA6Lo82WzIAAsnaUDHXOA4AEE5KIzdYSD2Heo8XUSIhUkIj97FNa6kloel3hJyT8ccvAm1gikmXOVKUxdC0N9TzxPe+Rnt9HULTkJbF0W2b2PifR7nk3k8x4+LLCTc2Yh93I5prYEV10f0lQ0suwDnjffj37Ycbbujdr+s6kydPZvLkyTHZUu0P8kxDW8wicfHRvUyvPjrgWd1YNCUiuPtzvEgGTMMGljV6QTpk/nc8/sRL8SdeCtJCFz6MmrYBdtU7sqjPGBiqfto8Hz02SgmWCVpsMVT9eWT6OFZu/zdY/sjxPb3uhQ6GA973GDhOw4KBQqFQvIv4wPyl/PaNxymT44YJMRdcaBt+wVlx6lGiWzEkMkobmv4IIAA4d/zz3SO6g95Igbjt/4h8acudDVf9BFLem21mZs18CNM02bnrQ7S370AIwYTx3yUv74azbdp7hrUP/2VU4yWgy1MTvqsBuxNn0OQY/OEpETRJNy1WHKlaJJw9K1xEcscxJlYkkN3iwAzupyLOy56EaXTYEkd1bt2SOLybcHg34Gp7jPaM/ybsKOndP/4EeiVbpsmT3/863rpaCpvayW31YDctPA4blemJrPq/X5GUmUWWIwMja1rUeYSmY4xZAMaOUdvQn/Vtnu4JR36+krweZlQfHbDN44hjZ8H4mOdA07rDw0+8T/UghIblNkZ8P5eA5TpNXwm6r+fbf/gFi/bu5OYf/Q5PvCvma9SBN1o7WHnZ92D8ZbD5j1CzAwwnTL4W5n8EkqLn5CsUCsX5xCRfkMo4M/JxcrzwlpIJ1gG+cckHzo5x5zFKdCuGJCAETilH9nQLwDtyG5qzjmXBK1+DTb8buP3wy/DLl6FwKRQtA3875C+AydfA2Wqbc4rRdZ25c/5+ts14z1J1YO9ZOa8EWm3JQwru/jRb8RHRLQRJzQGu35uDFKBJAbSTFtzF7PbdlOfOZJNzGg0ygU7DTUqobdi/f1OXiJ5WXZaXpIYf05r7U9CTKYpzcEGSa9TXdHTrJgLlFSw9Wo0zFPFkCiAuGCKr00ttspstTz/BFVf814hzCU3HOXnhqG3oj9kTFh1DLvLE+ore3Ogedo4pGb14Pg351DLZjuUy0LvCQ1YOkAKsNAfEDfOV4Li6EbGf3EI3LT736F9YsTPShvKT//4nP/ngfTHPZQKHu7pD/Mcuj/xTKBQKxZD8+eo7uf35v7MvPpsm+lLIbDJIiXmQpxbdeBatO39RolsxJO2aTrI5ck9am4RBfXzONSwL/nIFVA6uIt1L+duRfxAR5roDrvwJzLvnjJioePdi624HFSunUlIddE0YcYwuIjJL83XhrC1DIBD9U2wBiaSwdhfp40w2M4597sksbd0QdU6J5Fh2V785JMgAcZ43MFNu5teTC6IWJhuO0u2bmVtWhyNkDrhPPZlp2W0eOl5/E3n5p2KazzFh+GIy0jTxrHmLrg0bwDSJmz2L0Ixp7Fu7mra6GjqFwdj0Yo7ll/QWJouGK+DrFbRtcS725hZzIOfEImhET2Vz7RRUs+8WtjPzEjh6qBU/DOhqLgVg1whNSR7BKDGgQJsmTQQWpoi+OKmHw3zk2ce4csMakj2dvduv3LAG3TT5v5veT0vSyHn/GpBgjD4kXaFQKM5XHrvmg3i9Xu5+40laDYlhST5XNJsrptx1tk07b1GiWzEkBZaTDtFFQhRvtwT8QERumLD3PzDtpjNpYmw89iE48J/RH2cG4PnPRr5ozr371NuleM+w4s6P8MT/fPWMn1cAFXHDh9RqWORqkTZh9pZ6BpZdGziXlBJbayPzMx28mjwOf8d24kx/7zFGfKTQV9CrYyHYV9x53ByStMAO/jr3K0xxj24hoivUxQulL/BK8CXcK8PMPCaYf0hiHN+XGyhqbMPIGaGHMwAm9f/z/9AcGkk3XE/SddfR0bGbyqp/0t6+HREGY00r5uokat0r6YzPxbf3dTzi/xBCQ0oLU2jcIt+mJnMM/77qg/j7VSE/Hq/diRBwNC2X1ybPAyJ9uft7c+0ywAWsp4AygtjZznyOMn6Qt1dIid0MR/psn6znu/v42kwHWlIGwZou9FovwgKpC8wx8YTHJoAjBlHbb+HhEzxANQU8za1Rh3/yib9z01urhtx32ea3uXjrevZfcTVPfPBjrGv1EG351gKuzUwe2T6FQqFQ9BIfH88T13zwbJuh6EaJbsWQiIRUWj1evEKQZQ3O7+6kR3B38+SHQLdHwrLPBXxt8L/jwQye3DzPfz5SEVf1IVdEoWDaDDTdwIohMuRUU+irpMGRGUWYScZrjThFxC69qzN6P2sigtbe0oBlc7AkCY7NXMzkfW+SXtxCxsxmnEkhAAIeg/VtNjpkz1F9ZNisUQvujbUb+dzqz9EV6kJLAqYL3pilkd4u+fqjJrktA8c7TAvha8E5JQ3/O80MpdSktAgdW0tg90YAutav5/BbX6P9Ki9C6EgZCV2XCwVyQReta1PorPIQ9h7pPR5A7/6Z3VjNtase44lrPzT0RUjJoax8xjVW89rkeZG+5UJQLA9TSiTPfabczqf5BXF4MdERwA38hwNM4QH5RTwioXc6S9f50j//zO+vuZ6GtMxTkuNd5dIhXoPUFMJTksGUYIgTmleTJqu4io/zm6FFt5QU1FVzw9rXsOiLVDgeXUoumjSeuRPGcMmWgwQsOejp1AWUxDu5Mj1p1HYqFAqFQnGucApi1xTvSfLnUWhZOID/uOLZZbdRoevstRlsc9iJAwYFFb78pYGtYc4Wvnb4cdHJC24AGYYfjoGydSc/l+I9y33/94+zct4FbVuZ7HkHiPQwRkpEt1Ac669kgVGB6G4LYsSyKCAtnHXlZJTtY+Lut8la6Sd/eR2OxFDvELsrzIV5Pu5KDQ4Q8brQmZo2dAuxaBxrP8anXvsU3pAXAEuApUdEYIsbvvN+HX+U6OXUW8Zjy+7OG+/VjRF7zKZDBPY+0Ts2MNGi/arIOXoEN4DQJEILk7/styDfjmqnJiUFNaUkdLRGHdPqSuTlKQt6BXdc0MvX9vwIZ8hPkTzC5/kRTnwIwMBE764cP4F3+ALf733edEsyuyXE1a4L+ee3/pv7nvznKWvtMn/fLjTLBE2ATTthIW8JnVJKiKcLrOPe8y2J0x/gO394oDtEXo9SYV1Dc7tJvuVmxsU7eWzmOFK6+7obIvIPYIY7jidmjsOmnabe4QqFQqFQnAGUp1sxNCWXIvf9hxTL4uYub9/24boAtVdB9XYYM/e0mxeVoDfi4R7GozdqrBD89apIpfMPr4LR9tFVvOeJS0jg/z32PH/90mdoLis9Y+fVkFzS9CYzOvZywD0Rj+Em3vQxyXOQ7EA9WiCPFG+AkiNHqHTp1CW7I6IwCj17dL+XzM4upj1Ti2+Rhm+21ftp0XP4HJfJTp/Jbl9khylN7ph0x6jsf/jAw5jSRA7x92rpgla3ZO1UwaU7+/ZrSUk4iooQdhuZn5yFd1cjXdvqMTsCBN7ZQah0DeHanQNqTXguNiPvXUNEUAtNggjhXabxnH4XpqaR21DFjANbSfREWqdZQuPZS2+jM3GI/ON+XuiWhGQArn1rFfc9/TDxvgAPZn+DfV9ORdjlgCJrPehYlHCYqexhLzMp6bT46c4AekI2FfNv4Lnli7D04UO/7TJAEFv0vHMpmVt+jOmlh9g+efqwc8WKjkl9MBOt0YuVEx9xSZsSrdbL/U/+kaK6atA0cn/6Y2q/8U2kz9f34rEs9MRE8v/4B4zUVAAWJLvZsXgKLzW1s7PDi13TuDg1gflJrhOqD6BQKBQKxbmEEt2KIZGHXz2xA7saT60ho+U/90bysU8HNTvgh7lwxQ9h3kdOS5Vhxbube378K4J+H5uefpwtz/4HeYK9qkdLZrCJzJbjughIidZYSWZ9CyktHeg+O7UpCUNPIAEBUmiEUjIIu5MoEwKqapj4xBHS3+ig7qOS5vJkPDWRvOb4HC9LxnawSwqEkFyWKMkMvwPMidnuV8texZTR75GQsHliP9EtBKl33YWwR3K6haHhmpuFa24WXRs3UfHQL4acJzBBDim4+98A+1iTUiaAEFTkjWPj7OVctfo/TDm8i7cWXMLhsVG8+Me9D9zw5it89rG/9j4ubKjCrh8b7uSYUudm73o+fGg8SxpNdMBE0jjzSqozRw7Xv4hXeFlcF+XSJG46uHHjo2jNOuYIAj4WNBlmFtt468hC7FVtyP1tYGgQtnAFfSw/vA2AjM98hqSrr8a9fDntTz+Dd/s2hNCIX7SQpKuvRosfmCNv1zSuz0zh+syRi6spFAqFQvFuQoluxZB0HnyFKF/Phycp71SbEjtmGA6+fJrPEYQX/h+s+Qnc+xokF5ze8yneddidcSy7426W3XE3R7dt5vlf/IhwKNija3t9naNdspH9fkqh9eYbR0UITA3eyUmjJtnNwqM1TKluZH9eBkLKXo+3kBHL5mRew58umEmF1sD0qiOkezs5WjKeo+MnMGnHFmqfgP7VHTqrXIjt6eRMEUy0+7kqv4yDB7+BrseTk31DTNcUGGGBTGqCgA3QdTBN3BetJP3jHxtybNjnG+ZexGROr4DuKYD24sqbCegGW2Yti+lwZ8DPR59+dMA2aTCC4I8UoZvo7WJCY98ChI4g3pQIbxitzocImkingZkbB/aBE7aTPOw1eWQibxYt5f4Nfya7qYH6lDRkLOK7X7Xyvm0Sicbkjl08UR2p4SEkEIq8Hm87tBrL5ib1y/eT/r7bIteSkEDqXXeSetedI59ToVAoFIr3ICqnWzGIur/cTKLpPYHWRgKypp0Gi2LAsmDDr2EYr9kpxVMPD0yHv0bxLikUwLi5C7jje/87YJvpTiKQlT+qeSRQlVPI3gmzeKdkBrunzMdnj6G4X3d+cUecg4PZqRQ1dbD4UBW5rR6cwRBxgRD5zR0sPVhJsb2Y7+0NEW/P5d/zVnIkIxc0DREOUhWvY0lBRL32/ZOm4NI9OmPbc3pPuX//F9i48XLKyh4kFBo6B7rMF+CLByvp1PMYuj9CBM2CsZ444i9YQN4vf8mYX/0KYRs6veNFT3zUpBLHYTFsaowUggMc58kWAonk9eXX997HkVi0ZwfxAf/AaYKgtTNsxosE/pNWwIHEvo9kP5K/+b3Y19ZjHO5Ar+jCONiO48069GMDK8dvYOnwhgnBawuXc8uPH2RS6ZG+ftsjoGNFxnWP1aSJhsWC4Ns8ufkqwuhI0b0QBMzv8lKYuIDvr/wGqbfdMuL8CoVCoVCcLyhPt2IglkVW+Wu9XrlRMfHqsxNy3VYJv5oL1mkKKx+OsjXwnTS4dxXkxR5Wqzh/yCwoIiEtnfbmZkASTkgmlJSGsCzsjdUx/Z1Z3SHPjalZHC2chKXr+JxxLNy+Bi2W4oVCUJWWyMS6FpJ9AZIrGwaPMQMIw8FHjoX4dKrO6olz+cjD/6ApXqMiNSHK37ZAwyLJqAF60psturxH2F/6G/5ccZStcXfTHNYpiLNzZ24aBU47t+48is+yMNyXkhg4HP26NfjYlx6hMKVk2MuTUvLggS4+nDWZeQ0HB0UBuN7QCUwZupCchSCEjTVcNHinpo+qOkRKRzuWEAOeE4HAtUan8xoz6puqEJLVXMT2aU4eWx9Z8HwIP/s9oeNrxIEE26EOspoqSEjycSxrEsFEV0z2+ZxxvDl/Uc9JRxxvovX150aQTCuLrDWskRfhWexGr/cj43SkU8ctNOa96WFnapikGYnY9H5r+iE/6LZIUTWFQqFQKM5DlOhWDKDxyfvIONGD9Vh6555iwgF44Cx513uQYfjjSrjmAZgXpaWQ4rxFaBoLb34ff/7bf8gL1GAJDRAE03MQoQC2tqYRhbcuJYu2rUaTkq44N89dchtbZyxh8uHdJHW2oY0Qau72Bxnb0Ip+fKXp3hM4EHY3QmgsbDZxhwVdOjy79CImvbN+2BU4AfhqIx8lPTqunSS+x3epCechPCEkJpX+IGtbPTglhCs86JVd4M8nmDMLm3sniL7TaGhYWHx2zmcpGUFwA7R5Q1S0ePnNzJv5xVu/JiXQOUB4GwcMHM/rBK4JYEoNXUT2mVLDFDq/4It0iigtqWJo12UPBTBMk6bklCEXQVxvaHTM07ByzYj3uBsLgYbkn9xDs5ZOcwLsTtIobA/zGKFB8/SaBLS0JNHakoB2rB2xyI5MsMW26DmahdGe0PLuny0inRe0m8AZmcMc2/cVohP4xXXJ2I528uSFJRAOwpaHYPP/QWtZZI7xl8HS+6FgYew2KBQKhULxHkCFlysGYB5be+IHH3z+1BkSK89+/syfMxrPfw72PX22rVCcg0y/6DKuvGIFT2dfQ6fZtzgVTM8FfWhv6vHbesRcnL+LW174G4mdbfzrxo/xzrhp3UL++AkkjlCYjPYulhyqIq/VM6R2loCtcAlC6xNQ8aZEahpbpkwbttp5D6GAY8Dj3/FZ6sjpDtGO2GYBhC2sjQ3o77QjusIIUxCoug1/3Q1YwfTe4yenT+OBlQ9w7/R7Rzw3gNbdTqopPpn/uvBzPD1uGV1GJPw+oBm8UriALwS/yP++8zk2isU0kkEtObwkruGLPMAeMXvoiaMtUhxH0ObAZlnoDg2v0zn4uQsKyl6aw4tch5e+4mHlFPELvsAr4prebZvSDO7PH66jes/ihEB2J4vr5V1nLsqo/3l6wu57/mmC0PhEdutB+Ndt8MpXobU8MlZacHgV/OVK2PPkmbFVoVAoFIpzBOXpVvRhmTRjJ/tEjzeDEPKBbeRqu6eM3f88c+eKhSfuhoJDkJB1ti1RnEMIIbj8/e9nl2sbf96Qxe3siBQzs9nxFk7CWXUUPegfUGQtmoTSpEQiWbh9DS9ccisvXHIbeybO4bpVjxIX9KOZFiUNrRQ0d2A3I17VaOkiEmhNLsFffB1pYYs0XeAzBK32SM5vWNcwnS6EDEYV3xII2ZMJhRzYbAGqyWOvmDlgTEFzHTOqjlDW6OaomX5cHrdGuG0hofYLkG6T4AVZfH7eNBYku2O+v4lOg3FpDkqb/bQ5E3ho2rU8NPUaHGaQoG5Ddi9KlKdOZIeIrSgagNbgx8qO7f2sPc7F6qnzGXPF9Xz46ccG3XNHV5BHxV08Ke8ghRZC2GkTg6t0/6HEjl4RwmDYAIMB6HVezEJX7N7u08zPS6u4+9jb2I9fOuipufH0J6B4JbjSzrxxCoVCoVCcBc4JT/fvfvc7xo4di9PpZO7cuaxdexLeVsWJc/hVcgLNJzdH4zunxpZY8LWdvrntJ1S7PcL6X506OxTvKb5w3Rw+ddEEnLVlkQ1SYjni8BZPxVswgUDmGEIpGSPmEevSYsKxfUw7tItbnv8Lt73wN+KCfnTTYtGRasY1tPUKbogu3gTg9tRyMChY5zFZ3RnmjWSNULfnuLCmlOaikhF7ewdTsmhriyw0vcOUAUW6Fhzbz1V7N5Le2kapmRa1cJqQAq3TQHQI7FrsH01SSl588UXyOvYPnFsIAoYDKTSkAMupY2XEUHyuH8bRDkSTPzaPd/c9+sflN3DH937FwaKiiH3AgTGwbfI7pDT+GnvH8zSbxpCCGymZ22JiOPVR1dQQFti2NoEnekj6maQVGxuTZkQfYIVh58NnziCFQqFQKM4yZ110P/bYY3zuc5/ja1/7Gjt27GDZsmVceeWVVFRUnG3Tzj92PYrb8p7cHMGuU2PLSIR88LPJp2fuSVfDV6tg+RdP7Phtfz2l5ijeOwgh+NTFE7G1NxNXcQi9q6M3Z9iyOxDhcEw53hDxeF/y9nMUVR2lJxh5XEMrif5gVK/2UNLRHu7CEWwHwGNBsCJITn09l771LPN2vk1c5ZFIESx62ov1zQcQyMjDincjpda9ve/sua2NzKk4BEC7dGKN8JEjgUSPyTR37NEy27dvZ8uWLWQ6vVhFkdBtKY67ZrtGaF4aaKPzAouuMPZdLYj2YPeEkliqftenpvOJL/6Ab33hQ3z5/zn51l0GqyeB4dtMfPvTpNbcT1zHEOk4QlARrxHIdGI5R1fETQtb2Mo8Mdl3Jug04ofZK6B+7xmzRaFQKBSKs81ZF90///nP+chHPsK9997L5MmTeeCBB8jPz+fBBx8826adf3jq8Omj8wQN4rXvgHWa23aFA/CPGyF8kgsEQzH9Vrj5T5Hfl/33ic0R9IB5bnicFOcemq6Tkp2L4e0kvvIw7oPbcR/cjuvIHhwtdQOE7Ujo4RDS1p0jLiUFzR2DBHeLy8nWoixenl7MSzOKWTthDJWpCQME3cSDj+Dwt0a2eY/y/qd/y8wDW9AsE80MIbtfz3GBUKRPsxCYrkS8BRMIpkfahbndkSiZSezv9fpOrz7a29tbi1FCLk9LwIhRHEspWbduHQAH8ooITUgisDADMzceK9GGlWonPDmJwNIspMt2/MEDHtpkkDlyE0mytW+fLihqqWHakYNophlz67CeMTsT9lBqj0QcWL2Z2BYCibvtMRxd6/qEfFsQPCGaHJFzhKcloQkLwcAieZE+7WDFHVcJXEryZQtpnraRblpUYW4LBUn2tJ8S4T7OWxl9pxBgOKLvVygUCoXiPcZZFd3BYJBt27Zx2WWXDdh+2WWXsX79+iGPCQQCdHR0DPinOEUkFbDTPWHEr8bR9kvAX7Udjrx2ig07ju1/h4qNJ3bs3Hvh3tfh4m9D7lyIz4CkfJhzD3x2N9z8UF9O+nOfOXEb/ep1qYjORR/6eO/vQkqEZY0qnNhC0uWItMDSQpF8a5slB4SUA1SluNk4LpfGRBdSi4i5TqedPWMy2FmQ2fu3nNJ6kHnbf4LhryPkeQ5NDrSn53ev044UGp4Js/AVTMB0JQIWScm1xMd3IiWMoYopcg+aNMnqaO0V26nCi52h23b1P8+X5hfFfB+6urpoaWkBoDQ9NxJKnmQnPC2F4KJMQvMzMAvcYPR91KV3trHk8M4B4nmlfJUH+RD38Cc+yEMsZQ1pgSa+evARcsaG2DNvOpY+unZXeqgah2/nINHcgwTi25+OPAiYODY14lzXgLG7BcImt6T+m49e8E+mph/oO0aAlRNHcGkWweXZBC7IwEq0ITVBcHY6pTNKaHYnDy2sux/H08W3+RLT5M5BNs0tf4cr9m8e1XUej2ZJZgeqmOQbRnRbYZh41UmdR6FQKBSKdxNntZBaU1MTpmmSlTWw6FRWVhZ1dXVDHvPDH/6Q73znO2fCvPOP2R9g5r73ERQGdhkefZ9uwEmYwL/ej+PbJ5kbPhxbHhr9MVocfLPfa2rMPFh2f/TxrWWw+9HRn6cHR+xFoBTnH2NnzeWy+z7Lqj/8Gml1FzvTdMLuRBAaWsCH7h86kkMi6XSFWTu9kas25kSKrkkGSTufTWdPfmbkmOMrTgO1KQlkdPoY09qJhoUt5MHV9Dwe1/Dtx0KGHUsY3WLawm73MWH8eqQEf1s+hi3MFzJf41vhCVj9crN1IZli1LMznMtQWeaaECyfkE5J5onVUwjp/T7OpES0BRE+E2waVpoDNEF2WxPzyg7gDIUobKyhPD2Hi3mFe3iIvcxkG3NZy0oCOPnm339JS3ISb85bdEL22H3bkWhRRbcAjHAdWrgBy56JlROHaPBjpThACB4Xd0ISuOd04A+7ESELaRNg6xP/MslGcEEGtPghvTtKKYon3hEOkdPehGZZbE9YzFec/8Nv5WdZL5b3CvLJdRU4zDCGGSZs2Iacp+/kctD5dEtilxY/G5sCG6O8joQOaSWR9mEKhUKhUJwnnBPVy8VxXxKklIO29fCVr3yFz3++r01UR0cH+fn5p9W+84axK0iesJLag2+TSheOfl6pnkq8FtHDI3qeMTthAt8vwPG105SX31JKdH/7EEx9H9z6+9Gd42Raf2VPV6GTihGZvvJSynZu4+DGdQQy8wilZEI/kar5unBWHkHvl6ogAX+cwYuLqgjYLTZObWHRvlQkElPXaHTHkebxoQGVqYmRv5Jo4dBSUpaexJjWzsj5pEXYqgeGz6c2zBBPBqZxpWsvU/P2kJt3kGBrEZWbryInbwVLbhlPQqqT5WGTB2uq6DywtzdkfoZeQ4floNRKRyCRCET3dU3NTeSB22eN6h66XC5SUlJobW0l3dNGl92JaA1h7G9F8/aluUibRrgkgbr8NJ6f1V293IqEbifTyuf5DY0iu1dIFtTVMOfgfm768e9i6tM9JDJELPXHhQyCgNCMVAiYYNcGnM9DAtgE0jbEO68QkSpqDn14G6Xk2l1vk94VicCRwO7Ui7ltwiNstC/BEjp5LfU4zMh7fqq3k8aE5N6q70Mb3pM4b0UWiqRkeUOYW9x/ZcrE38IND8Kzn47sjxwQqV6eNg7u+g9oo4scUCgUCoXi3cxZFd3p6enouj7Iq93Q0DDI+92Dw+HA4VCC5rQgBNzyV3Je/w5s+B2tIh4HYQxMdGmiE1s+ggDsoXZ45Ztw+XdPvZ2OBPCOwpN+ywnUBzi2ZvTH9NCTE65QDEN7Qx2HNr6NP6eIcFLaINFkOePxjpuK0daMwMKyOzHjExFtVYSMUgAOFXoIG5JFe1MxTDicnUz6ER8S6Igb4X1SCDri7ANaW2lyeC83RLpDp2peXgpMpqVmGpX+VO4Ym8sN/5VPenpf8SyXoXP3yuU8+M4+rG4xqwlYZjvGBNnI4XAGHuFk6rhCbp1fyCVTsrDpfe8wgdJjtD32KN5t20DXcS9bTvJtt2LLzOx3CYJFixbx4osvMrXmGOV6GrZtTYPW5ETIwnagHSSYhd1RKJqGlJJ/i/cN8tou27mFF5asxNJGELPDEHAtxdXx9LBjpLBhGhl953AMIUSHO78pse1swSxwY1kyaqE4ISXv5BSx9MjuyGOgvSWHwE430+bs5gDTuHLvxt7XwrTqY7wxee6I1whw1ZvPcpM1gyI9ka5JfyJ9Svdxs94HJRfDjn9A/T4wnJEileMvB/2cWO9XKBQKheKMcVY/+ex2O3PnzmXVqlXceOONvdtXrVrF9ddffxYtO48x7HD592HFl0ip2hypRp46DjImgreZ8IOLMWIVvBt+CSu/DPbhqtieANNvhS1/jK1gW8bkE/vSXLdn9McA3P1C5F4pFCNwdNtmTGc84eT0oQcIAZoeEeRGv7fqhCyKq10czetCalCa10V5tpfCungSvAYBezzLD3jRYiiGpcmBDbzSPH4aE11Rx0sg7EpkvN7M6lAJb3gEWpeX71Uc4Wfrj/H1aybzgQsKe8dnZGRw++238/jjj2NZVncUE2QLDwXuIB/4wAcoLCwcdJ62f/+b2m98M3IPzMjfuX/PXpofeoj83z+Ia+HC3rHz5s2jpqYGuXMniW0N+KUW1b9sHOrAzIvvy/Hu996QHLBotwukEMQF/OwtHk/0DucjY9mywL0Y4Vk3ZJs0iYbftRy0fsUrR+lVN/a3ojUFCE1PGbYyu9Q06hOOb1Em8PsTGFddx5SGJgwpewPhxzVUcjQjl/K07O6hPV7twfYtyXGS5X6WxuytGHFuxuT/um+nOxOW/b+Yr0ehUCgUivcqZ325+fOf/zx33XUX8+bNY9GiRfzhD3+goqKC++6772ybdn7jTISSSwZuS8hGFi6DA0+PeHjv17I9T8Dcu0+tbQs/CTv+GWkbJocT3gI+9NKJneNEeoAn5MHYpSd2PsV5RygQiAjq4YSWEHBcAS9pd3JL0lX8xv8fupwmUgNTl5TmdSEs8Lgk848YBG32YQWckJLMjr68cUtopBljMYSPsAwzVAqHAEKpWaQIL/SEhncP84VMvvbUXlx2gxtm5/UeM3HiRO6//362b99ORUUFQgiKi4uZNWsWcXGDQ9l9e/ZQ+/VvDC4EZlnIQIDKT3ySklWvYqRHFis0TeP6668nKa+Ev/27fHiJbEm0Bj9Wbt9C4JyWMF/Z7+evY20052xjJa9QfGUpsy0HOfISXuMKOkTy0PMN89wJaWEkXw6edUgk/UvTCSRJhsHR5FuPO2gUAt9votf4IrOOFKAgJXqURcrsyi6kFfkq0BNnENYNLt2/md1jStibV4zXEXmeNGlhCb13znQaKZj4EB1IEhNnM23qz3HYoywiKRQKhUJxHnPWRfftt99Oc3Mz3/3ud6mtrWXatGm8+OKLQ3o/FGcf21U/RXaL7pi+Hu5+7NSL7pRCuPs5eOwD0FEz9BhXJnxsDcQf792JEc0Aa5RtvzqrYf8zMEVFaShGJqOgCCuWMNt+QkzTNLKysnjfR++l/cvlrHYd4PAYD6YREaj5LQlc07wct30jJTUNbJxUhDCHKIooJRIY29gWeQhoQid74lUs6niH9eFdhEXf33iPv9eflY8Zn4Aejv638eOX3+G6mblo/Tyvbreb5cuXj3ytQMtf/xbJbTf7RGKX4eTlogt4tWA+bY4Esn65lruums2tc/OJs+sIIXCl5wLlw08uQAT65p3ZGubHO308l6sxJeuXzBKbMNHQ7RbxeLmRf3MZL/F9+V0qxXGfSSN4paXQqBPFfD8rzJoOwS6fjoUgXpMscYe5MMHPl4SfVqJHFkS9jI4gRpmn9/nRG3yYY1zDeruLmocqTiqQ1uCQ9uenL6KwuZH81npsZpjy1EyqUrMi4fa9hwqCWjLB3P9lefZEEhImj/o6FAqFQqE4Xzjrohvgk5/8JJ/85CfPthmKWEjIxGtPxhVsi2386WqdlTcHPrsHDr8C1dsjXm9HAiQXQsEFkWI9J0P+BXDszdEf99JXYPJ1J5wHqjh/KJo1B8cjD4/QRKsPIQRxcXHccsstaJrOdR/+PL5vfYl576QwJ+9qcm1jSZJuMCA8q4T0db8g3bRoFlpfMatu77EAZlQ0kOwNABB0xJE46Sb8G35FQqCTZXaDytREGhPiCBkGXanpeDNysZzxICWhLh84hw69rm33s7OqjTkFJ7bg5Vm3boDgbnEk8N/LPkWdKzUSpi0EnUHJt57ZxyObK3j0o4tIirchhsqHPv4eSihpryGp1KQ8LYs7jzq5c5GLBc6nuZ1NAOj93MYaFvHSy/8TP+R++VukGCg6YyHfbnJ3uoUpISTBLvq0cR5VtJLWN3ik8HJfGPvuVrS2YKRfN91V0A+2Y2Y6hyyoJqSFzTSZWDdUYcvBz6EEOuPcbC1OY96L2TTEadQmu2CIomodlp2PVBXxj5RcLj2xovMKheJ8Q0r490fhnRcACwqXwgeeGFBIVKF4L6Je4YpR4/pqOTE3FMuYcPoM0Y1IYZ6LvwFX/ABWfgVmv//kBTdE8tpPhM5qqN158udXvOfRNJ0rbrltRPEmhMDtdrNkyRLuu+8+0tIiIm3MpKksveODGJagueVIRHB3Y6RPJG7p/2NheReJmt4r0CLVrgW2sEmzO479uWlsKs6h5aYi/PsfwQpGKpnHB8NMrGth6eFqVrxTzspd+xGGPdKKKxyi02MCgngCQ9rc4RtllEh/zIFh0P879w7q41MilbS775UUAgkcqvPw1af38NkD5Vx/8Bg5wRbEMMXgDEwWtR9iVtVhbty5lu1yK13CzxW8EPUYXVhk0Mgsto/qMoQ0mSj394p4r3CzUbuIl8W1bGMeYXSC2PsO6Amnt4awX0oImtg3NyHag5H56ZPLwgLH2w0Qln09urv/2cNhrt69nrhwcCgrBzyyEJSnZuO3R4rwHSiuZIxnM+YIX4Y/vLeMsDWKjhIKheL8ZOtf4DvJsPcJCHsh7Iejr8F3U2DVt8+2dQrFaeWc8HQr3n0YX2tEfj99ZOk990NnwpxTT/Y0uOwH8OpXR3+st+XU26N4TzL9gsUcKqtgz4F3Bu0TQhAfH8/HP/5xEhMThzz+ghtvI2f8RLY9/zRHqndS4prVnT2sYaSNx73yG0wJ/55dLU58ns5ev2bQZlCVngBSkHtBPQmHq8DUEHKI/tkSXB4fi+TLbGIZ9ooKjiVfyHitgVThZZNZNOiYgtQTL54YP3cunrVrwTSpcmewIzN6YUJTSl7YU0s42WRF+W6S3a28EkxGRimANteowonZm66e4G3jxsOrSJ7WNqxNptSYKA6wg/kxX4cUOlfLZ7DQeJz38SLXYaKjEcmLTpDtdOHCIX0sZzWL5VrSgy2UGUW8Kq5kDzP6vMtCoFd7EX4z6nuuMCWONXWYBS6sZDtISGhu56bmrTiskduXWYCpaWwqntK7zRXsZP24aSNea0hKXmlq5+rM5JjujUKhOA+p2w/Pfy76/nW/gJxZMO2GM2SQQnFmUZ5uxYlhsyG+WDb8mFl3QtG7uLDY4k/BfWshY8rIY/uTrOoRKGLnxltvY+XKldjt9gHbx44dy7333htVcPdQMG0mN375W6z41adJu2syjuIUhE1DOHXINqgO2yi46iDesZMJJWdg2exYhoE9W1B8TRWZs1qI26ohrOHykyVpBzqZPvlVvJZGViIstpVTaLQNGKcJmFuYQnGGe+iJYiD17g/2ersPpMbwtyTh8oNvM7G+gizNw2X2QyQKP07dT3Z8PYn2DhyEWGwcY7LRMNBeJKldnTHZNVQF8r6dclDht7mBDcyW23iEO3mOGzGFAUL0FiLrJBELnfus33C3/BPjOUSqo4lZYhuf4yfYjks80Ku9jIQwJcYxD7YdLTh3NXN9w1YcVpihBPfxfunGhGSenrWMVlfk9WYLh8hpb6bJmRhTKP2W9q4RxygUivOYP10y7G4J8O8PnxFTFIqzgfJ0K06c+BT4egO88i3Y8hDQHVLqzobFn4aFn3r35zZnz4BPbYh8of5OcmzHDJH7qFBEQ9M0VqxYweLFi6moqCAUCpGZmUlqauqo5hFCEDc1nbipA6tHL92VwpuPf4JJczZz4MAyArIAJHQhaD4yB2eZyTW+Z2GY7HIhBSIgcWX6mTg7E+mJtA0c2Ndb4jAMvnv91FHZfTyuRYvI+OxnaPzlr4arC9ZLuq2N/PY2eoRlgbOeWTPfYmzyAQwREe9tbZlUlM+kvT170PG+oJvOUCJuW0dUWa0Li/1Mj26EEBCyEL4QmBLpMthpn8ubwRW8bL9m6PdBIRDS4nntOhz4aSKDBDqZqW1nN7MJiYGLMCJkxZTUowFamoNZzgqczcO3VSxNy+ZQdgHtce5esQ2AlMyqPEJrKI5AlyCWWm9uXb3vKRSK6MhQ14jvYVJGj+ZRKN7tKNGtODkMB1z9I7j8O9B8FDQ90tc7lqrM7yaEACM+koM0En++HL5w+PTbpHhPYbPZGDfuFNQjOI68mVPh8Xl0bNrNjLmbafU7qdk3FvcYHwiJJXU8KQ4Sm8KIKGm5UpOEcyRYGgW5jRw8mIEpoMmKqDEJpGaEeeQDy5mUPbxnPhbSP/EJ4ubMZeE/H0dIiRxm8W5F8i7ojLS0sju6mDXrJWz2AJroWxBISmpk+oxVHNi/gubmguMuDvY1LWBhzmtDn8CEOrLZq8+IbrAl0Zr82He3IgVg1whckMGf4v5rcOuz/qcWGkeZyE/4Rm8RNaf0MZNtg8c6dQhGF946MN/fxY+lk6/nJpFZ0Yg2RNu3HgSQ2dnGq9MWInps7LZhWnUpcyoO8mTqQqx054DjNBlmLltYzhvUk8tqLqaafG5QoeUKheIkEAzVqFKheO+glqYVpwbDAVlTIGPie09w97DoU7GN62oYeYxCcYZpr3Jy7Ll0/NsvJqVrP9Nnvs70GW8wc+YqrCvahxWHwhJ4l1qgWQjDR6ZMRgN2T55IYGEGgRXZfP36uFMiuHtwXbCAeb/+X66amYs+jOgudlchulcLxo7djs3mHyC4gd79EyauR4jjvb+CjYFltB7MiTzs2d1dfU7rgINvL+gTpkOhCfRaX2Q2CQQtbPvbYrvQPiMB8Is4NonBaTlm/vDuZhO4wZnOX1IauKo2NHw4fDfuoJ/btrxOcmcbOXUVzNu7kTs2vcrSo3soi8+geWbWoMh0SxhsYSGbWcSlvMhPuJ+beJyGYKx1+BUKhUKhOP9QoluhiJX5o8g1CsSWJ6pQnAlyJ0R6KEurA1/jKiw58K3ft8AiMFUihewuQhah5/fOy0xCBRFPt82XRZy0sStvHBXZuYhEnXFxNVw/dsVpsf2HN01n+pgkoK/Vlt79y5TcOBJdzUipYRgB0tPL0bShxbEQYBgh0tMHts4SSN7JHkvCIzbSHjBw7hQYNWArFSQ9rpP5PzaueHE9KR0daOYQ4dpSIloCaI3+vjklaE0BCA4f3h0ZK/nCPh9zWsIDFz6kNaASu5kbj0yyRfEEScZorcRp1TSOncE3pznocqVjDddHvPtffWIKba5ETN1g6cZXSK+vAmDz+O40gSih8WvFRWxkCQA38zjPbP3LiNeqUCjOU8yYe95A0Hc6LVEozhpKdCsUsZKYG/tYVcFccQ4x89KrBjwOtBsEPUafxtOh5b4wndeaWP2c1eFsSetdYTqv7xaPmkVy1QpeKx7LpuJJIAQT9WqenDcPQx8YhnyqSHTaeOK+Rfz2/XNYPiGDyTmJrJyYwVdvnc7lFxUQSALD8ONwdkYV3D1YliAuriPye/e2jcVT6Yxz4Xc4sR/SSP2Tjczv2cn4mQ3XGh3NL0jp7OBXP/s2Y6u6BXu/cGytzod9e/OgL5QCett7RYsi0C3JsoYwN1eH+cMWHz/Y5Ufvab0lNED2CW9NEJyXjpUXR/8i8wYm0/Q6VtqOstt2DFs4SGKnRXptViQ0f5j7sb1gAmsmzEbqOg3pORwYPxNbexMArUkjFFCTkj/waaoYgyUFs60nkMNFAygUivOX7taVMfGDUXzXUijeRbxH44AVitOEEQfhGFZhXekjj1EozhCpuXksuf0u1j32DyBSGK1+Twb5i2r7BungucLCc5mF1hZ5bCUyINEuseIiGqwxlBfUMUG0UeLO4A9zr0EboY/zyWLTNa6ekcPVM3I43OXnk/vLeb6jBaRknutG7p70MEePzhtxHiEgZNqoTUxlZ/546pJSCdgiPanfnL2AcVXl6FGEY1ZzIytXr6XsonREZxgk6M0BhD+6N1voGtLygx7Xmy/du09KLAFvZRqsvMjNJXVh3l8W5ONHg/xuvAMhLXKC9bTLZLqc3S3YDI2s3DBzvUfAE0YISZrwYusOpzelpIFG2lyF5LbG4XdOpDPpYPcJIz8sBAhYNXkexzLy+oyVkj2T5jK1dB8DDhjmZppS5wnez/3iJ2TYa2jyVJGRkD/8cQqF4vxjVEV1LSjfAoWxt2hUKN4NKE+3QjEa7nlh5DHTbgV7DOV+FYozyMKbbqdkwaLex027k2g4GFkc6nGmSovIp0JCPNJt69VdeiCJ9HfuIP3gXXxvSgJHtcmE4mfzo5krT7vg7k+NP8j1Ow6z19O98CUEO5hLc6qLGTNeJRw2hktNx0Twk6L/4pnZyylPy+4V3ACPXXYdtekZmEN8ObQEWHZB2rWVXDJmDUYg2Ns3OxrSECQmtWP3bwXLGpgT3u2Blt3X4DMEL+YafHBRPOM7TBymRAqNWls2XnskgqCkrpw7N7zMNXvWk+NrJUfvJFvz9AruyP2AFiNEONKVDKc/i+SGyTg8cXh1G61OF7vHjOPR+ZcMFNwAmkanKxFps+OzDaycHg2bdys7wkV4iLSI+9i+I7SHVG63QqE4jto9MQ3rfff99z2nyxKF4qyhPN0KxWgYMxfm3QtbHxp6vz0BVn7lzNqkUMTItfd/mfWP/4tNTz2GQFDzZjqtBxNJne7BmeiHkJO4yplk1y/H6XChuzsQUsfelUuLv5FnQy/RkHE7XyjI5sN56STZTv9HyJ5OL0/WtdIYCnOky09byOwNU8ySNXyZ/yGTBiyHQHSXD5MM9tNaCH4r7qfLSIhs6CeubTLIYu0tjn3Lgd4RwmiTODfoxG3S0INAnKT1E0Gmpu6gmRQSSmbR0SQizusodk/JPcynxe/4YdzXafB7uWrPBvLI5mDeRF7Isw2qyG5qAktKvjkjjiltYXak2ZD9FjTqk9JwB/3Hn2YQHnscmW0mUgYIdb2GFTqEvUWSVRW5L/6xk9mZVzz4QMsioasDy7DRGB9DQTwpCcVNJ63qE+xIj2d2HGzzuvlBaS0/nqi83QqFoh9PfmR0rcCCMXSKUSjeZSjRrVCMlqv/F9KK4Y0fQMjTt71gEVz7S0g79W2fFIpTgabpLL3jLqr276H60AGQ4Kt1UF3r6Deqir38C4AkWzpO3Y3X7KQzFOnN/Wf/CmYUzTot9kkpebaxjT9XNVEbCNIUDOO1IkJa0JeHDeCQfr7Ot0iiLXJt/TMGu93I8at09DZBuNDilTnL2GxfxPHEyS6+yncYy1GkJpDJkmASBAvDdF0hYKNBrUyhdbOLti3JVGVlkTytnZtmvcQ/d92KaRlEcq8j5y9IrOLqlFcolBV4j8TxxfyfsG3rDQipk2v6+VOmEbUFmhSCThu02wdHD3TGualOSiO3fXD+eM8lh3SDYxm5XLt2H8GONejBWjQhCesR17cASsreIaX9T/zzxo8T7u/RFoLp72zD1t6Mq752iDMchxAgnPjdF/N00yvU5KwkaLPxWF0L3xyXi8vQR55DoVCcHzQfGt34nJmnxw6F4iyiRLdCMVqEiLQPm38vVGyAYBekT4D08WfbMoUiJuZffwvVP/nuiOPaQ020h5oGbNv5+LNMu/BSNPupFVU1/iBXbTtMXTA0aF9vKDYwXh7gsJjMYt4ihZYhBajoVujSKYl/20Bfo3H1k7vZ9LH97Jw4dcDYu3mIQo51C3vZdzzQ3hFPaeUYpCUiPbTxM6VjF9MP7SD7ggZ+e9EXOFwzljc2LSdoGNw470UceZKjchyHZQJT2Es8XlJnH6By33w2Oiposw+fp2hYkqr4oUP2NxZP5fqdb6FJC61/dlh3uviF/vFM3lCDe/3fya9vwNV9Lzucdkozk6lJdqMB6S31LN3yGi3JGQTsTsrGjCOlrZFpB7cT1g1eWnxpzDmY3sQrife8wuouNySD35KU+YNMdcfFdLxCoTgfGGWRxQ88eXrMUCjOIkp0KxQniuGA4gvPthUKxagZN3cBS267k3WP/xOh6Uhr5NZWPXh97XRtrCVh+ZhTZo/PtLh86yEaR8oHlpI2UgCYz0YkolcoD0KHwBwL/bHIfpe3ix/95sd87Ks/pCInks+cKNtYzNvoWIMOD/t0Sl8bg5RigADVuxPg6zZl8nr6FZilsLh5E0mXe3g4714OiOl9ufAyzHLe4IPuv7BuZi77mrcDNw97iZaAsDa04G1yJ/HSxASWllaREkzq3e6QTupD+XzVTMBq9TIjcwXXed5mcjBSbT3BH2RWRQMJviAHc9Mi92/3+t7jTaEhpIUG7C+ZjicheVDht2hII42wkYPmP9hnTxT7FQrFeYivdXTjx14IhpInivce6lWtUCgU5yELb76Dwhmz2fnK89QeOYRhs+Pv8tDZ3EQ0r4RAEG8k4tl0akX3M/WtIwtuACFoJBsAJ4GBIeVDIG19v2uAbpnc+voL/OzOjwFQwuEhBTdA88FkZLgnsH0wlhA493RSUF2GTBc8UPjV3gWBHkxh8Ka8hBbSuFP/CfssG85ANQF7btQQ8+F6ayMEM9NqWdLRxvjSS/GLAFsR/FwaaAhMIcEex9q8mbyZP4ebK94kWJREVWY2ltC49u3XSeqqp90VKc5m6QbhxFQwTQxPG61Z+eyauggss7tl2QiYFmgCqbm7Fz8khU4HxXGOEQ9VKBTnCbsejX3s5Ovh9r+fPlsUirOIEt0KhUJxnpIzfiI54yf2Pt635nVe/t0voo6XSMYlzMJsDZxSOx6rG0Vf+24PbDlFlHAoqmjGBKNmoIA1LIuV2zb2iu7hJLunJn5YMzQpKagpw2aG2HHBItpIwRKDQ+6l0NjFXK6yTSbTOExV51P40z8d5dosQET1MAskM9fvxyfaqC/+JcHgPH5etQiJoH+sgs0K86H9L3JF2UZc2yPPVVl2Hv+88ka2T5zCTS/+FbfQCGTnIxEccSexbfJ82lyRInO6aUbm6zZDM8Pk15ThDPhoS0ylPiPSR1cv82AWJaCFWwi4lwCCzxZloY2qPZBCoXhPU7c3tnGf3QMpBafXFoXiLKJEt0KhUCgAmLRkOdse+Q9NrRXI4ySpQJDqyGWMayKaM/Z87paaana9+gKV+/aAgMIZs5l12dUkZWb1jmkPxx7e3iNI3+AyLuPl6ON0cL052FvrDAYiwh3JESYQRsdgiPPHkoIoweuMZ3Pm4iEFdw+aNFnLhdjFYZzeTVhtmXQl3wbSJOKDt0DouD0N2MIG7ckDBbyQFlJorFz3AuEDgiZSaNon6Ew5ii1pDkHh7B3rCAf59Zu/INfTNKAnaEFdNV//y2/447W3sWrODcyoLiMVL7vGTWBX/nj691ozNa33Ps/ct5mlW14j3t9XTbgxNYtX515F07E4RE41tnAbK97JpvDmVN6XnRrDjVMoFOcNhh00A6wRopncGWfGHoXiLKFEt0KhUCgA0A0b13/8K7z+m99S5tmH7PYiCzSK3NOYnXYxuq4TPydrhJki7F+7mpd/+3MQAmlF5mqqLGf7i89y7f1fJmnmXBqCYYrjHOzvGrkdVn8qRSGPy/dxG49gItB7VHK3s9i5XRC3baDoloCVZvIh/sDrXEYDWWxlAQvYOChU3Z3rpbPKFfX8lhDUZOdTOnYKnbbhW2xZQqdFpjB9tyRXt9hT9Cx272b87pWEbblolg+HdwsZbQXMPNRBx+WZrNVXEugW0xlNdSzatpoJZQcI6ZKjeV0cy+0iYFjk+n9Lpe867J25lPgruPPo6kGCG+h9fO9zj7Pp4iKM5mYurN7A9S8+S4crgVcWLee5pRfTFe/qFdxzd63jog0vDbqetJYGbn/t7zw++w68bY9z6aF7KGybgPup32H99/fRdVW5XKFQdDPhStj652EGaFC0FGyq+KLivY2QUo6ypOC5RUdHB0lJSbS3t5OYGENvUYVCoVBERVqSht/txFPRQLM/0joqzZGLQ4+LRD47DLI+Nxsj2TnsPI3lx/jHlz5DtI8YKTSqpl1AyBnP/uwiDuSNPSF758sNXMPTlHAEAL0RXKt1XGs0hBwY5iyBzmvDeK6MEpLeb2DIr7P/4RKkGT2ve+e8i1g176IRi45p0mRFwxq++e0/AuCzwVOLNZ5eFAkll4ClJ9OS+0sQGj+TnyKVFpqtNMqfysHZ5AUEzYkBXlnQQNDWbb8AYYHUoLjKxbLdaVz4/9k76/A4rnvvf86ZZTEz2JJlZrZjBxw7DKVgk6actrllvLftW4ZbpjRlStPmpklDDSemJGZmSyYx40pLM3PeP1ZorcAhJ/b55Mlj7eyZc35zdqXd7/zocDW+UHjEnriWEIQcLryREEoIpOq9tSIEjSlpfOIz/4/G1HRcoSAf++v3cFixvVM2gvq0LK7c/RJVE/+b7vg8Asm7uebSDCZfetvo+6vRaM4fbAt+uRBajxM7hEjAbf+GkovfaMs0mlfNmejQcVRK0Wg0mnOTro0bOXHLrZy47Tb8u3efbXPeFAgpyHjfDBKn5JHrKyE3rgS3I+qBcKR6yPjwrDEFN8Cupx4fvfq1ssmqOU6Gv4MVFXvJbW18RfZuE0v5f+L7vJ97+SB/4dGd7yZ+nYEa9PGmiHqmQ5Nt/CttYkaT2xDpMQj7HfjrvTRtSiOxuBMhFYhBXxR7L6m+qCwquCF6naPcv7aFwdUPbex/7I3ALettbtxg09eF3J/6vv7iZQ9wI1UUkNTWiqc5AAiOZ/t5bHl9VHAPug+gei/zeF43h4o6iBtFcEM0F90bCSF6f4boFwGpFOntrXz19z8HYPLx/RgjCO7oOYrclnpSugziuutQKCwrkeA2XQRJo9H0ohQ8+1VoPUZMwS0NuPbnWnBrzgt0eLlGoznv6N65i8pbbx0ilKpuuhkMg4lPPYm7oOAsWnf2kT4nGe+bQaShm+DRNpSlcOXH4y5JRoyzSNbJPTv7Q8pjIQCjuzO6HoqV5bv55+I1Z2yrUBareIYreIytLOW+y95NbXoWtz71CKU10ZZZnQlxhC8KElkdii4siX7/6xOuNpx4No/Ok4lRgd3vIVcIp01KUSc9TV6ULQg5U+hJLGDtojUI20bJXtXbJ7xP2x+hbJbt387cvYeH2X79JsVTSzLoyb+SsGd2//mbxUo2s5IZkR1cwb9pSgqxYW7LSA73fvZN7CLscOAyR8+dHGkah20z/UQ5kypPENfThS1kf4u0kQg5HFhGtFq5EibZoQqwTDD01wuN5rxn0y+j/8dEwLTrYN7tb6hJGs3ZQn8qajSa84rgyZNU3nJL7Ccti+Or11CyfRuu+Pg31rA3Ic6sOJxZI+c1j874MpeEsFFKkBzsIaetibrk9HH1hwZwqgA/5BOk0YIAruVhlvAyz0y7jF9MvIGU9nbmh7cye+IOHM5B9vTpSAVIaNybRufJhN5jg9cWqIjEXx3HtHdX0B1IYdfOZQDUJaUNCO6Bixn60LZ5x9qn+NC/74spdAWCuacu4YFJq3rXHrpnFclTsKRk/8SOITcJYiIg4LVZP2chF+/cgmOEGx5j7awtBDOOHaEiOx05huAGMGxJW0oZoHB4TpFOW7RgkhbdGs35jRmGF0fuhgEKDjwCa+ogMecNM0ujOVvoT0WNRnNecermEQT3IKpuvImS/zz+Blhz7pI/bSaHX9qAskeoTC4gY2I9hSt2YpkODnbPIZK0dNzzZ6pavs+ncDHg1bVCkq7n3cyo2s4MsS2qMG1B/Y4VzJk4k+Se6QglCSQd5/4CSWLmE0y399K0L2XkhRBEgk62P78KOzFp3PahFPMO7eVj//rbiEMsKUnp6hi01FBJHPTGcbB0JlVZJ8adDPb0okWs3L0doRRGr4g30spwFCxGuBNQgTYip17C7qgc2XQhOVo8jUs3PoZjpNdPKVK6gzTlXIxluAjEVbFMbiHsycTrHDv9QKPRnOPU7oKeltHHKAvKn4H573ljbNJoziI6p1uj0ZxX2G1tY44JHzv2BlhybjPv8mtGFtxEW3ZlzmoGwHCYTEvaybf5HHlUYZiR04YP9QBPUEf5Ov89RHArBcefyh+oOK4E2IKiuGlckvZeUjrmYZg+pOXB1zqZ9+2ZQuDoF/ii/8eYPU5G8wErAarDosMa+MjMbW9CjOIJFigWHBm9P61h2zQnjd5ia/2Sy7HH2fbaHZZkNZzii3d9gS5fPEgn7qUfx7fiszgLl+HIno2zeCVxF38Z95zbiHXNUil2TZ5GSLrZlL0k9kJKIRSkmoWcKLqMgK+a0vj/sJQdyCV3js9YjUZzbtN0aHzjzNDra4dG8yZBi26NRqPRvOZkl5ZxyXs/DICQg1pICQUCCi+qxZMc7j9sYOMlwF38BMswhgrtQR7gHFXN1/gfElTXkPX8tT666+OGhIf7HIksyrgKADm47zXRn287FWFq2whpBEKRUOAnbWobycWdOF0BOp2dBIwACsXs6mMoEfsjVCgbFyEubl+LkqMVWJO8sGB0737Al4AUmWNH6yuYejKBaRX7CUmTG77zSw6/85s4MqdHbZIGQoj+18JZdAGuyVcNmcISku3F06ht9OFeX89u10wqM6ZiGkPFuURgpU5n19zZ7C1+mOUpP+I68Sxm/nLcF9w1hqEajea84OAj4xuXPeP1tUOjeZOgw8s1Go1G87ow9/JryC4tY9dTj1N1YC+WFcGTXUnmzFa8acO9GwY2hVRSSgUVomzY81PVPpbwEgbDPcztx04vggYlCXMARiz+ZmPzjkYn+xLjiOv00+f5TSruJH9FPU7fgKfetuqQlVN5IVDFguYF5Lc3seTYfjaXzBhSUE0oGycRPsP3EJd1oPY4IKKGtS8DeP7i6/HHj93q0ulcTij879hP9uZ65zd5mXUsCYHiquf/xfEpy5gXXo4c4dqFEDhLLyVc/jSWbWKgqIrP5IdTb8CoD/QNoiq7lHVznyKn1YM7YtDli9CUHAZxqn+uLzdHEEu+gWvxneBwjXk9Go3mPODUprHHSAcUjj+tSKN5K6NFt0ajOa8QHg8qGBx1jJGR8QZZc+7Q3d2N3+/H5/ORkJDQfzyndDI5d00GoKX1RXbvHj13TwFFHKeCoaI7X1XyBb6FjYxK49O0pBUe7nVOc+ciR/BGA0gkczoiBGYfp25jFgCJhV0Ur6kZPtawmT3hACeafeyyDWa2zmROVTn5rY3syy+hISkVj6Obxc4XWcXTpNGKmQvNnzZJ/1MaoqFz4Brdbjxl1/OO+Eu4dJ2f35S6eaDAGbuAnFJ0yQsp7tlCra82emyguDoomHc8m+lH3fQ51QWKZU0CI3H0uHTp9NGUv4CaniaeL5zP+rw5RAxn//MChce1HdsBNZmxfmcUE6WXgk/tQZxeVE6j0Zy/mCEwA2OPc3jHXThTo3mro0W3RqM5r8j9yY+p+chHRx1T8Ne/vEHWvPVpaGjgueeeo7y8vP/YxIkTWbVqFXl5eUPGSjGKF1SB87jA0SyY4KvDOTVMvKOLDpKwhYOr+DcGFs7ePO7Tu3O5k8LDp1Q2SqlR25xJESFzciuR01wZSgAA0TJJREFUNifN+1PIXRrtFz7SKVclh/jv4DGmHTnBsmO5BL1ergg+R6a7kp47BKazp9/7LCwXSeGrSFx6DXZHLba/AeH0Urv6EQr2XIJAkByBLxwKccdTj/NCXAsPX7iGY/lFfRcAQM8pm0L/pWQk7+VYYgV+lx8UZAWymNwxmQyZRmuJTWtQUlOQy2ebC3jGdHEhCjFGvfJfzbuBLbEal6OYIurpEkcR9kA/8KEIrs7N1YJbo9EMpeHA+MYl6KrlmvMHLbo1Gs15ReLFFxP+9Kdo+nHsViY5P/wh3gkT3mCr3prU1dXxxz/+EfO0vtAnTpzgj3/8I7fffjtFRUX9x5OSZuNwJGKanUPGu8oFyX934GiMCsRbeYbrvC+y5dZSvjX/SwAs4yUayaKWXPKpIlM0DZkjdUoHDTvTh9oXOE6Wt3hE+5Ww6M7YgzAgf3kDaZPbh+SZx8LpsHhbVxbJLfUUVJ7CMSjSPfVv78CeOxEMgbCdOLuzMOxoJe8eXxwdjgQM4SDoa8J0t+IMpfWfm1lwMVc8/QWuevEFfnLL+3lsxaUAFLXUc0H3bk7ZSUzqLKOkswQlbETvf2AjHCaPzFhNR0oStpT8vj6Ce0/rmILbRtEU1w3dHgRqII1eCJyYrKx5FlXpo2dBN42poWiIvBi44GuSIpQa5bEn12g05y/33Ty+cWVrXl87NJo3Efr2tEajOe9I/9CHmHzwAAlXXolISEAmJpJ8yy1MPXyI5KuvGnsCDQCPPfYYpmmiTqsurpTCtm0eeeSRIc9J6aao8ENDxjpPCNJ+7sAYqqGJD/Rwye/3sqhhG04V5Pt8mQe4hWkcIIOmYVnd7oQI2Yv6JomuecK/j4gdwo5RZVwRzf9uK3qm/5g3fRxVdBVceLSZ1J5SUALlUJhpCjsjHkf2LLz+SXg7SvF0FWHYHvyRdtbW/ZMnqn/LS43/ZkPDA+x5IJ2DLduG7puQeHLnI4BP3fcHyk4ew2lGuODobqZXHeWujf/k6meeoPjkCRxW1INtGGHyMw6xO20iHcmJ2L0e5+eznVRlujmChTlCBTZbWdR0H+HK/X/ifU3/x1z7BBNEC5Paq0ApUoMtuELduE2DKzZnc9n26UwV2cz1WaxJNPlqTpBLEk1sO4QaRz9vjUZzHtFdP75xyz/5upqh0byZ0J5ujUZzXiKlJP/HPzrbZrxlaWhooLa2dsTnlVK0trZSWVk5xNtdVPRhgqE6amr+joUk7d8SbPoLjdlORbhMoVzgqBP81z1/44Nf/R4GFh/jJ4BCELvBV9rsFsK2JPByIgGXi4gdYkPz/VyYdQMCN/R6h1VvOHX99D8QTDxxZhcuIKE2yLaEMkquP0jPBTbKC9CKu+Me0o5fS0LTfAACZhfP191LyOoZMoUdMTjctIdIULAg/bLeDbMRnmQg2r/7oo0vUTn3CvbVJFNnlbHAY3Fxy24Wb9nK4i1bCaY46PhsD/XJmWwS84fFw++bkcjXNzby64iXOMAxaMdsZdNjdrGz5TkE4PO3sDTwPD3FU7l083O8+7KvUNrTty8OHO4ZFIdXsNL1c+LSBkcCCLzeQsQoefMajUYzInHpY4/RaM4RtOjWaDQazRnT2to67nGDRbcQElfB//DFmvlc2foEN1VsAEAJhf9yG/9qC+UZOP+vHVcRxs3b+BcKgTFK76w9nbeypukgsmU/PS4Hoh2C7z3CyQlbSGq4gLjmmWAbBJOP0Z67HtPXPFy9m0RjwGLpSBtkN4jjkis+9zjd6faQcaHESmrn/oLMQ+8mpepSDnVsIWT1RL3qMTjWtZtJifNJcqWDkKhQJwHDxQ/m38ymzJlQE+ZoQgFHEwt5OWcmv5n1Nj634z6W1+3H3W6R/CcHmz49MXYCulNydGk6t+9s5Ra/5ErlJEFIAqaf4117ONq5nbAdLY4mACwTX91JUkN+UsMhZqspuOLLEI4MhHAjXX686RXDlsnPv23E10Oj0WhGRRdR05xHaNGt0Wg0mjPG7XaPa5zH4xl27KGGNqpFEWv9a7iJqOiuv9HJ/hUTUUJSxHES8GMjWJa0juu5n2Q6Rl3HQuBK3k/7gj3YlwNE+guaYfXQVvgMbYW9oeSjfM+TXWD3FV8fLLxV9HHS/xmELjZxnCa4o/NGxXXjlPuIr5/Pia69IwruqBmCHf69FKReSLFSRGq28e1Ft7MrY1Dl9r4vpUIQMpx8a9HtfP/Fe5jVchxPhcTVYsNIziKvg5plGfywI0LVY/8gv7t8xEsXgOjuImRIrgnGE2ekwaD26ulTn0Qag3P3JcnJC8nPu2XE69NoNBqNRhNFi26NRqPRnDFFRUX4fD56enpGHONyuSgpKRl2fG9XDwpoTUgiYhj89uabeHTZpYRFVKB7VA/f4AvkUUsJ5aN6t/sQwCz2YKUN0tR9PxiAFf3ft0ESTpOYs8whorIPOxFSfmPQdY2NWTCwrtEMiQ858OwVdHwvAhKqu3J4oWole5unoZSgLKWCSws3UJJ0ira8dZhHI6PabAEvmm08QzepdpgVZRezI2vKKBcpQCnum7KaWS/9BoVi1qHDOC6IYArniOcY8ZIlVbupTo0b1R4E1KeXkSndCCFQdvSWwdQVFnGltfj90WFOZyr5+bdRVPhhpBzfzReNRnMe4UqAcNfZtkKjeVOhRbdGo9FozhjDMLj44ov5z3/+M+KYFStW4HINbRNmKcXmdj/CtmlOSeOTn/oKhyZOQg3KC34H95NDXXSdXsFtITGGlU8bQPaOGzFasVdgh6famBJG1PEGhCfaeHZBdxKoxN75W0GEwHYr7ATYUjeP3+27HSEUtopOvr1hLlvrF3DjpH/zzrgmDOHAUuYIC0VN6DF8ALQaTh4pWYlQ9pC9GIaQ7MmYRJfTS3ykhwTLz8U8x3PqspjnCdvmipfX4YnPRjD2l+AJd76H1IQJBDrDxKW4mbIkm/gUD7CacLgVW4VxOdORUn990Gg0IzDjnbDzT6OPyZ79xtii0bxJ0NVPNBqNRvOKWLBgAatXr8YwoqJTSokQAiklK1eu5IILLhh2zkttfjotGyUlCMHBkslDxKJbBVjFs/0iuo82UrBG+MhSjKyhh2CAmQek2qgYXm6ASEDSusSB/2qFShh0vBRa/8sksMCm0Z/O7/fdhkL0C26g/+f7y9/G0a5ciuNnjNq2y0BxOH5y9EHv3YJRBfcgDpZOxnQ4OTEpj0t4ltnsjM5pWUP+XXhwLx/deoqpE29l1Lh6pXCYFr5ZE1l09QQuvGUyC64o7hXcUVyuVDzubC24NRrN6Cz+4NhjFn1o7DEazTmE/uTUaDQazStCCMHy5cuZO3cu+/fvp6uri7i4OGbMmEF8fHzMc04GQqAUTssk4hgeEl1AJW6Gt+5KpZU2UkmmbYjHu7+19GnjFRDEw07mk0I7UziI7O1F3e5OJoX2YWtEuh20HEkka27r8AmN6KSdN9ps3NJ3MyG2iJXC4pm6Bfx3kpfK7sNE7BCn3xZQwJG4STS7T0/I7ktEHxmPFcRKcNGQmYnn715OFE6EiwyWNz9Hp2c6QbeDtI5OlhysJjWQz8sFb0N0g+GajRXePXzCXtNMxwh3IjQajeZMyJoOK78IG7438pi134K5t+piaprzBi26NRqNRvOq8Pl8LFq0aFxjnULgsC0mNVRxMHfCsC9cSTHEMETDx7uJYz+zWMqLuBjIl471lU0AXoJs5GJSaWEKB6NyVkDyCGvUbMogd0lTzOf6JxVwqLsUO1ZCeC+2MtgbicPlSsC/4A7aTjxGdlNN//MWkr2JM3g5dckIi4xMXDjAb9b9gLSezn55PvnEMd62/lkeunAVJ7JgbsMMBMkgUoj0OqoVYHgvxBKdqNDx3mMiGlEgousaTheZE0pHXV+j0WjGRevwbgdD6KqD574Bq//fG2OPRnOW0aJbo9FoNK87tlL84EQ9vzrVgCkNOj2+mOOmsX9EX28hlfjo4d+8k/LIPP7b8XmkGDmw3MRgtf0UF2zZSdx6A0eDQHkgsMCm+2ILK3XQ2IBBx6kEii+tG/NahFT0tvoeZZCFUvBsSQ5H5t5Jeks9GS31iMNdVDnzCRmxC5CN6udWiu++dA8pgWhudt+4voD0d6x/nr9cdgUzkmZS5Rd0DkqBt1CUe3t4PuVipLmMS5rXURSsHmwws1ZdhtsX+3XRvD6E67qxWgIIrwN3cRLC0F4/zTnCgYfGjtvZ/CstujXnDVp0azQajeZ155vHavl1VdSLLLCpTs2KGVa4hJdG/ZKWbrdwR/tO8netpHzV6JncQikWHN1L8t8MECCUgBDErZX4XpK0fMIkUqSwFQTbXShLomwYNa1awSxxhJN2AbaMPVAKC2mE+L0Z5HvbbX41zcdz2dk0pmWT3llFqHXkBQRgFsVh1AcQocGF4xRXNm1jUkfNSKdiA9dufIEN717NLY2Cw6biF1aYsICTDotQby62cDhodaUNEd0F02aw4tY7RrlwzWtJuKqLtn+X01FZx0n/frrNTryeeGZcfRn5l8872+ZpNK8aU9ljiwxreCqRRnOuokW3RqPRaF43lLKoC0W4p6oJoSyW8DKbxIohY0rUES7hOXKoJZHOESbq/VcolLDxpx7ECCZjudtHdKVIbOIPmwgcQ1KqhS0gpEi9x0H9tyJIA6RDgRJ0VsaTWOgfWXgbcFXFZv5TcDFKxSp8plBK0mL7uI8w/2eGmbY3wLs2HueqfX/B1W3wsYs/TcDhwpZDQ9SVAJXgxJychDk5CdFjcu3mrSjVQ5oRYFnjDmwhkCr2zQYJpPSECNVtpzuhjC/1xNMS41NeCckssxuPJ560CcXMXn0FZYuXYzj0V4I3gnCNn4Z7drOnaQNHOjbRn7fQpTjwp5co27yMK7/8ef16aN6yqHBolASc3jG9/+rYDs35gv6LrtFoNJrXDKVsGhqf4MSJnxMInEQpCwV8lUmElIOnxPVIZWELA5TiPfyeNTzV3xJsVN9177ezYHIFdXN/gYx4R/zGphQIG3wvx/7qJ5TA6ADvPkFwjsKbFsQZF6FhdxqJhf7o+afPbYGjDjL2dPDluj/zrcV3YAmwewO8pbBQSpAzvZ3jOdMxanpQ5Z3Y9Uf5wEu/QaroyP998W6+teg91MWnI22r12MusFPdRGalIhSosE3eviqeNwswMTAsi0nmASaM4zVwh4/wraQILT2Lhz0ngRkOBx96x8dJunICQuqvvG8kHU0B2v5xiE0N26jrqcDpuwzpKgUMlNWMGdrF0UMv4/vz71n1gTvPtrkazSui9v8+QN4YYwTQJb0kjDFOozlX0KJbo9FoNK8JSlns2/8JmpqeHHJcAJMoRwi4lw9GBTdwGU+whqcA+iuSjygBBz/Rm8dtOwNEMHAqa8gYC4nEJvnvBoZ/ZFGpDIXzhCQ4x0JIyJrXTPXGHE49l0vRJbUoIyrcUYADHLWCtF85UEqwsPEIP8j9Ns94l7G/eSoKwcSUUzQVFLAzfmnUjvw47GQXd37nRwil+nOvJ3bW8fvnvs+ejFKOJBdgGTb33nQBZsZkJIqs+kb8B8K02C5U70VZGGxLnsSSk3tHvh4g4HQQn+qgI/NqqGvq3zZBNPy8MNHNX963hOTs2NXlNa8P3R0hXvjbIRr2t5LtsKgP1uFKuAUA0fv7gJGJK+4KLMcEdj/3BEtvuBlfYtJZtFqjeWUY1VvGNS7s8Iw9SKM5R9CiW6PRaDSvCVVVfxkmuPvoE3+ptFCtChAorubhcTTIGhkLycnWUmbuOUZ4vomdGD0ero7jUd7Opzb/Y/QJFAxu/Z02tR1HjWDC4yHcTzvpXmxj5itEBDx7JO4jApSgMcFH01IHqbOauZJnCU5KpYV0XuB6IsI1MKEUFHfWUdJRO2xpiWJuUzlzm8oBSH5mP905K1BOF0+GJmOqhH7B3cfa/Hl8YP/jeMzQCB3L4WRGEunzF/D41Yt4aUUbP3vpOI3tQVK8Tj68uJjLyjIQukXPG0ooYPLQD3fS1RLEJ+FEsBFn3GpADnktRG+qgnRNxiGcHNm2ibmrLn/N7FC2Tc/WrYSOliN9XuIvughH+ukt6zSaV8e+rh6mBEfpAjGIkDfrdbZGo3nzoEW3RqPRaF41StlUVv1xzHHX8hB7xTyyVTWptL6qNQ1spphHSP6XC/EvJ8oHmGBHInzA9QgNKWlktLWMKFCFLQhNHShW5miAKY/7ERGBiAgS1g2EpttASAqq0xNxKEWu1UmkCdZlrMLEQSKdZFJPDYVD1ph3eP+4ruXt/jU4w8vZaDXy5xECLoMON99edDtf2/xHUHZ/bndfSH5DYhy7Jvi4YGoJAMvzU1h+4/xxra95/TiwoYbO5gAoCAAIN2CMePNDCIHhnMjGp+qZc4l6TW6S9OzaRe3nP0+kqjqaN6EUGAbJN7yL7C99CeFyjT2JRjMOvnmslvuxxx4IZMy89nW2RqN586BFt0aj0WheNeFwE6HQ2O22yjhMjqohg4bXZF0RAakABKI7ekxi4wsHqU/PIKutJeZ5SioiOYrwpKhkdR0RpP7SgbBie94l4LYVJU0d0QMvKMTzLm5a+TRtN9ggo97r/WoGd/NJOkQK0rK49ZlHRzFeYqSXoYIdCHcCwnBiqnQQI1f03Zk5mbsu+hRf3fxHsgNtAPg9Tk6lJbFngou1i1r4TF6s/t+as8XBl2pBgUIRAaRMYIzmcFHh3ZVD5cFWiqanvar1g0eOUnnHe1GR3t72fYX4LIv2f96P3d1N3v/+76taQ6MBqAuF2dDmH1cEkwKc0655A6zSaN4caNGt0Wg0mlePGKtWbRSJ4nr+wXNcSQ9efFHf34iM+uXNioZ9x8KwbUqrT3FsRQYlG5tQUiFsgRIKoQRWGrR+xAQBsg1S7+4T3KMIoSGGRR/5Nhg85bmCe6+/jpns4VKe4st8lf9RP2T+gf2kdI1QjR1A2Vgtx4i77HuI3txGz6j9yqJUJmZzIimXBNXG71anYRpQndlDU0oH75z8TlI8KWPOoXnj6OkMsdtlssUd4Z3dbtJsJ2rMRu+gsHnsl4+TmXOEmasui1lh3jRNDhw4wO7du+ns7CQpKYm5c+cybdo0DCP6O9n867tRpgl2DO+jUnQ++hjpH/wg7kmTXpPr1Zy/NIRMAGpcGRSERw4x7/+7njvrDbFLo3kzoEW3RqPRaF41XZ0HiX6NGqN3NnABm5hMBXuZwyI2jRj+DfTmNZ+e3dxbndyEuI0ji30BJCypY6/zVrJP7SIhfAqRGCAw3yIwz4beiNq4jQbCHF1wj7bG1S+s5U+X3cBL3pW8yIW8n3tYzgYKqjoxpYHDHkVg2RHsQBuO5EK6ZA+GpwovAQKBPFDumKc4rQhzmyqIMxVV2W00pDmwsFiZt5LPL/p8zHOawyb/rGthnz+ASwpWpyVxRXoSTl29/DWjO9LNC5Uv0BpsJdOXyUUFF+F1eHkpzma9FQEFR5wWS0ICOWZDJRBILLKoP9lF9a/+wt5nn+TtX/oaTnf0Bk0wGOSvf/0rtbW1CCFQStHa2srx48fZtm0bt956K07bpuuZZ2ML7j4Mg47HHifz0596rbZCc56S7orKig9M+RpP7f3Y6H9R84d3V9BozmW06NZoNBrNq6LLf5i9+z7EWIJ7MGk0k0ozXSSSNFJvbqKe8dNn7Xuc/HsHRsfoorH20O202stpLlwOyiBr3r2klK4fMsazTyDUKxefbjPCogN7WLtwGQB/UHfyYX5OxMxBjiZ2egkbNndn38dzSZuJSBMHEG87ibQtJdS4hsEf1UIprjv+InFmEIC5abMwSiZwXcl1LMxeGDP/95HGNj67uxxXTw9dcfFYDgcP1LdR6HHxf3NKKPbGFvea8aGU4t5D9/LznT8naAWRQmIrmzhnHLeXfp71Vu/+CtjjNpkfciBlCIftGvVGjyLa9066JuNyTqHu2DP85xd3U7b0JpxuyaaXttB1Mp54yog4Owh5m1C9ubRVVVU89dRTXLVs2eiCu9ewSMurq6+g0QDke1wsTopjGzP4Te7b+XDtQ8NvmAJWXCaODzxzNkzUaM4aWnRrNBqN5lVReep3cFrhnL7wwZHCwyUKG4GL0Jj5f6c/19f+KjJRwYHY5yigK6GAVv/y3gNRz2LDzlvxpR/BnVw/MNgceW1TShzjEM7eUHCQfYraugl8cP2jyLFuRPhS+fL0+zniq8QWA2OFjOBM3Yh0NRCqfHfU6ykNLq3cxh0HoxXiZVIi37n5z8hRimDt2rGHuh/+mH/v2Y5h2wSdLp5eupK/XfE2alJSedfuY7y4eApuOXZYuwbCts3Wjm66TIuJPg/5Hid/O/Qgv9zxIwQWyvRh2h6Eo4vuSDc/WbcVKS7A7r2p45fwQHyId/SEMYQByhhVeNtGCMP2oFA4fGs4vuOvVB+dipBuIAE30dZv3kA2dtdEOlL2Y7q6UEqxZ88eFs9aTGdCAUo48AaacUW6hq2hLIvdu0Ic+MMBFl0zgeRM36vep5ZaP02nupAOQf7kVHyJulDb+cJXSnK5flc535j0CR7NvJS7D36DwnD072239LBu6Te4ZvWHz7KVGs0bjxbdGo1Go3nFKKVobHoSpYaGUNeQRza1OEYRnRKFl5GLho2GFNB+iUHCYwp5mmiJrig4PuG64ScKm/ZjF5E155/0RfiGJyocTQpsgWV4EMrCsKNFp3bOm8ei7dvHtKcyJ6//ZxvJjb95nvjA6PnqABVzJnPIty3mXQchFI6EI0wJPcWE6gQurdrBhM66vidJueWWUQV3z85dGO+9g+WmidF748ATCXPViy+wfM92Pvb5b1KVms4TTR28LUvngY+GUoo/1TTzw5P1tEZOTxcog/zf4qhvwjgmEWEbRARn0i7scDL2oF+BOBtWBgzcdjydiYdI7CoD5RgmvBU2lhHCiMShUL3h4+BKvI2+PndKKWyzBjP4MsqsAwS+riKCGQmEkxw4u9N44Ad7kPO/2DupTXrzHiZVPIQ3NNSzXZe5mND2eo7vquPS9xZSOr/sFe1TZ0uAZ/90gPqKQdErAqYszeHCm8pwuMZX+0Hz1mVBUhz3zy7h04er2Ml0liy9H4B4Q/Lp4mw+UpBxli3UaM4OWnRrNBqN5lVgY9vDhXM+NUBv7vXrlDbsdIfxr5EkPGeAEighkLai2+PjiQuuI7etldzaF2nMmIvpjIuepAx6WkpwVkJkQvSQ/xJFbfxFNFgXE7ajXwiT28tJb36RE6UlFFWeIqOpub9F15CrF4KqzBz2TxwQKfOOHCC3cew+tc5Jl/HnheUIRIwg+ijShvCEw6TGL2dfyQI6KyuZdPQo6XPnEbr2WrZv345hGJSUlJCYmNh/nrJtaj/3OWQkgnGa3Q7bJrmrk7v+7y98/c7P8HSzFt2jYVo2n9h+nAd7/CMPki7M7FzMFAv3liZEyEmkfT4IC7BBGUwLC1bKRhxOF8LKJL67iO64SuL9xYDR/x4QCExnF6YRwGtlA32h5gByQKALheHMB7ECZTZgRU6gIpW4ayPEd74Lw1kw9H0lJM1ps2lNmcqUI38nuaMCT7iTE8VXEPKkgAIzAk/9tgpBBflTM7j8w3Nwe51DLtW2FVIKbFuxb0M1L/6zfPQNVHD45Tq620Ncc9dshK4jcM6zPCWBzUumsrmjm1OBEEkOgwtTE/EZOqJGc/6iRbdGo9FoXjFCGHi9RQQClcTK6X69BHcf/uttDl2cz/Ydq3BFTGrTs3hp9gJsKbGk5GMP/JW3r/sSJ4uuYF/xZezwmBwknWD5j0k81MWKnE3M8JcSicwaYn970kTakyfh9ZezfcFCLn3uOZyRyBDhbQuBLSW/vOmOIRc6/fgRbCFiivTBOPMW0eDaghIjj7MltPsimE4nptPJ4cmTOTRlCqYvHudf/tI/TgjB7Nmzueqqq3A6nfRs3kykpmbEcl0O22b53h2ktLcSSk8a1c7zmWDE4ra/bWNjkQvGCsGXAtwGkbIkXPvacNsGs8IuZoQdJNsCIUP0xAdxd+cikDiseBL88UPEtsKOPlLgDWYPW2KwR1z0erwNRw44cnB45qCUhRXah3TkDhsftVFiCzcHp78/+rwZQBmegTl738dKuak+3MXvPrkBd7wkKSOO1ppurMj46zacTtXBVqqPtFEwNfUVz6F56yCEYGlyPEuT48+2KRrNmwItujUajUbzqsjPv43y8m+flbWDuPl20tfoviQeO0bbsl/d8B6K62rIqNnGX2csJ2A4Ub1StM2RxGNNV7DZlNwEuAfXUe+dK85fSmt6G8+uWc30/QcoOnUKqRS2ENTk5XFgxnSO5xcOnKcUCoEYRXBb8QorXWEkNJJkJdBh+EdOalfgsQdEUZ+4d5zmde3L4e3u7uaWW24hVFERHTuKHVIpChrrmT5n2ohjzkdag610h7tJ96Xzv08d50hHE4K88ZUJlAI720vcwU5u7XCQoKKyVyBQtpv4zuFtuU4X0gqF00waccxoCGFguGePNaj/R+XwjjBE9P8b7lY0dY/i5T8DDm2q1aJbo9Gcl2jRrdFoNJpXREfEZH2bnx7jSlT8btK7HkeI0YuijZveqFwcjDrhy6ygi8QRXerSsvjnpVfRedAiKCVDi5RHy5w1GYr13ghrArHzo72BbLoTgmxdspgdC+bjDoUIu1xR77OUdHrj+scats38w/tjmmymKTrfYRKcpXrTcn/BvFoPVaaI0RStFwGF/sLTD8VEKUV5eTmVlZUker2jCu4+Qi4Xt+ZqEQSwrX4bd+++m+0N0Rx+J4l0HPkic+OqabVzMMdbbE4K5rpDxCsnEoGNTWXyARyGyYX+ebgFHAvZBEd4eV5J67oh57/e4SWvgtbq7rNtgkaj0ZwVtOjWaDQazRlhKcV3j9fxu+omQv1Vot5LkbiQL/JNEkdpATYeRAA82wWBFWrMLmT7md2bER1baNiGwe6sMpzVI7dEUgL2uywuDCjcMeYxIgOi2nI46HFEPzptBIezizCNgY/SH/zs28wpP4QianqfTDPTFM2fj2D7Bh0EFmUGWd/oocOMhqsPRihBSjCFAn/BqHsw5BwEL7/8MpfMn4+SEmHb1KVl8MjK1WyeMQdbGswqP8T1658h2d/FB1avJGnfXqr//neCe/ch3G4SVq0i5ZabcebkjHvdtzKm2c26Qz9k7bF/kKoEWQ5JgykJdKfjDoWY0XGMl+WZ9RTeUfIbnHIGE1pm8dTk3/H2rgu4ofkyhCf6vjgUHLsi/rnIKw9O12g0mrc2WnRrNBqNZvwoxRd27eHvHcOFbhVFPMiN3MHvXrmvzgZXdSKBFb3CfYyJ7LGbciG6TKRtY4/iqbQENBs2edbQEHWBAtnndh8430bQ7otn64SpAEjbYsrJY8ypOIhC0BrnwykNEru6sIWg87pewX1aBLzPAR/PCPHXFjcnIkObrE1un8y09mln5PlUSnHq8HF+feQIqTe8i1BdMz9753uwhcQ2oovXZmTynwsu4c6WGj76r/s4dc9vwDDAilblbjl5ktZ776XgN/cQt2jRuNd+K9LQ8DgHD30RrAArveDbI7mxSlBvC+7zODkV6mbV9pf57dtuHt+ESiHNRgyzmu0FVezKfZ53tF7CTS2X97+XBdF30vkou3Mn6foBGo3m/ESLbo1Go9GMj/JnObr2F9w76RvEUsO2MHhJreAOfvfK1xAgkwvBPhgt3T0GpRxlO4tGFN7Stshsa6ZNjP1x50bgERBR0ej23hnImfw8bhWiqWkCKEHA6eJAzgT2FJQScTiRtoXDsvivR/5EJF/hSL+SbeYRuibPJbu2Dk9PO7nzdiNG0PwpTsXHs4JsqpjNUb8PwzDJ6MonzjrzAkQCQZqdQI3RSqXLwz9ueC+WEAxe3Or1zN+Tns+MP/6W6dAvuAGwbVQoRPVHPkrpurUYCQlnbMdbgdbWl9h/4JMopXAfE6T81oHhFyhDUWILPmsc4wOXukjtaOemZx/nvsujLeg8piJkgIoVxi0E1+608NWkg2ilPh1u6rls2LB4oeg0I9jSwYhvjHOQJddNPNsmaDQazVlBi26NRqPRjM3h/8A/b+XB4vdj2CaWjP3xERBxbFFLWRzZhAyCOmO9JojE1Y8quEUAfJsljsMOZmXV8sD1NqYUMfO6bWlw3b51/Cl7zYjz5SL4oHKzKt6JFAJbKeoiiiOhCEF3K+mlG8g0TMrKXmZd98W8EH8VVbK4//wycZh3O/5E4sdPEWyci9w8B7vhKCkZVWxPn8+uWUV8j92jXrVSgny3hVVXOtYGjT6PUEy0sqgxWjmUUxwNWR9B1Bm2xb9WXcH038do+WTb2D09dDz8CKm3vftV2fRmpWLj/yNuoyBuq4HROKiYmRWNLYgzgyyv3cemnOnc8ej/4QmF+ftl13DXCdiZYvBCthPZm17Rd9PnhrVb+dCDv0D29q1XQFPuP6gvezs90otLKHJqNpIQidBesArU+ePvlk5w+0buK6/RaDTnMlp0azQajWZUlBXBfvSjSBRNrpRRg51zmxpI+o+T3O1OsKHhGxHsVIY6xhW4jgu82ySyG8w06FlmYWUSTbAWauDf03CeEKT90oEVNthw0UU0p6Wz+sBWnp6xBKUUqjeEXNpWVHCve5p3bnmafUvy2ZkxGVsOje8uQPIbfMQhkL2iXQpBjhOynE5Ozr6fsIgKo/bKRUTKL+PHS37CiXhFJ0mkiWYyVROgcHcXkH3wvZw0K3D4ImTOOMTsrk5e4s4x91gIMCPuMceNioIyKwdnbwx7TUoGahQvqiUNdk6eMeqUPdu2nXOiOxJpp/ahPyJ/2oPbH4+M9IAQqNxFBDJmYikw63aR3LiL24+u5z9zP4xZ8h7ygj6+8FAr+R4PFzklpU7B/kIXQbcg2W/z9uf+zrSKF/rf6raQ7J/6HpozF4CywLKZfvBPuAKNVC34UnTQeeTl/tBPLzzbJmg0Gs1ZQ4tujUaj0YyIUjan1r+b4p52ALJDzbHDaoGiump+8YP/hzcURNjRMcn3O2i90+yvKiZCkPI7B56DEiVVfwpzwjMGXWssuq5RuLvyMb0twxcIQsLjEoKKI9On0pyeDkJQ1NbIu3a8wL68Ek6k52AJSVZnKx/4132s2L2NcIni0x1/5Ztxd3IovhiJhY2BxOLz+IgDjNOuKSrAFZnHbuWfWSkcbpjLzN2Sd7S3kPXi5xH5e3jU0cnaQCpSCUpVmFld6XhNkzRPHi9PvJj18nJIgkTVxlHKKKEcY8RAeEVzcxEANjaSscVYp9vLvvxSEoI9TGqoYnYwjRXmVJ527hnz3D7CTidhhxOXGYk94E1cCftMCQQqObj3ZxxeH0dnxTKcF36QtClPk5C3E2GEcXSXk1JZREbVRVC8iPLuHo6ELLKkG6tXHCvDQ1UEqiI2mcCqfQEAfN11TK94oX8tBeycdh0d6fOjIlwYZDVsI6tpJ4fLbkbYFkqO1EX93ONj91xytk3QaDSas4oW3RqNRqMZkdq6BwjUvdj/+IaGp/lx8R0DA5SKVg8Xks/+7bf4QgEMe0BYevZLUu920PFOEysbkv5u4D7U2wO4V5j36dCEZwysZJM07zVEvC2E42pADhKpHmj9LwujEepPJUFgQBCm9PhZWb6HleV9glORtKyexneGsZJBhE2+/6VfsjNjKi/Pm0F1cjKTPQHmNq4c8dolksTuDKbcm8oNm+/G6A0F9jvcPDfxAh6cshpLGghgG4KHCXOp6wDO7FxemjYgMrqtOB6UN/EF8c3TyrH1byEVTXn4wy4QEZo8TUyw4wgFE0b0hNoITqTncCB3ArYQbJ44nZSjIWorG6mR0RsWue3NNCSmjOztVoqg28Ot3/gJP/z5dyiqrx02xLdw4Yj781aip+ckL298D8eevguzJ5n4/H3kLfs1AKI3lSHia6Rxyt9pS9tB7p6VdNd0MLWlEhCcKriU7oTTqsgr1X9TIqthK7aQyN73yPHMVDrSlg9p35Vfsx6FoCuh8LwQ3PGpbuZfVsT0lXln2xSNRqM562jRrdFoNJoROXn4JxT6B7ygxcFaPlB7P5tzpnAVjzCDvQgUDTWFzDhRH3MOz0GJcbeDcJGNd4ccsRq3QpH4hAfPqokU7PgcpxZ/E9PbPGyclQ5T0jewd88auroyYs4lhE2nJ5WM1GPRud0Qnm+xeNNBljXvp+htjRzMvRhGEd19zK9twx6Ue2uYIW44+jwZPW38YP7N/Z7/njgvD85bhe1zImwbYdsoKclrauQLv/4TbYsm4ru8Bq8RxFQGUtigBA1NpTwQrqVjwiMkGorlcRGmPz6BnflLR7RJoDiYO7G/IrstBD+d4uWw3c60RjdTI3lccDKZOwoEJiq2x7r3WGtiMp/5xJf52//7FN5wKPqclEifj6Trrxtzf94KHC3/FnW7VmMGkpHOELlLfgfCHrItojedQbQdpeeJSkpDJiDoii8YLrgZ2g/7ZPHVVBauJr1lP3nV6ziWk41DeoeMj/fXIFBIKzxEsJ8LeBMclC3MJrskmZQcHw6nQWKaByHPnWvUaDSaV4MW3RqNRqMZRkuNn4rff52MolMoKajK9ZDaFiEuYHG9+14uxoWF7G/YVVRfBTiHzRMqsui43cLMAd96CTsZsVmvQCD8JnZHFSI9HdPdHnugBKFsiifsZN/e4ZWh+2eTgypyW2DmRnPFraBB4ISHbF/HoCrlIyMjgWHtnQRwSfVOHpu4jMOpxSiXJLQoAxy9YciD2pNVZ+XyqU99ld9/6/MkPm3x7O2LaSlJIq47glWViitQwvUFh5la+hhCKJynBOkvVtK0LI+qgl6xJ/qiA6JCPr2mno4LT6turhS7i6fzlaoinEikJfjl9gAvp0e98btTDPYkG8PEnm0YtCQl88KCpVz18jqUlEi3m4J7fo0Rf+YV1N9shEINNNZuoevUDaAMEou2IIxwTM1rNEP63QaYZu+tIUVN7vIxw8GVNLCkj8aM+TRkLkAFNg8bY0knhh0mo3k3HUkTGbMf3psVA1a9ewrhkI3LY1A0PQ1vgi6QptFoNKOhRbdGo9FohrDrRBs/2/A0tyx8Ar/HF/XKAQhBcluYjuSouDYGS9EY37lDEyxaPmP1x1OL8PjWV1YEf9Y2ECNLYiEgObkRl7ubcChu+BxKkppaPegEEH0Oe6HoaXCTlruXxogf4RwQlpbDT0feRnpSDwMKb0spxtr9p7fXBsAUkstObeVwajFWfhw45QgV1CXNySk8u/hC3rn2Cdb8cRcAPV4Pu+bN42R+HE/XLODrE57CZYTx7JIgFUs2bSajsYmjZWX4E6Nl4NObm5ly6DC5dXX89G230+31DdmUep+Dmy5I4I4TYVbXRFjQZjG3LeqxNYCjcYLvFhksDQg8Cv6T6+RYggFK8cKCZUw9eYxd8xfzhc/ehTMra8T9fyvR03UC79/TUfHRrzye5FOgJIjhlcPj1htgDa3h1x2XN+5wcCWje+nwLkGpCEIM3IhqyphDTv0mcuo3c6rwciJOL4i3Vph5yfwMLrx5Mt54LbI1Go3mTNCiW6PRaDQA2ErxlfIa/lVdzvfzv4ehAkTV6oCQbE8e7s0GCJcpbI9CBgfGtr3PGuLMixQohBrDuyckMj6LiHfXuGx2OYMxRLdNfHwrSUmNA4cM8OwZlNusQIRtQkeexDPjXQD0pByieu5PUUaYPnd8d/pexNch5TcOPIeG5kY7lE1mTxsAVs7QUOJYPL10Ne9c+0T/Y28gyLKXXkZdICBjMj/Z+RE+M+9uRNBGIZBKMamigtKKCizDQCiFYQ8IxSR/51DR3Uu9G2a3Wbh6N98Y9CJM7Lb5wUGLewnxPuHl9pMRHsp38L1pHnZOncn7v/K/AHw+I3bY/luR7nsexncgAoujj5Ud+z0M4NktB2oN9GJYwWhrr/FWGhcClEJZzWBkIXrPq8q/hJz6LTjMIHP3/Izds+4i7E6KetEFb2oBPvPiXOZfPoG4pFdZYV+j0WjOU7To1mg0Gg0APzxZzx9qmnkXTxCPH2LlY46Qh6pc4F9tkfCYgUAQzrGx04aOCZcpzHSF0UJM8a0kRKYn0L7s1/SkHI7ZMux0wiFPNORaiP6Cbr64DqbPWDtgqgWuYwLnyYHCbZ60MKEOBxVtWxDteUzKKqN63k9QMjJsXeWA1jtNMr/hxNEyYLcpJG3uhN4xsb3c/QhBZ3zK0ENRU5i3YycfXfMOVrTn4n7ht4TbniVkP0if8BeAwxru9f/Nd/6bFxYuI6O1hTnlhxAo9pROxSy7lCImxwxediBIBbwIqpTFBAzeVm3S6gpxzyQPAE4hcJ4j+caW34//gafwhkLE+WvpjsvGXzuLlNJ1MceLGEXcM5t20ZYy5YzWFUJiqwjKrEU68gBFT1w2e2Z8mJkHf09cdy2Lt3yNpoy5tKeUEXB5OVY4k1T/eOrWv7Hc+JWFpOclnG0zNBqN5i3Nm+1vu0aj0WjOAo2hCD872QDACtb1F5WKiYr9nP8ym+5VNgpFpHB46C4S2t5nopxE24UNnlIqrFRF67ub6Ek7CDLG+YOxwXVIsPqhF5h0+Ah51TXk9Zxk2pS1zJvzH1xGkL6EbedJQepvHb0F3BTSqUguDrCzfTkH8tLZ37aR7Uk/whbDBXef3UjoXjlU+DqUzQuF8wEQ3RGwR94zaSvSuoY/L4DkwlWsFvG4iea1uwqWIeTYH8/xwQDXbnyeRQf34A2H8ITDLDi0j+UP/4jQ0SdHPE8Al+PkKSL9j285FeHuLX5uPxHi+tTEIUXC3sr0bN+OCoUQwISTj4OQdDdMJ9SRg7KH73G4UA17b2Y3bMMdakPY46kA0ItSCGwi/gcxe55FWY0oO0BLcg7r5lzH4ZIraM6YC8LAki7ak6bjDUssOWLJgzccacBVH5ulBbdGo9G8BmhPt0aj0ZznKKW4ec+x/qJi8XSPfsJIgkxC5zssui+0cJyIPSRSrGj6UoT4Zwx82yTCFNhxiu4LbPyXWqjh6dkxDI7+k/iwgau7h7l79/Y/Za1T9CyVmNk2Iijw7ha4jvZWTBcKIRX5K1pZm3AphxwFCOsoCvAVtCLkKHLHgOAsm6R/966DYF/6RKrjMnjvgf9gNDj45e3vG/F0WwoWHu0cPm16Ge6p10bnFIIHCpzcX5TFrNT387l7f4slBMYINzn65xj0fF9bs8jBf+NMn4yROrH/uW6CHHLUUCmbiWATseNpsYpJUwn4LFjUrljUHkZVVNNerUi8pBDpeWt/TVDhgUICmc17mHzkHxyd9C6q1n+Cgot+gjuxISq+hY1C4r/Qxrt/6DUbdpi5u3/GnlkfJeDLAtuK/g6MEm6uBFRl1JBspeAO7McK7wdAOibg8F5AXUIGdYPGCyBunDUPRlwTBShswkhc9JYmRKGi/ypFWAaoSTxKblcZbts7YieBwumprHn/dNy+kUPxNRqNRjN+3tqfphqNRqN5xXSaFk81d7C9vZsD/kC/mG4mnRxVEzO6HBhSWC0WVnr0/+hYhhVptrKg4zaLjndYCBNUPGcWdyVAhMDRNHx9o0uQ8IwBGIDC4bWw3GAYJokFQQLTfXxn6p1sD1/JteH/RTl6q4IbY3jWof8TUwHNKYnsnlLCPS/8CENF+M7Ku3qfPK0VVO9ezTzZxdI9G4dN6Zx4Ccq2sAyDT831sjk9mtdbvfxiZh49SEltJZOqK0c1K8YWg5CET72Et1d0W9j4RRA/QdpEN0oovKKHfzsaWRKZxAyrcOBUG/wbaggebSPzztlvaeHtmTa9P8caIK/uRTKbdlGftZCattuQkzpJyNuDNEIEunK5O/9KLrvoGd6x7qkhNzx8wWaWbP0mLanTaE2dQsiZRFPmvOgip/0eqL6K/u3LwbMc5epBqR4EXoT0vaJWYUqpUaMPFIqIs53O5EMow+w7iBHxkdI6DxAIIeiMa2HtlPswZZiJLXNYcexdeKw4bGwkEsMhmH9FMQuuLD5noh00Go3mzcBb95NUo9FoNK8IpRQ/P9XIj0/VE+oLiQ5a4HWAUjzPGt4t/szIvb3O4Mv4KEPjXhB0X6nOONFJdkHaTxyIIP1evFgowG96uf4HvyUZPwCNrlRQguWHgjjMCBhRkdzd4MOd2DGy89IC53FBcKpN19WSpMgiPnboYuQ17+RvBZINU3sLmsXYG6cVYXHVWsqnBEnyZ5NTP9DP3EgtQUiD+wudbE43SKCTmezGGw6wvHkzv7vgdj79zz+Ouh+WMNiUN5vshDymR8LY3Q1YnXX9HnSFwkCSoZLIMpMps3J42rUHq7d692ZnOSmmm4yAA6crDuGI5nab9T10vlBF8pUTRl3/zYwrP4+4FSvofukl6M2Ld5rdFNSsI6d+Iw/nvR3H4RU4TB/pCu5puJdvXbKCgxNLedfzTzDl1PFBsynSWg+Q3noASwhq2g9SUXZL710Po/eGCziIYCNRvTd+hPQi8FLq3sBeRw4FJ3ZhO2ZG88THUZxNEZ3XIoTA6P1/4H1miRCdSYcwPZ30OrtBgDOcTGL7FMSgX7ASzyQev/xJ1rY/w57GPTTP28TsnuWUOqYSn+Blwux07d3WaDSa1wGh1Bhxa29yOjs7SUpKoqOjg8TExLNtjkaj0bzp+fmpBr5zvG7E510qxFf5Hwo5NdAWzAb3AYGrQoKA8CSb0NQzF8xAVBSEwHUUwrPO/PSUux14DophVaZjLQPwPx/9DMzoYQXryaSebuLxVEzG/cRxalxR0e3NCDD57ScBsCyD5uYiuv0pSGmRmlZNQkIz7kMQmeShcPsXcXcVghIoIbj6wjga3WLUmxGrD2ylpKkGgAvXrye7Ppo/H7fmewhfKm9b4WKN909cxPNDWrHZx9zk/UiN2tHZRnDPrOv5z4TlfFW5uVS6Ub1h5iKGqLNR7Dcq2eqs6D2gyKmrY+XGjSAkjtx5uKZcg5GQgzIDEHyc1NveTdziRaPu95uVSEMDJ2+6GbOhAQZVf1fAoalT2Td74E3oVAazLYHH2c5Bdwb+Zpuy/QeZcmoXhrKGnCuAHk8qtTkX0J4xicSkLoo925nsXQtARfACuqxMPLKDSZ6XiDda+AV3kLu3irLD5ZwsvprqvJXYRm9FcGXTX16v73XrDWX3Bvbgj5+MYQ+vVt9/nY4uIq5OBOAMJeOwhuZqlMzNYPUHpmMYupyPRqPRvBaciQ7Vnm6NRqM5j+gyLX58sn7UMWHh5rvqK9zIP1jJWry1Fqm/duBoEShDRTXBMwaRTJvWj5hYg9s5x4x1HkQA4p4XxK93EJ5oE551BsWpAKMZPPvFiN7twQggOEFxV+H3AXtIVHwwv46261PgqQSUgkCTl9rNGXjKnBw+tALLciGEBQiqqmaSmNjA9JJ1OKtdnOoKU2wL3FLQ5BY0ekYXMdK2qU9KpaS5FpRi19y5XP7kUwjAbNiHOWE57/DezQK2IU+LLpDFIYJTnHiPGL2ibDiWkKzLm012qJaXOw8RJ1wszbhqZHsQTLXy2Ok4jilskIKGrMzok8rGrN2JWb8P34rPYyQX4N+0C/9zz5LxiY+T/pGPjLnvbzacWVlMeOhB2v52L23334/V0gJAyOXiWMnEqBDvLVwXERbbHeAMuShq8FPaVYLySqpKs6nIlBzLiqfb7eGinVvIam3Gn5xC0ttncFXOMeTWX4Bt9q87w/f0MFsU0JaSgsM2KT3+MMWnnqQroRCFJK67loasBVTnXUTQmw7KJr1lHwVVz+PraeDlZd9GjfJWc5oJOM3YRc+cboNVd0zTgluj0WjOElp0azQazXnE080dBEepst1Ht0jir+YHqGiewhcf+DWd15qEZimUAxy1grj1Eu8WQfpPnDR+NYLlExwPF3OwqpTLitbidphDJwwT/cTxQs8ahUq08G2QEAHOIJrVVSHHJbgBzAxF28cj/Z90gx3RLlcP8SluThTOx1tVgbJtao8UEghN6R+o1EDf5M7ODPZXXMLsmU8hcr9D+QMXkJF8B4ZrbOMVg4qiC0FnUhLtmXkkNdZgNh7AmpPLIrbGPtmArutNPD80EGZfk7Gh3DtlDfO6djCr6yA2gvjkJWPmADtxkKLiaRJ9xd0G56HbKDtMcNefibv4K6hwAICmn/0c79y5xC1ZMuY1v9lwpKSQ8fH/IuPj/4UdCNDx6GO0P/ggy/YfZPPM6fjjBrzCQsFEfzzzmyKI9g1YzUdQ4Q6Kj8MdP/8ZNUuWURX4EKlOB5ck+pBCwIkNsPknI66vgC7iaSOJtrwkgm43rlAIhxUipb28f1xh9VoKqtdTmX8xx0rfTsCXSUdyKSKngNk5zexuyBk2t5DgdDsomJbKsR2NCDlwf0ZIMBySq/9rNk73m7cPuEaj0ZzraNGt0Wg05xF1oRiNiE8jq6WJO569n7mTX8RhmbTd1Sv0er+zm3mKjlstQtMFyX8w8G2WdF9iY7jgkZqriT9pcX3LOlzHJJEcm8532SgP/aHoygU9y20C8208uwTBhWp073hfnqoEYY4y7jT8l1oox4Ddg5FSkZDQSlJ+B63uWSTWV+NyegkqUDHFqqSrK4P2rmxSkupxve1FGu9JpHjauyjotqnyjRxerqQkr71p6LFldyJrq3HnzKUp529YSmKI2J5ss1DR8gmb9N/lQWdN//Eup5d7p6zhZFoiF7a9DIAQgoKEmePaHzVIwDssG9vhQprREtpCKeyOKsKnXoRIbzV7w6D1L399S4ruwUivl5QbbyDlxhuYACxXiurqapqamnC5XJQUFhJ4+BFa//53IlWnwOEgYc1q0t7/AbwzpjMFmBLnHTpp8QrInAbNR6Ih4achAP/M96D2SYQheHn5Mlau3wC2jRyc5SckodRCThZfGX2cV0zmrRcwZ1UhhlOSvrmOLY8ep6s11H9KXlkKK28qIznLx6nF2exbV01ztR/DKSmdl8mMi/JITDvNXo1Go9G8oeicbs35gVJQuxO6myExF7JmvKIKshrNW5mHGlr52MHKAal1eqVtIL+hjl/8+CuEP9JOuFAhTaK3Z2P9uihIvF/iqpQ0f9bE2huH+18+Mls7+gWdIFp8rO29ZrRK+WAscFSD8jA0RD0Gcc9JnKcEwWkWKfc6EWrs39+6H4VRo2gN2xY0NxVTvWMOq559jseuuxY1Sn9sIWyysiqYVLYFFCTdayAOT6W+dApfvH4NTalpw8+xbRKCPdy07bkh6e/XhxaSrhJRKGpn/4quzB2j90YHJjz9Wz7UUUFOdzPdDi/70kuISIM7qu4l3vJje3y48ufwTmvFWFtDiAj3uV/sL6bmaqhidhNM3P/ykHHVE2aSf2Jf/2OZmMjkrVvGnP9cQZkmGMb4Knm3nYQ/Xw0d1X1nR5td2xbMuRWu/SVHKyp44YUXqK+vJ7GjgymHD1NUVY00TRxZWaTcfDOpt9+G7XBjmTYur2PY2spWNFV1EQqYJGV4taDWaDSas4TO6dZo+rBMePLzsONPQ/MhfZlww5+hePlZM02jeSN5qbWLzxw4xGW8wErWEo+fRrJ4Qa1hM8uwRdQd/Jl7f4uc1YVZpKIicSTB3Uv3xTbuX0tkN2TdG0YGw/T1B+7DfUSQ9gsHzZ83h3qdDTALIevTBs1fsrAyTlvLBiQkPGrge0nS9l6T8BQI7rPx7JWjFlJTqKh3fRSEUBiOMAu2bcewrFEFN0TvUViWs9+2cIkiZdNRJm4r5587Huc77/ko6xYsw5IDLap8kRBX7t80ILiVIsl0kaaiubcCgQymRBs7jyK6ZSQOl3CRllzES8n5/aXWkiIdFEgfU9NWkRVXgtNyjFrRvQ8HBukqgQbRAZaJq7WB404vBVLiHFRsbOO0Am4eJLrPt5uVwnEGX5NSiuGjm2Dv/bDvAQh2QPpkmH8HTLwIhKCsrIyysjJaW1sJBoMkJSXh8/nANBHOgVQFCThcscPBhRRkFmkng0aj0byV0KJbc+5imfDbC6Fh//Dnehrhz1fC7Y/BxJVvvG0azRtIj2XzX3s2812+QhrNQFRQJ9PGVA6ykuf5kfpv5rXsouDSffhnDhJ/oxVGE1EPdaRAEbfOQAaI6YEWtsBVJfDslgTnnxZCrSA0E9L/14H/cpueC+x+sWw0QsJTBt5tkuBcm/CUqF3tt1pknJI42kAJhVBimNAUCIwWsNJGsV+B2ekhu6EKBXgCAYIez6jC0uvr7P95IBpcIW3F//zpVxTKdJ6fXETY8lPaWENZYxUuq69vctT+Jfa0flvDKP5Qs4B3FT074pq2kqRUXwjArbjZQg8ACcBXZBqL8+6I9i7vnVPFyPsefu2KVeZ87prRzeRTx/BJg7AdYP2ll7Fsw1p8wSABl5vHVl3CTc/8BxERYBjErxjbi35e406AhR+I/j8KqampQw84dZsujUajOZfRoltz7rLl17EF92D+ei38v7bzznujOb/41akGPqx+SCotQ6pj97Wmms5+PszPWZSyhVDKafnVY/1qKOhZapF83+gh30oovFtjiG4B7e+zkO2Q9isHiY8ZmKnR3G2jJSoklVTYg0LTfS9LlAva3mPi2ySR7QrlBtmtcLTK/vVc5ZJAWuw8aYgWmQofSQGqEEBpeQX7Z84Y9XKzs3rbbBnQGU4jmY6B+YTgfU8/wcdaPsBR2cJWRxVBOZCEHhcMs1zNokCm9x+7nzBP+3PIrFrKyvxNw/4UWbakTaTwpOs6PgXMwcFX8XAKm9uVG5dkWPhxLC+3wqY7fT+B5HJQ4Gsqwd02jVXtyWwqXcKJ/MksfOEPzHJP4j/XJDB/+1aO5E/A9DgIzLPxbTHAtkl9z+2j7o9Go9FoNJrhaNGtOTdRCtZ/fzwD4cRLMPGC190kjeZscLD2aapOPsd1VIw4RqJYzCZiRlePJrotcDRAeCrIntHtEEpgdMXwwPbObydA8ydMsr7mxNlwmoi0BT2Le8VzGBKecCBDYOYoWj5uDukVbjSC7BFYqQrbCc5KiBQwtJ94b9h63NOSnKyBytGTjxyhJj+P9uTk00LNoydMnLgDtyd6oUqBWNnK0YYJlG2sjA5TNmb9XgDK7Fya6ppJ6D6EcrhJiy8hN2E6ctC8Nop/EUYBfzt0I+2hZNYUr8XrCPavsa95Kn8yP0hzfjo7Eyw+dyjImg4XfeVYxpNrHPLVUDPvZ0R8jWAbgKK1xMbZmccNuz/JrZUZgIdTRXeSF5BMiZTw7IJ4qj0m89R2QlPAt02S881v4p05viJtGo1Go9FoBtCiW3NuEuqEUNf4xv71Gvha2+trj0bzBqOU4ve7fsbx9iP4ycZGDOsB3T+WoZo05oBY2s4AMzv6nJWqELWxvawASirMjFHCng1QPuhZZhP/3EAuqy0EL8+cx9+LLufa3U9z2f0HkKFoC6vEB42o6LYHLsDKBEtFvfWJ/5D4thp0XW3Rs3wgbF20SRKekjgaFY5VHVg+J1aaontlhBnFT3OqeRa1LZMwHS4A4uLaKSzcR3pGZb9dQoCQNvK6RgJbXXhD4V6Do5Wr78uBH69ZBmI5QilWNJl86kiIgp6BPWhXNi29edwKyaPHr+DJk6soTT6BU5pU+3NoCaVi5fkgDw4nSjJCasx2YKdTO+seIp7m6AM5UFk7El9H5cLvMeHlbyEtL/lBAyGgNt7Llf55rG9+jLK/rsWzsICJ//k97gkTxr2mRqPRaDSaAbTo1pybyDPJj7PBtont5tNo3pr84dhOdrfX8aD4MJerx0YdO6Z86xtwumYW9Ivd7hU2SfeP3AdY2IKe5SOHevfNF5gzILptIXli6YX8/KY7iBgullcdQnZs7x/uLpek/dJB+80mVubANNIPrnKBZ7+BDAkSHnKS8KiNma6oz8mmuzuZrKPlhGZa4IC2D5uEJymwAMOkKG8n0x7eh3Ugno7PBnG7AzHNlVLh83VSvWwik9ZWA4Ku1AI+ttjDca+JoWwsYaCEoM4jWJ/h4PrqCPEWKNvCocxh7cwitotDrZNP2+PoC7Cw1SI3OLzi/FhY7g6QMfZe2pieFjpyNpFSfQkG0fsXiaagIsFFumMuyRufwbG7EWtZO2jNrdFoNBrNK0KLbs25icsXFd722D2JAfh2Lnyl/vW1SaN5g/CbFo9VbWULNwFwiBkjernPiFG0Xs9SG99mibNyeDE1hSKw0I4K2zHmF6kZuGdfhZBOjKxpHJ3jwFYNOEOpvG3d08NOcR+RZH7NSXiiwkpVyG6B+4jg2PtT2X7jVNyHDJLbOsgUaRjXryfjxI0cqD/K1CNHcfS2zu63a5AADl4Qwd0YGlFw91+bAjO3T9Aq1s8uYdm+J1lp21hCcCI9lwuCxVzd5MEUEHG34E+uRlguXNuPMzm1iPKUfGwR+6afULC4/gCTKhu4OJKH7ZiCHGFsLEK+WixX56hjunpFN0TvoeQEFQ/mO3n3sSws4YCIRc0nP0npC8+fWTVvjUaj0Wg0gBbdmnOZK34A//nk+MZao3+x1mje7Ozs6OYfda00RyI829yJyVL6XNOLifZeHq0Q+avGBS2fMEn8t4Fvk0SY0ZVsr8K/ysJ/uT324rbE0z0Jo2w+6yb9lmDaH1kgbNIDkpe7HPzwbfDphyAhOPQ0gcB9XMDxqKe2MzGRHZ2rox7hHKjPyaWwNReP34FMqaJkxlaqDuWSX1WL6CHay/v0AmbpEJkfHvOyhQAZiu5zVW4O/vQUHL0ttwylKG2qpVnV0+AtJjLlIbrT9/avJefG8eHtJXy66/0x55a2xeSeGhZ7T9ITF0dYeqLe+DOgreiZ0fddgOUYnpDf5JGEpQNPJHrj0mxsxL9hIwmXXHxmBmg0Go1Go9GiW3MOs/C94xfdAA99DN7+q9fNHI3mtaI9YvL76mYebGjFb1p0WTZBu9dbqwaFHwvBPLWN63go+vB1tkt5oONmi87rLJx1AiUhkq9gvNke0sbbXsqhlZ8gV1oIopcywW1zcYLJfW4nH/uog1/dbQ0T3hC9qaCkZMuSxf17IGybhK4uslUhzQ4/XSX/IR4IfDSeuj9mgLNmxI2JzDcxI04czpEjZmxbELcngQNlJeyfkxMj11ohXV00zfs+TmdoyFq2s5ukpXv51vYf8ZWWTyOUwhYSKWxsDCb0NLAssYoepw+AzmAt0jVxnJsZJRxXN3oPcFvi6s4ddrjNJWmPtJDTd8DhIHj4kBbdGo1Go9G8AnQSq+bcZtFHxj92772vnx0azSvEUqq/UvXutga+v+03fH7jN9hy4h/U9XTQFLEIWoPydU8TfVfwGNYb/KdeeSE8URGZME7B3RuOnnxyDQ2T/4khLaQYuBRDRD+sbk2LkB5n84trRwjFBrYuXEhbamq0ToNS+Hp6WLllDz0T6ugqWt8/1pvkh0/VoEZOQwfAtEa+AKWgqXoWR3Lv4vikJSPWhcgv3I/hDMbOqwZyFlRy98H/ZaXZQKHRztL6A/xX/ROsSKvGcrn6NyLh6MuY/nrskQriDXqv9JFcdcnIghtA2iRXXzQwBwrT2YVK3kHa7icGxtk20u0eeR6NRqPRaDQjoj3dmnObK78HW389/vFfS4ab/wWTL33dTNJoxqIj2MNv1/6TXd1hqj1ZdBpxzHFt5gbxD+YTZi4Sic17+S33q1t5Wlw94lyTONLfj/sN4wxd6u7OQlJPXonpbUEZob66YUOnFGAruDDR5L4JLiwBxmla0pQSpxkhvakJRyRCQVU1hZWVuOdcTldyFSgJ4vS9kChbIWRsYerx9BAMxuF2dwOCPk0rpaKlbiqtWz8ESCzHSKHoNtnZx5AjzN87hKbrkphQVcOc9jaK2k6xZ+6cYcMyGxs54nqMCWW34yVaWV0gsFFIBGbtDuzOGpwTVyHd0cbm8TUz8aVMoKfg5FDx3ftjYs0F+Fqn9R8WCHqqH+RO62UcDYNttIm/6KKRr0Gj0Wg0Gs2IaNGtOfeJzwF/3TgHK/jHOyB7Fty58XU1S6OJxeGKbTy88T5+VnQ7yg0IwSr1FLfxl/4xfSLaTZjb+RMR5eIFsSbmfOp1Dyp/ZSgFm+vmcWX5jaSH0pEYVM7//qjnGAKmeSyUFHR5Bcn97bcECInDtliwczcoG4QEZeOYfAlxc27AP+EeUMOFrxjB+zwYj6cbpSASduEwIgjDhhDknThFQsu/qfatJuRuim2zYWIY5uh7gcDpC6IEuIJBDk6fFnucEJxKc7PTtYnFZhmT7BxU7yt8TNbjOPYQyW0thI8+hUzMAyGwu+pIetLE+7EraZ+wAcsdbaXoCKWQcvJyUipX03eXxBYhVHsTbH6JVI9NYCHEvWiAlMRfuBJ3ScmYe6XRaDQajWY4WnRrzn0+uQ++lX5m59TvhWe+Cmu+8frYpNHEYEftKR598QF+U3R79IAQGCrCu/jHqOfdwH2sVxdjieGh0CeZyCSOvH7Su897bAsYzZs7+BQFQcvDo8euJD57C2+vuhxlA9IasxuWFNEJPEnZCNMPrjichUtxFC3D6jhFJLAbJybugkJS33sz3qlTAOg8/CjtdRKlhlciC3Vm4U5s6G0Z1ntwUO9viDqJXa7QQDU6N4SW9OCZ/xyz795Ec/rlhON8w+a2bQe2LZGjiHsFhCNeABI7O2nMyYk5ri4nB0sahKTFBtchGs0OLjCnAlBkZ7Fx/l2UbvwJicFOVEclggFz459ykjb9J4S9zQjA2ZM5qHO7ojvlIKajE9+paPX5uBclHVdHbfbNm0fuD34wov0ajUaj0WhGR4tuzbmP40x6dg/i5Z/B6q+fcU/c8dLwj3upfuZbhNMVBA1S4y9i8nfvfl3W0rz52dDayS0HGzALbx7ynpvGfhLwj3puAl1MYz/7mBs9oBSTumyygwqfNx0Rf+R1szvl1GrCcXVIy0N8wzzqpv4FXKN3AzBtg+9t/QRBy8O0sn9TmbOdtGNvw9NeQk9yOWKEHGRLwcmQJNFQJKz6AB5/Qf9ztaKVDYldOFKm8973vpekpKQh52ZlX0dNbeybF+7EBjorF+ANNOHOrESYCuUEO4mhofLitMdGVNT2vLebi7+3lqevuGJYXrdSksaGYrKyjjNSpy8pFY2NE0hvbCK9tZWK2MOoKC2lsPIUjVmZKCk5YTSx3JxC0NnF3QlHOZQKLas/xqqKnayu3EZiuJsWbwqZEy4ivnA5Qjlw9WSfdgNGEYqvpGHKfUzY/HUC1dFikiIiMDvS8HzjGxS+69IYBeI0Go1Go9GMFy26NecHnzkGP3oFoZGNhyArdqjnq2HHbVPouDmCejdR75o06eFpar43k0nLf0jBiste8zU1b05awhGu31lBeSAEhmvY8/FjCO4h45RiTrvF5w+GKPP3eVY/SNWcTnoy972GVg+QfuxtSMsDQMhXh2G5sBhddDsNi7DtZFH2DgQQSqykdu7PEBEPoIYUYB+MIWCD38G1Hi9Ofy4KhYXNDsdx9hmVIEB2hnnggQf4wAc+MOTc5KQFpKZeSGvrRhiW426QUnAA9w8K2FXwC5Lbj5Fxx6+RordEumLksqMG2CngKe5k1XPP8/zqSxGDwtiVlKhNKcgrQLkY0gsceouxNRbT3Z3KzIqXievuHnHfeuLjOFlcHPVOK4Xp6KZi0i8xs3dztbS4GgiaLtZOWcGHKj6HpRwYQBGSv/RWtIt6vxUCgenqoLXoSbpTD5G//ZNYzSewGg/2rxfwXkrxO7Xg1mg0Go3m1aJFt+b8ICEdXMkQbj+z8wKtr7kpu26YRvuHe1sQCYb8FqoFPRzc8iUc6QY5U3Uxt3OdR+qa+fDh6lHHNJE1rrmayGR2u8WvtwWGRHkrFKa783Vr0t2VuYOE+sW0FT1F86QHR6+UPYicuAYSXX5sJZEiGvKtnEF6o8exVFRkw8DPz3U6yHMqSqpWsNM4QY8Ic9JoJCIGQsZt26a6upra2lpycwdaYQkhmDXzVxw+/GXqGx5hYEMUXiOb+G824ag+ydSef3Bw6u2kGWpAZ4+1byaEi2zS97Vy1aOPcnJiCT0+H55QkKKTp0jq7CRy2EHbHSZm7kBXN2VD06E0jrYsBSClrY2ELj9J7e10JiaiYlRDD/p8oBRC2Mya9QxWfDty0J57HGEuK36BLF8jv9rzASwEx7HZo0zmCCdNsg2ZsRczsRahFHHNs8govxGzbg+BHX+ir8KaErDkY3ciYlW102g0Go1Gc0Zo0a05fzhTwQ2QXPiamhCoq6fzqvDInjMJjjkdPP+bu7nhfxfhciW+putr3hxsaO3gvbsPYRBEEI8SI/8prmASteSSTV1/Bu5gbAR15NIYyOXuQyGkGupMDSSXE0469TpcRZS24qcIJZ6krehZRuhkFZOw5aI9lIghhudYi9620hE76pOuDktOhCRzPdB8cgH7WxPBOfiaht5REEJw6tSpIaIbwDC8TJ/+I0pKPkNLywZsO0R8wjS6vvo3umqeQ6DIbtyGMe0kYWdo/BcjQJgCBRimzaSjR3FHhvb2dlZLMr7lpKdEsH9BKrYl6ayKwwo6MHLaMJPSsYzo+2Dh1m28cMnFKCFiu/yFQGFg2UbMUHwpFPOy9jEt9QgHW6cglWJ3+wmmNlWQmj0HaS4n+NxDCOkA+yDdDfej/AOlypWASGY6iRPzxr8HGo1Go9FoRkSLbo1mRORrLrpP3HUL5sfGVia+zHa2/HQVyz/2NDIu9TW1QXP2UEpx1aYNtAabkGRiI1FIRoynBhCCP6g7+RJfR6GGtP+ykCgEf1If4oqKk0zpKh52ek/aPrDliD2iXy2hhCpCCVW9to7vnO6Il2NtEwiYnhHHSDEwXYFyEt+Rx8mG+cwtvYTGhpcRwiInp5yc3MN4vV0oWyB7QDgVRMDa8wwtvi+TNvuKYXN7PLnk5d0ERF+Tuuffi+wNCbeSFJF31Ay/lNEiBQxwH+itAC4lN3z75yw+sIf3/OdBChrrBw0U1HUl03w4pfdRrz31lQQMJ9UF+SS3t5PW2krxyVMcL5k44v4IbGprppKUFLvLgmVLVuRt4mDrFFAKq3YH4fK1hA8+DELiLLkUs3obKtDaXwG97xLN+AzKM7OZPeLqGo1Go9FozoSRstQ0mnOQMwyTfOcfX3MLTLNj7EE2GA6T5kAy1b9Z/JrboDk7dERM5q59mp2hJCoppksk4heJRN2ko783D4vpfItvUMGkIccrKOObfIMJ+zuY2dpId9o+ujJ2EPY29o9RwuZ1iSt/FTx36kJWF6/l0/PuwbZHuPerBLZtUFGxiOa2Ih7OvYLpZY9RWLgHt9tg+owXmFiyDa+3CyFAGgoVr1AeUAkQKqlnd8NdVD7zw9GNsW2ENeBt71luDy+YRozHfVjgOipwVUkE4AsFueqldaybv5Q7v/gdKvIKUUDEMNg2bx5bL1yNf+oC/JPnEsgpwnJ5EErhra6g1mkTcTiwgY6kpFHfFwpJe3v2iM8b0ibD1xK9RCmZ3TRQnk0JBVaEuIu/jGva9ci4THB4kPE5GDPexdpL11CZm4OK0WJNo9FoNBrNmaM93Zrzh6WfgE0/Hd/YhAKY8bbX3ARf5nSwXhpWTGkIDvBHknF7/OR2NRE+/hKuictfc1s0bxzfP3KI+2oqaBDRatv24HDycRapKhdT+Ib6Nhk0kkwrIdz46KFZpfLJ/F+QPL2B6kHJ3L7m6WQdugNP50SQw0O433BU1JNqKcm1JU8hgIS6pWQcvRF/xk5aSh/GcncODFeSnmACySl1vOBaRephUCUOamr/wPwFq5GyftjWDXlsADaUW78mo/56vNmlMc0ShkF3UhK+jg4EEC60R79H0ddWrPdfZ40g5XdDP0qvefF57l9zDUGXi+/e8VF++PNv89wll2J5XBh9MfjSwExKw0xMxVtZjiPgx7JCbJ2QzcLjta/6PollCzpCiUjbYlJ7NWXtVQNPKpuq+BD5Lifesitwl0WjAZoiNi+69tPmbkK4U3QBNY1Go9FoXiO06NacP1z29fGJ7tRJcNfW18WE0t/9lboflRGeZcUW3jYQgiZ3JhPsThxKUfPct8j70JOviz2a158fHj7EltqnaWXp6GHko6EUhZwkgpMmsrhOPUCeqCWLOhJFJyQPn7Yn7SCVi75J0ZavQjCVI64MJstX2TrsVRZjEwIcYiDMvSdtP93pU4lvnk184wK6M3bTlbmDGqOJimMLCQajNQ1ysYAOjppLmT3nWVyuDVjjuY/QG8t1Yv13mXbjH0Yc1jB/HhNeWBt9YIn+cOvTMZrAvV9iZShkQODZIfHsFwh7UD45kN4eLcBoGwbH84v4w9tvpSDY2vsaDZpZSEARzJtIXMVeBNDpc7N2WhGOgB9U2ojvF6FskpPrYz4HYEjFy7ULye5p5ctb/zLseo7ODbMh+CK54VxS/KV0qgh1iYeIuNtAKdIzM0ecW6PRaDQazZmhRbfm/OLzJ+F/i0d+/oMbIO/1zWRM215CfelRlI+hwrtXi9TumklB6SGWHTkRPWCO3n5J8+bk+ZYOfrn/SXosP3vERa9CcNsYWHyO75BKK13Kh08EEaje/4kthIXCcvo5MOVZPm/cza3yZ9iImMXYxmfHCOuM51QFoZAPj6en/1jyqUvJKL8BYTtB2KAkiXVLaSfA/hYjxlqCzs4smpsLSE+vOv3JUc3uihwadUz2e95D/cGDZNc30FOTipzTHHOclQHe3RJXuUCMshkd8QlDHgeT4iHUFnuwECinCzMhGWdXOxANB2+321AURovBx3jfKCHJTzw84HkfhK0EDa2ZLHv+KJecfACPFR7yvH+NjZksUA2KRtVDc9wBQp6WaPW63vepxzNyvr1Go9FoNJozQ+d0a84vfCnwtQ645hfg8IIwwJMM73suevx1FtwA0/7xJI4H0hGHPNEvzH3UOal6eR6O0i6MWoMMFe3XG1+05HW3SfPa8s+6Fj695yV81kn2Mi968BUIbqlMJIpP8ANSiXpPE0QPRm8JtjFnlDZkrqfdKZnDzlcmuPtOGWOxWOm/qlfD1dVNYseOqzHNaK/opOqVZB15N9J2IRAIZSAQSOWkuPYyplsFIywoOH5sfsy1xnUNIzBr3jwOv/3t7J0zh8aGIsJhL7YdY30F/kusUQW3JSRPLr1oyDFpj+6WF7aN7fH1P+7yRnhsyUk2Z24BFMK2h4wFmLtjJyX3tOM8GbWlb6+VilYvzw83cKm1ZYjgtr2KzutNuq61CAYSQCgi3jZC3uaBVm+979OqqiqCweCodms0Go1Goxkf2tOtOT+Zf3v0/7PEynu38Ouf3UbxngME2lIJ+DyoIpOc+XsJHMnkmo692AICDjdJV373rNmpGT9By+bhY0/SXncv2dYhvoyDT/FrlBjnvc1BnnCpTOLoZh7buYzHKaLyFdvlJchFPIuHM2iBNZjBZa1HIRJx4XKFsW0RbfklFJbl4NDBlbS35wGKhvoS8nLLSa94x6hzzTdLOGzUYonhFddDoQRsayHS2B6zXVYs+z3OnFGHOJ1O3vP+9/NwWhoVR4/i25vLjFnP4XIFej3NRPdAgXfnyK+nKSXtCUn8+6LLKFAnmcVuXFaYiXY73WQw2iZKc0CYr5/bTNBlU+up5VjT01x+tIS6nByUFGQ0NjKpvILUtjZAkPEjJw3Tkzh86QSUiBZXmzZtHXHZHTR/3sRRK3DUg3JDqEyhHBAIJNLVlT6qPQDhcFh7vDUajUajeQ3QolujOUt85BN/4/8e/hquoxvwGV0YtTC3optM9mILgRJgLv74KwtJ1ryhdJkWP9v8FZaG7ycViYHNdhZhCue4zhfKBhSGsjCFi7v4CQvZ8spDwQehgPfzu1c3yTjegnt2X0ZcXCdJyfXR3OTODDo6MkhKaiIz6xj+zhQ6OzOY5BU4wkmjzuXCQZ6dSqURO8w7IfFqenq2jWmTpcAKg2/G/DHHxsXFceutt/KXP/ydE5Xl1D80n9nmJoIzbJQDnJWCuBcNjI4Yod5Et+hwcQk/veO9fDT+x8xgHxYSIRRyhiLQk8DBgxfS05My/HwpmXziJFXxLupTTZqTB7zTu4u7efvGXVy+exfGaW+HvoeH0mbR0DDQk7yifAmzZj0DEsxchdn7lFICpQQnTqxgrBfV6XTi8/lGHaPRaDQajWZ8aNGt0ZxFbrj+a9Rt+QP+TT+guLsBJza2gEZ3KnErP0/SsjvPtomaUbCU4vmWTv5+5BFuD9+PAqoopJp8Kike1xxC2TiJsJx1rGUNKEUaza+Z4H7dUSDDCQSDSQSDybS0FCKlSUnpViZPeWmINzrQngiRonFN6x7l4ykhPoXm5gS83i5sBvKk+u5P9YWfB22w2gVxsyfFmiYmofZo3/RZO/bj7THwbRqt1UB0jzvi4vnsJ/6Hytwcvib+hwn1p3A1CpRHES6JGuPx+Jk1+xl27riacDiu/3xh22Q0NjLlVC1lwCOLXUMjC4Tg++8y+NTDFrNOgiVACXDYEHa52LR0KQ05Q1uHdXVlsGfP5RRP2ElKykCxNdOcyMQJn2HxoqX89Kc/xbZj926XUjJnzhwcDv0VQaPRaDSa1wL9iarRnGVyFr8fFr8fAp2opsPItBKy49LOtlmaUeg0LX5yvJ7f1jRhAV9QD3NETeZu8QmaRdYZzTWRCtpIZq24LHpAKbxtndjJIF9NkMPQFN3XlYxDt5GUVE5HRyYgmDZtHckp9cPCvz2JnQR7DmK6OnGEE0eds1PEzidOSkoiNTVAfUMXOw4uo7tgG2lOC3qj831SEVGC/QEDn61Yk22QmXnFuK8l0hBHWk8LcT09Yw8mqo2Turv4xm9/xLEV2czfU4X7+MBHqxWv6LrKomeljcMRIS/vECeOL0AohZKClNY2lr28CYjePEgMRnp/Gnjhur2Cb93sYEK9YsFRG5cFXudUOrKnYRuxbwr4/Wns37cal6sHlytAJOJlyZIrKCu7GIA1a9bw1FNPDTtPSkl8fDwXXnjhuK5fo9FoNBrN2GjRrdG8WfAmIgoXnW0rNGPQEIqw8OUDDK4H/TM+g7C8BJwyKqZOd7nGUL5C2RiYHGMSCIHX9nOVeIDr7McRya+BWBZnXmzc5c/F1zoFhKIn+QjhhFqMUALC9GJ6m6OF2WJQXbyRPKuVjo5sklNqSUmti22SBNtr0ZD3KLknbkHEqOWpsOkUQRpENGf5dNasWYPL3YQQMGvSTnaWz2djxm6OhET/+DipuDQhwkXJJiWlX8XhiB//HlhJSP/4d+7B0gv555yLuNr3PLfdvxERGXqu4Rck3+9ABkz8l9vkZJUT2ToZh7+FwlOnyK6vH3KVM0+OHJ9wIltwItvAYTu4qnIqDjW6Fx4gHPYRDkfDxLOzBzziS5YsIS4ujnXr1tHS0gJEBff06dNZs2YN8fGj71mktharowNHdjaOlOEh8xqNRqPRaAbQoluj0WjGwf8db+RX1Q0cidEgOogPnL1VpAer5RGUs1QWboLYIchor6PQcYy7Un6FoLd185nSF45sC1z+PLxtZXQUvXDG0+Ts+zDursKo6QgsRzeGGQ2FtkWE9vznaS59GOUc5IUW4EzeR4Rsiop34XZ3Y9sgR7oOA9oKXyb7xE29FdgHhKPCBqFonXUMzykPweBA8Tefz8cVV1zB9OnTse0wTmcK0MbiaZuZ2pmO3xuk09GDS0CR20YKycTJP2BC3tvPaA/ySlNoaJ4DPDfm2D9NvYLtWZN537anuLBmN8Icua55wuMGPcttiDdZ/vwTvderhlVCz+yAJYcVWyeDHSvUQUFpZykOdWYf3/Hx8ZSVlQ05NnPmTGbMmEFzczPhcJiUlJQx87i7N2+m8Sc/JbhnT/SAlCRcuorMz3wGV9H4Ugc0Go1GoznfEEqdcfOVNxWdnZ0kJSXR0dFBYuLo4YoajUZzJjxzoopPHKmlzeV6da5npZDYKAQJdJJEO1l7qli6cz2liw+TNjXwqqZ3deWReeRW4lqnARBIPE7lkm+c2SS2JKnmQrIPvWfA7NNEoUJhGwHa8zYgkES8jXTmbCLiCtCDlwS6x9WO3LYlneUXM71lBfH+4oHj2S6y3jYVd1EipmlSUVGB3+8nMTGRkpISjEGh1LV1/+LQoS8Mm7vv/sP0aT8hO/vaM9sDoPpIG4/8eCeLtn+buO56RIzMeBsIGC6kUnjtyLhamCuh6HyHRfdFNjl3ubDjFcYIHvUeF3znRoOj+aKvhTlCCZRQ5PvzWdi0EDnOjp9SSqSU3HbbbRS9SlHc9fzzVP/Xx6MPBueDGwYyPp4J9/8TV3Hxq1pDo9FoNJq3CmeiQ7WnW6PRaAaxs7mNjz7/Ei1x8XT5ksDlevWTCoFQir9xA7/i47wsLmTV0ceYuLCc9GmBVzSlAlCS9PK3kX7ymiHPeTon4OzOIuJrHOi/PBbSJhxfPdTsQVLSaj1O+MQ6rNZjuIWBI2cWzgmXkXH0Rhon/xNZ+HzfpY5ut4Jw2IO3cDMHunI57q7Gp9yEpMm0KbMoLIp+aDkcDqZMmTLiPLk57wRlU17xXUyzs/+4y5lC2aSvvCLBDfD3Ew3s9JokT7qROXt+Dtj9gjc0TREssYlfb+DrCPXvz7jul0gw2gSyE0ARnmQjQgL3IYFQQ2fwhuHr91rsKhE8N9dFZV4KPtNHsb+Y9GD6qH3CIVp5PBKJYBgGM2fOZPny5WRkZLyS7ehHhcPU/c+XB5qBD8aysP1+Gr77PQp+c8+rWkej0Wg0mnMRLbo1Go0GaO6s5nNbfoPLsFiQYRLByUtcSLPIfE3mdymTkHCxk2jevpQRMqb7X9FcNlBtT+DCdZ/DZQ4PBxYIMo/cSs3cn4yrxzYASiDNoT2ZbWzKjXoORA7QmWFhpGZReCpE2dGjxFc8R+TYWrxL7yLdeR0dBS+MU+ALAj1JTDt5A493++kRIbpFCCklVozQ/dHIzb2B7OzraGnZQCjchMedTWrqBUj5ym6UvFTRzK/XHQMPVOcXcrXzo1xZ/3NkEFo+GsHKgqR/GBhdjCl8h2GDnaCIf1oSdHs4mjCRk7OLsae7SGjrorTiGIWnKgFFe3IKKW1tLKhQLKgIsXNuDuWTyxgWRhAjrKCoqIh3v/vdCCEwDAPxGlXS61q7Dqu9feQBloV/wwYiDY04s16b3xmNRqPRaM4VtOjWaDTnLR11fp5/cA9W0qPcm1fIduM6LBH9s5itarmRe+lQydzLHa8w2TqKYSuWmTt4yHkDQeElOWQze/rBVxxSLoHumptiCu4+4ptnkbv9ozRO/wemr3UcsyoSGhb2P7Kweda5l2rZAgYgnZhOJxWTSjkxcQIXrltPeksrgc2/IvyRVeOyW9kQCnsp3XcXNRFFj2vALtu2yc3NHeXs2EjpJiNj9RmfF4s/v3wSQwosW1HjsPlNXjEl74wn3dmOcoIIgnezRNiv7IWLpNk41qXy3BWrCLlcEJRgQEu6i5b0DI4vm8HceKiuyyP58d8hej3Kc3ftIr7bz6GpUwl6vQAYlk2SSKTbHcFWNqmpqSxcuPB1a/UVrjwFhgGj3RhRikhNjRbdGo1Go9GchhbdGo3mvMGyAjQ2Pklz5zF+tWcWGxMyaJkeB+qm6IBBKriebH4lPs1t6g/MZA/7mPuK1hRKYSiwHT08zvUIpbjlVIT04tgtscZEQULdUq47VDbqMDvYgfH0Tia2/ZBASjnBhBM0T/oXSlrDPdK2xBFKIaFucf+hvcapqOA+rbqbkhITeHHFBVzz6GMYVoSg2h9tHj2Gp7u7tYi8Ax+gNSLY5DzSf1wIgdvtZvr06ePehteDPVXtWPbQa8je3k3kIkCAa59ARs5ccCsUPYkeUv4CT61ZQdjlOq3SXPTnJiuehtZClhmlhCbXETn8GESXpuxoOaXlFXQkJWA7JXEXL2XC5R8keVnBK7vYM8RISByaxz3iuPFXitdoNBqN5nxBi26NRnPOEw77efGFhSgRJoib7xpf51h65kCJrFgu516heR/v4Rb+PD7R3RvuK22FACwBcSYsaA2yNvNSEIJL6yLcfjLMyXw3FmeYz20ZpB+/ntQTVxErZnxw4bPgjj8i4zJACXxtk/G1TcbTOZGaOT/DdnWD3VuUTFo4A5nk7/gsUrmBaFj5QUf1yGHpUhLyeKjJy6Owqgo6u8axN5Bx/GNsUBV0ugauW0qJEIJ3vetduF6L/PlXgcshKE0+xpyMfeT7aimLnCKSFok+qcB56swFd2tKMk0ZGSQ2t2C7JF0JCWQ0NZFdV49hW7SkplGTnxftty3gkFHLXHMi7slXIww3ofKHEWETAKkU8d522m+xaCv5D9MX/PdrefmjknDpKuq/+c2RPd1C4JpQjKu09A2zSaPRaDSatwpadGs0mnOajS8sJ6zqoVfPPco7OE7J0NZeo2AjCeFBKgtbjNIXWSmSIooPlgc5lWAQEYqZHTZNLsk9pW6md7fxwSMeljRFcAhJqHYhjpJnx3cRCrxNsyjY83FEb6sopRQBK4DH4e0X2l0EiMOD6GrEajqEcCf25/Ta3c2IXZvJus8mMMcgMkEg43JICF9OvH/pkJ7ZPYQJiPBwOwYhbJuWtDQKq6rwHUzBv7RxlE2UJHuWMPuz12Hs2MHWrVtpbW3F4XAwffp0li5dSlZW1vj2YhChUAPVNffR1PQ0lhUgIWEG+fnvJjVl6RnPFQ638Jl5PyLRODKQKt3fii2ayx330th9sU8nta2dU0XFHFtSysXPv8Db//UgTsvCFtG66JPVUYJuNy9dsJzmjAzCwqRTBEglHvekNThLLqA667MQCWJmKiJFqvdmiE1d3YMUFX34jG16JTjS00m57d20/eWvwwupAShFxic/+ZrlkGs0mv/f3n3Ht1Xd/x9/3StZ8t4zsWNnbzJJCBCSMAIpZYddVgtltoWWUmihDf2V0hYKfNsySqFltaxSKJS9w0jIHmSRPe043ntI9/7+kOPEiYfkSJbH+8lDj8S65x59ZBxZb51zzxGR3kShW0R6rYWffdsXuJt4cPABs7ECuD7bxKKEFAaxiU0Mb7ftyAovSR7IKfSwM8bkpQEmnrjt3Fllcv7OIdh2I8aIeIzJ6Zw44kHmfzam4wJsyJt/P+761AN32TZ4G7Bd0eyINBhQ4wtBJWYVL0UsYNDuLRwNeAvXYFserOp91Mz/PXjqMGyL6EUOWAQY+yDi39gnDMGIPRB6/V0kzLQtwCCybjwUe7CTt2AcOsW8KbjmDb8Rp9PJ1KlTmTp1KrZtH1FAKy9fxvIVV+L11uJbWg7q6vLZt+8dBgy4miGDb/e7f9u2WLHyu8Q7NgEHTXw46PSIHZ2r1QZGrFvHxqFD+Hz68Zz8gW+Vd9O22TBgIG8dN4ud6VnE1lSTaNeRWV3W4rtvmJG40o6mPPvTQ3o2qK7e1KmaOivjpz8Fy6b0ued8d5gmeDwYUVFk3nkn8bNnd2k9IiIiPYVCt4j0Sl6vl+r6dRy8nXEZSVQbcQH1Y2MQQw0WbY9yRgFTEmPJznLxxQgvC8urMawGJibE8b2ckcxMbn3vxjGjH+brNTe29+BkL/x5c+DeP33crivDiEzg7X4R/N8wFxfsbOSazQ1kWck4MNm/A5XdUEXj1k9o3LUIPHW+lcxa9G9BYy21y54m5oTbmu+OxkWCFU25UdPmFHPbNMks2AuOCLwDprBinZsBo2pJTt6D1bTQmGHYWI0m2z/qx5b/PM4FvxpIQnpG07HOB26vt4YVK69uEbibjgCwY8cTxMWO9nvbsJKSz6is/LrtBjZUzfaS/GTgi+kZQFR9PREeDyUpKdRGRRFVW8tfzr+c/5w4B4fXi9fhwLS8WKaDtMpyzl9sQOP+DmwcDYdfJ+1bnTwm4HqOhOFwkPnzO0j53nepfPddvGVlRPTPJv60UzFjurYWERGRnkShW0R6pS1bH2wRuAEimpOM/yzDQZ69if9ybqtbNN2Wm84tA7M6FSIzMk4jMvIVli67GNtuOZ3b6Uhk8uSXiDx2ANUL82nMr6bAtKj6159INhOIHPYtVic6qHcYPDXIzfO5Lr69q4GTNw1gU1pF88zo+tX/pmUwPYRtYZVswvbUYzh913QbGIzz5jI/Yl2rpxiWRXxFBen7Sig69iIWxK+jxrJZ8/VJxMSUkJK6E4fpobomgdItiUTu2IZhFvHq7+dxxX0PY5idXwkeoKDgdTye8nZamOzY+Xe/Q3dh4TsYhgPbbuN6ZQfUjbexDfuwPbX9ZRsGGAbFycm4q2v5z4lzAPA6fB/mWKbvz+KYeH4+zstjS3zXvRu2g8ao4sP7sz2kpYVnZDkiI4Pkyy8Py2OLiIj0RArdItIrVVevP+y+BMrJs7ewnTxsP6aYG7bFJBbxX84HbBzYxJgwIiaWnw3M5LiUhCOuMyFhPCfOWkdDQxFl5UvBtolPGE+kO7O5TfysAQCkAO/lfZ/Ehz8BfFOU96t3GDQ6TI7y5LIpJp89/fqRlZ/fNAW8Y42Vu3AlDW7+eqg3i3KjhpXO7Ri2gW3YzR86RNfWc9IOE8fJd/Jh8toW/VRXJ1NdnXzgjhiIiCzEUVdD8a6dbF+9grxxEwP8LrVUVrYY3z5mbW1fZVFZuRrLqsc03R325/XW+Kbst8eB7zdm4J/bUBEbS2NEBAClSYmMKihg2LbNfJM3+LC2lmmwJMXJ+jiT4ZVeLEctVelLW7QxDAdxcWNJ6sS16yIiItL1FLpFpFeKjR1NcfHHh91/Ni/zkPGztk+0bYymidzDWUOOtZWfjD2TWRmB7yEdCJcrlfS0UztsN/uYSezbGUnd0iKmFHt5PfvAit9n72pgmXMr1UY9i6ZOYebHn5BUVtZhn41OJx8m7WKykUh/Oxmj6b+jPUMY6E1nvWMPpWYVLtvJQG8GgxzpmMNMVjq2dfzEbJuGpHSi8rdhOhxBCd1+XnLut+iYDlbctsEso1OBG2Dd6FG+Ve29Xqri4nj9rDM5ft3yVkM3+D5MWZDiYESlxe4RL2CZjRg4MQzfCHd83DiOOuqvWrRMRESkh1DoFpFeaWDeD9m+5S++KeYHZZOjWcR37L/zT65sDteGbWCZBqn19fRrLKSaOk5Lz+QXU76D2Q2DTcKxudQvLeHEvR7S6iyKXb76U+oaWebwbfXV4HbzwSknM3DLViYtXdpuTl0xYSLFbg/vsZJJnkGM8Pan3Kih3vAQa7s53jPisHNqaWCNY2fHxRoG3qgD1/vaVluj0/5LTJxCQcFr7bQwiYsb7dcoN0BG9ClstR467HKEZjbEfOrwa4G5/dP69/+5YehQtuXlgW0zcMsWPM4IGiMicLkM8or2sC318A9zDBuqzQY+LHmLX/X/PjfsdDB9eBSpKVmkpc0mIWGSAreIiEgPotAtIr2Sw+EgMX4KZVWLDiSgJnN4k6P5ik84iT1kE0ktk3es44TMOUw5/ZwjvuY41Fz9Y4kcnQJri/nz0lqunxxFmQt2RFTh8RyYTm45HGweOoTomhpGrlvXamRsiIhg28A8bMO3UNviiM0sdm5u8f1Ks+I5rnE4qbZvQbgar838agtvQjS427u22sdomrpteb1kDT08wAcqM+MMNm36Ax5PBa1fr26RO+Bqv/urfv4d4tc7qLjA6+vu4P/9lm9/7piPfXcevBf6ofZPUK9zuShOTWX9yBEUp6SAYZCRn8+4FSt551tzoGm7sKlb1rItJeuwdQK8pkFh7dfUJDRSZ0SxuWQc56V9i8GDWx8ZFxERke5NoVtEeq1JU59n0WdnUNnQ8rpjbEi1ipj79it462NJGHkGU278W48aPUy5aASlr25kyPJC/vN5Nf/rH8H6OBtKD2/79dgxuOvrGbxlC5ZhYGJgY2HYsPeEWCzzkOd9yJf7jAr+61rMqQ3jaahLZFWNBzAwGmzoaDDZtnFWlmGYJlFx8Qw5+pgjedoAOBzRjB/3JMtXXIHXW8P+4L1/MbTcAdeSnn663/2VvfQysSUOHCUGVad5aczzxWejGmLmm8S+48BsPPBNaS14202R28agOC2VrQMHYpkm/XfvZuCWrWTm57M7uz81Tat8G0BSbRXJ1RWUxB5YG8D0eklq8JBTWsjygaNweD30a6glNze3M98qERER6QYMu8PVY7q3iooKEhISKC8vJz6+9W15RKRv83o9LP1yLlXlazFsk4FDbydvxJXhLisoPGV11K0rwW6w+OCLt/i6vgCv0friafHl5eRt20ZcTSNxkRkkZ8+iLNHNWxFrOn4gG9y2k+MqjmVFxQYa65ZimSVUDx4DbS1KZ9tgW8RuXYvLNDn/rt+QNaT9vc4DUV9fyO49L1BY+A6WVUdc3Biysy8jKfFov/uwbZv1I0e1uM8ba0MEmOVgWP59EFOfbWEl27jXm5gNxoHt3Zr+LE1M4OMTT6TR5Wpx3htjj2V3cjrgC9xRjY38dOVuCupW8+q440mvKufuwVkce+yxfj8nERERCb1AcqhCt4hIL2HbNo8+8BCFFeVtLjYWHdFATaMTbPNAm1a2QmvL8FIXewq+bP66tv8gPPHJhzdsCtzJpXs5aspUJp52BvFp6QE+o66xYeoxWOUdT5P3h+WysR1g1gIYeJxOVowfz7aBeViOw/d6/2jgUWzNyiG6rpZTFn3OJWUZ7EqEr2KK+Gj4BG6q3st3v/OdHjULQ0REpC8IJIdqerlIqDTWwd41YDggcww49M9NQsswDK754U08++yz7Nixo/n+5muNI508O+5kEmqqOWP1ggO5PIBAtyWyksiDvh43oD/xE46hoqKC+vp66uvrcTgc5OXlMX78eCIjI9vsq7tIPPdcSv7xj6D0ZTa0/F5+Nn06+zIO/7DBsCxS9+3jry/8wjdTwLZwj7kAx5AhfOr4nCp3HHfYlcy99FIFbhERkR5OKUAk2Bpq4Z/nwvYvW96fPgau/VThW0IqIiKCK664gi9WrOKlz78ksqaK2ggXGzIHsCFjAF6HE9t00mCYuP3cw/tgjZEuHO5oIuprfGHetpkxY0bQn0dXSr7ySsr/+1+8JSVttjGTErEqKsHbcvX1Q9boa2YZBiXJSexLTzvsmGGDA5PJW8swkwfhSMwjIm86jvj+LHBsIC0tgcvOPpvs7OwjfGYiIiLSHWh6uUgweRrg/qFQV9Z2mzvywR3dZSVJ31XU4OGJXft4bk8xRY0ekpwOLumXwtX9konzenjiiSco82Mf7xb2X6e9YQVgc8IlVzLlrLkhqL5rNWzfzu7bfkbdypUt7jdiY8n953O4MjLYc/vtVH3y6UFLphl4Ig0cdU33NI1Im7ZNUUoKn50wnQb34SvNJZdWMM4cxSD3sOYF2SqpZbljE439YdrJJzN06FCNcIuIiHRjuqZbJFzeuAWW/r3jdvOCc/2oiL9s2z4sxJWWlvLII4/Q2NgYcH8RxQVEFu3h+seeITohMUhVhl/d+vXUrVmL4XIRc+w0nCkpLY43bNvG1jfupqToCxoGWeQ35jL4kTKwbQqysoiurcHZ6AHDoCIhns2DB1OWlOQ7+aBr5w3LIregjIaUHOqcUGJUgWlgGAa2bTN+/HjOPPNMzG6+fZ2IiEhfpdAtEi6/TgOroeN2hht+VRj6ekQ6UFJSwttvv83GjRsDO9HTyOnHH8vRp/m/NVdv4fXWsGDhadTV76amOpE1X5xCbGUFRy9eQkJFZfNW35ZhYNo260aMYNW4o3wnH/zBx/5fv4ZBtO0izo6mgUZKjWowYPr06Zx44oka8RYREemGtJCaSLj4E7gB7PrQ1iHip+TkZC699FIqKip48cUX2b17t38nOiMYfcKs0BbXTTkc0eyLPoGY+heIiSkjZ8wy8h6pJq6yCvAFbvBNMwcYuX49VXGxbBk8uGVHhkG8FcUxjUPJsVKbp5qXGzUscW7ms88+Y926dZx00kmMHDmyq56eiIiIBJnmrYmEyzfvhbsCkWZxcXEBX9/taGULrL5iYVUkBjbYELurnpSSkuaQfSgbGLl23YGR7SZxVhRnNhxNtpXSHLgB4u0oTmocy3BPP4r27ePFF1/k/auuouS5f2LV1obyaYmIiEgIKHSLBFNkK/sVt2X7gtDVIRKgnTt3Ul1d7Xf7rKws3K0sEtYXWLbN/xqn+GKyDQmbamjvOi0DiK2uJtlTSJUrksW5I3hnzGQGJAzF4fBiHvKr2MDAxmaaZxgROMG2+apfP3b/7ndsu/gSvBUVIXx2IiIiEmyaXi4STBc9B099y7+2GaNDW4tIAAoKCgJqP2tW759a7vXWUVj4Jvv2fYDXqiUudhT9+19EZGQOaUYZhg2YEF9U5Vd/R415j5j0PNKMNI6yV+JKbmCLbRBbOIGULWcRWZnb3NbAwIHJQG863zjz8Tid7MzOZuDGjRT85h76/+H3IXrWIiIiEmwK3SLBlHec/23HnBO6OkQCFBER4XfbE088kWHDhoWwmvCrqdnG8uWXUVe/B99YtU1JyZds3/E4w4b9ktmxVVDpa+sqtFtMD2+N7bTxpkCusY1cth1YT82wqUpbQXXqKrKX3Up06Yjmcyxs4u2opmY21bEx4PVS8eabZPzstsNWVhcREZHuSdPLRYLNn+3AxswFs+9eDyvdz5AhQ/xaJfvkk0/mhBNO6IKKwseyGlm+4grq6/c23bN/8rgXsPnmm7tJt/Ob2zv8+CfvTQCcvvh+2HfZtLBNL/lj/4qN1Xy3gUGd4dvOzTYMXPVNCzV6vdStWdPcrri4mPfff58XXniBV199lW+++QbLshAREZHuQSPdIqHwi0K4J731Y4NPgvOe6Np6RDoQFxfH+PHjWbFiBW3tJDl69GiOP/74Lq6s6+0r+oC6ul3ttHDgqVqO13LgML3YLjDaWd/Mxqaxfwe7cxo2nshSqlNXEVs0vvnuLY7CpsM2OTt3Hmjf9KHdp59+yscff9y8v7dhGKxcuZKsrCwuu+wyoqOjO3i2IiIiEmoa6RYJhQi3b8T7ex9C2kiIzYKRZ8Ita+Gy/7Tcq1ekm/jWt77F8OHDAZpHvff/OWXKFObOnRu22rpScfGnGEZ7M1G8DGUde3YNw7ahdpKFbbYdqg0M6ib5MfJsQ3nWl1hmA7Zts4Ft1Bj1YNsM2biRqLo6X39uN1Hjx7FixQo+/vhj36lNH5Ts/7OgoICXXnrJvycsIiIiIaWRbpFQypkMNy4MdxUifomIiODCCy9k9+7drFq1ipqaGhISEhg/fjxpaWnhLq/L2Fbjobt7tWrHjqNwOD1EnLiR6IWmb6TZbvmBmm36ruWuHd9x6LaB4qSvaZj6a6qWXswiCsC2SSwtZdyKlb5GhkHSRRdixsQwf/78tvuybbZt28bu3bvp379/x09GREREQkahW0REmhmGQXZ2NtnZ2eEuJWzi4sdQsPe/bR63bairjcPh8JCcvBtPJBTf6CH5b06MGppHvQ3LwJNpU3yDB/xcp27FilMZMGA17qOew/76ZMCgLCmJtWNGM3b118RMn07aT35CWVkZJSUl7fZlGAYbN25U6BYREQkzhW4REZGDZGWey+bN92NZ9dDGDty7d49gwsS3cLt9F3M3DLcp+G0jUctMXNsMbCfUD7OoH22DH2sm2jZUbU/HVWSzqeEYJk56g6iocmprE8AwWDdyBPmnn0fmKSdzhsOJx+PpsE/DMPxqJyIiIqGl0C0iInKQiIgExoz5E6tX3wDY2La36YiJbVsUFQ2goSGyOXA3c0HtMRa1xwAWrSxTziEZ3rcVGQZELTXo90wpwz1vsS81he2OHBLTC3yhG7BNB69ubGBT5SruHJXMo2MG4HK5aGhoaPN5WJZFVlZWZ78NIiIiEiRaSE1EROQQaakncfTk18jIOBOHIxrDcBIVNZSN30xj/brp9Ou/of3rvk1a3x/M8OVuqz6WmHVDiH3XJPk+B9GLHdSNtfGk2qQUl5D6eS0l+S2n+Pc3ynHurqb+q0KuXL0d57CR2G0symgYBjExMYwYMaLV4yIiItJ1NNItIiLSiri4kYwedT9wPwD79u3jvXcfBsDpbHuEuSOGAUZkFTs2uhgQAyU3e1tc892wI47l+eNoqItuEdqHOouxMfiiIg97VzV/ys7hzNjtpFWW+fptameaJqZpcsEFF+Bw+DG3XUREREJKI90iIiJ+SExMxNn0UXVdbdwR97d3SCq7JqYftsiaM7uK8ePfJsJVd9g5w5xF5JhlOHZV43E4eX3c8Xw1cDRV7igAPKZJ2vCRXHvtteTm5h5xjSIiInLkNNItIiLih4iICMaPH8WSJV+zbdsEUlJ3+uaKtz7Du0MNjW7y84eTlFzQ4n7TtHG56ujXfz3bt01occyyYaSjkJ21yQB4HE5WDBjKigFDMWwbA5iSGMv1fWiLNxERke5OI90iIiJ+OvnkM0lOjqS2No6ioqZrrr0HNbDxLaJm0+Y137YNdXUxVFakU1mV0mobw7DJzNx42P2mAclmDXaEybDtWzhu5RJGbfkGw7KwDQPLMFhYXk21x9tKryIiIhIOGukWERHxU2RkJNde+xM++eQlli334nJ9QEppEZ4BgAlmObjXGdRO840627bvGu799gdxh6ORCRPfpKSk7T20Xa79W5a1HEqPMjx8p+ZLZv/9UzIKCwHIT0njkbmX8fn4owGot21igve0RURE5AgYtt3u+qvdXkVFBQkJCZSXlxMfHx/uckREpA954IFfMyHjadIecIIXzDqD8gu87BjTD6/XSVradkyz5a/Z/UF8/2/fNhYgp7HBzcKFF7R+0LLAMJj61VfkbduOhW/q2ryrf8SGacez7NjRmG11LCIiIkcskByq6eUiIiKdZFnRbCw6Gtth4E313Vcz3CYhYR/p6dswDF+yPvjj7f1Z2DDaDtwApWXt7LFt+n59Lz76aKrdkZRExlMREcUPX3yKq7OSFLhFRES6EU0vFxHpY7xeL6ZpYiiYHbGcnBwa/rcSR4VBxVwv9QMtvIkOnGZDi0DdmW91eVk6lg0mrSR2oAEHq6xs/jX7LuocbgAGV+1h5itv8Z/BKQwcOJAxY8YQERFxaNciIiLShRS6RUT6gPLyct566y02btyIZVmYpsmwYcOYM2cOCQkJ4S6vx5oyZQrbH34EgMg1BnWTwUFwFjGzN1oM2rcVgNSiIrJ37mTLoEGsOmosDWYEbzeMpMyOwnYcCOJbYrPYXAzTK7YxeNUq3n//fb7zne/Qr1+/oNQkIiIigdM13SIivdzevXt57LHHaO3l3jRNrrvuOtLT08NQWe+w6tRTidi+A9tpk39fI7arcyPb+9k22BUOMn/hwGm1PGYZBsuGj+bB4y6htDgCu9X9ymxMbC50ryDStHC73fzgBz8gJkZLq4mIiASLrukWEZFmf/3rX1sN3ACWZfHss892cUW9S+rEiWAYGB4D9zedT9ter9m8yFryS8ZhgRvAtG0mbFhLeYmzjcANYGBhsNmbim3b1NXVs2zZsk7XJSIiIkdGoVtEpBf7xz/+gWW1kt4OUllZya5du7qoot4n6cILm1dKc68324zCbbFtg9LSTL784mK+Xn0ilf/JI2p527+eSyNj8drt//o2sCmzI/c/AKtXrQmwKhEREQkWhW4RkV5s+/btfrVbv359iCvpvaLGjyf5yit9f1/o+7Xa3oVb+4/Ztu9WUxPPhvXHAyZlZf1YkXI8i46eTFtdRDXW+1VXBE0fthhQVV7j1zkiIiISfFpITUSkl/rwww/9bmua+gz2SKT/7DbcQwZT+Kc/g7ULzAP7ccOBv5cUZwImkVFVNDZGsnfvIPYVDsSy9v86NsCAbYMH466rY8zadTi9LRdmi/HUM6xiBxviB7Q5qm5jkusoafrCwK6KCsXTFhERET8odIuI9FLr1q3zu+1RRx0Vwkp6P8MwSJw7l4TzzmPne8eBubc5cHu9TiorUti1axSlpf3BjwnoY1atZvTatVgHrchm4ZuetnbkCGawkd1GOtX7p5AfXAs26UYlaUZ10x027sosvF4vDofjyJ+siIiIBERDGyIivVRk5OGBrC2pqakhrKTvMAwDr+nCtn1huaQkiy+/uJjVq2dTWpqNP4E7bW8ho9euBXwLp+23/xf2qHXriXU0cp57Nf3NMnzj2hZG03TyDKOSE12bmh8pqmoAhuXg5Zdf7vD6fhEREQk+hW4RkV7qrLPO8qvdlClTQlxJ3+H1eqmqagTAsgx27hhzeKN2Lvguiolnd0wSn42bTIMzotU2lmEwZNNmTODkiI0c69zKMMc+Rjv28i3XWk51bcBteDE9kcSXjiSmKpfamD2sX7+eb775JhhPU0RERAKg6eUiIr1UWloaTqcTj8fTbrtvfetbXVRR71dYWEhtbQxxcTaGATU1iYc3amMTbwuwDJO/n34+ADE11Xzv9Zc459P3WrQzbZuU4uLmroY5i4Hilp3ZNpajnoj6FBpdZdRFFWAYBkuXLmXEiBFH+CxFREQkEBrpFhHpxX76059itBHyAG6++eauK6YPKC/aQOHewZgm7NuXi2ketAiabWO0M73bBNKrynB5fCPl1dEx/Omiq3hl1qmHtfU6Ovj1bRhg2lQmrKM86WswbGzbpri4uP3zREREJOgUukVEejG3280vf/lLjj322OYVyg3DYOzYsfzqV78iMTExvAX2ErZtU/npTlzPW1SVZbJv3wAiG2pI31YETZt/xVRV+dWXabcM5k+cdRG1Lnfz15ZhsKd/f7/6qoooBuPAdPbo6Gi/zhMREZHg0fRyEZFezjAMZs+ezezZs8NdSq9V/VU+5W9vw0UEw7z92LD2OE7/7L+k1W5gV9YAMGDAjh2sGzWqzT5soModRZ3T1eL+OnckC46ayIlLFmABXoeDzYMH+1XX+43DOdmxCbfhG3HXKvUiIiJdTyPdIiIiR8D2WlS8v6P566M9Qziqbj3RezxUJCQAENHQwIh164lobIR2ppivzh582DXfhmVREpeADXidTubPOIG6qPb33baxabBNRkUUssOb2Hz/uHHjAn+CIiIickTCGrrz8vIwDKPF7fbbbw9nSSIiIgGp31aBVd3Y/LWNTcq2PViGQb3bNy08M78Al8fDcZ9/gcOyWlzbvf9vW1OyWN1/0GH926aJw7RZPnECb5x5BkVpaX7VVR65l1xHKUOdvuu4o6KicLvdHZwlIiIiwRb26eW//vWvueaaa5q/jo2NDWM1IiIigbHrDiyW9rVjB4udm5hcFkeyXUp0TQ0YBhFNi6NlFBZy6rvv8s2wYezMycHrcFASE8/SvOF8k5mLfeiid7aNy9NITXoyG9MSO6zFaZt4DAsDg10xu0ipTwFMsG0id+1i5Y03kpmdQ+ysWURPndLuInsi0suUboOlz8C+9RCVDGPPhYEzwdTEV5FQC3vojouLIzMzM9xliIiIdIozzTfVe51jFwsjNgJQEZ8AhkG/PXtwNjZSHh8PQFVMDHuy+hFZW8fkxUvot2cPawcO4aWjT/Lt331wCG76+rjNq3HabU9JP5jHa4ADMGBCyQTspkXcMAyqY2Iw3/gfJUDJ008TOWYMOY89ijM1NVjfChHprl76Lqx9peV9K56FuAFww3yISgpPXSJ9hGHbtt1xs9DIy8ujvr6ehoYGcnJyOP/88/npT3+Ky+Xq+OQmFRUVJCQkUF5eTnzTmxoREZGulP+XZTy9723qDN+IdmRtLWe8/gambbM1L49FU6eQtWcP+f36AWDYNrZp4q6r45gFC9kXm8hDF13Fluzc5j5ja6s5ZutahuzbHVgxNtDGAPbsd94lqazM94XDgXvoUAa+8m8MhyPAZywiPcazc2Hz+20fj+sPP1nbdfWI9BKB5NCwjnT/6Ec/YuLEiSQlJbFo0SLuuOMOtm7dyhNPPNHmOfX19dTX1zd/XVFR0RWlioiItKliqpu6Nw9c110XFcWyiROZvHQpudu2sWnIYF/gbhrJ3j+NvN7lYv6MEzj5/Q944p7b2dx/ANv651DYLxPT7ejc9O92Tmkxfd3rpX79eqrmzydu1qzAH0ekD2q0GtlStgXLthiYMJBIZ2S4S2qfbbcfuAEqd0P+SsjSQosioRL0izjmzZt32OJoh96WLFkCwC233MKMGTM46qijuPrqq3nsscd48sknKS4ubrP/e++9l4SEhOZbTk5OsJ+CiIhIQDytbH+9eegQ5k+fzvbcAZSkph62KjkApokNrBkzGgPILCumsn8aTpfZInB7bYNSK4pSKwqvfQTXYR+6crrDQeX7H3S+P5E+wmt5eWL1E5z00knMfWMuF/zvAma+NJMHlz5Ivbe+4w7C5U+T/Gv33PmhrUOkjwv69PKioiKKiorabZOXl0dk5OGfDO7evZvs7GwWLlzI1KlTWz23tZHunJwcTS8XEZGwyc/P569//WvbDQ69XruV42f/51WWTp7Erpwc7KaFjSzbYJU3i7WeDBqaJqe58DDKuZejHPmYRmC/wpMK0xi7ZjGZexdh4Ksp7tRTyX7owYD6EelLbNvm55//nDe2vofXkYxh1+PwlgJgYnJ05tE8esqjRJgRYa60FfMSAmhbHro6RHqhsE4vT01NJbWTi7IsX74cgKysrDbbuN1ubXkiIiLdSmZmJhkZGRQW7qXVj7I7miZuGLz17dNpiIhoXknYtuGTxkHssJI4eM54A05WePpRYkUzK2JTh10frDRtH0smz2DA9rGMXfN3TAPcgwf734FIH/TB7q94vjSJuv6PgOl7D+po2EZM+Wu4a5fyVcFXvLnlTc4ecnZ4Cz3UypfCXYGINAnbHgELFizgwQcfZMWKFWzdupWXXnqJa6+9ljPPPJMBAwaEqywREZGAGYbBGWec0ZSX/Vtp/FANbneLrXt2WInssJJp/SJtgx1WEjusxIAfpyZ2O5uHONjZ/wQAEs+f26l6RfqCskYPN26spy72pObADeCNyKUi7Waq4s/FxOTlDS+HscpWVBfBq98PdxUi0iRsodvtdvPiiy8yc+ZMRo0axS9/+UuuueYann/++XCVJCIi0mnZ2dmccopJQkJhUPr7xpvmmwLeBgObDd70wDo1fLdGdxkbRown/Y6fE6FtO6WXqG2soai6gEarsePGfvrT9r1U2PFgHLLCf9MUk9rEcyjKuJutVfuC9phB8crV0M7rx+EM+OyPYHlDVZFInxa21csnTpzIwoULw/XwIiIiQZeekchR456jvt5NQ0MUpSUZbN/u50JG+zVd/11uRWI3jXLHUM9wZyG5ZikOw6bIima9N4MKK5JG08GGzAGszcqjyh1FVGM9Iwp2MGrPNtzetsNHRUIFMed+90ierki3sG3dfyj7cB6jirYTY7rY44Bvhkxnwul/ITW2X6f79Vg2f9tV1OHlIV5XLjuSf4LHsnGaR7DQYbBUF8OWTwI8yYYP/x8Ub4azHu74khgRCUhYtwwTERHpTTLSv83Wrf+H212D212DbRts3x5gJ01vdt2GlyrbJsOo4mTXNziw2P9+PtpsIM9RxkZvCq+Nn05xbELzuQ3OCL4aOIq1WXmcteIzYhvqWnkM8DprMB16Yy0928YFD5Lx/u95JXsuVxxzNnvdqURYjXx73yeUP3UhJ1zxPOlx2YF3XLCa3UteojHmvI7bGgYeZwavFRQxt2oZrH0dGqogdRhMvAwSu/iyyX3rCGyUez8bVvwTJnwHco8NdlUifZpCt4iISJDExAwiM+McCva+BtjExRXhdldSXx/rew8cwOjRIEcxFR43J7k2tgjcQPPfhzqK2VZbSXFc4oGDTY9R5Y7ioxGTOHPVF632bxoOXJF6GyA9l7emhOQP/8B54/+PNbFDsJqummw0I3g9bRZvps3gvOfvYmXFFUzOS+KyY3Ipi3bwWmEp5R4vA6PcXJKVwsDogxbotbzwv1tg2dMkO2IwjjsH2/Dvasxnvnqd01b9BLfd9AbbMDDm3wen3gPTbgz+N6AtjiNYcNh0wrJnFLpFgky/bUVERIJo5Mjf4rWgsPBVAAYNXsS6tSf6wnBHW4cdZKijiDrbQQTeNk+xgKN2bWFzes5hx2zTZE9SGqXRsSTVVB1yEJKd0di23WI/cJGeZOtn9/JM7lWsjR2CddA114bl5aKCtxldtZFqRxQ3VF3DB19P43zzSsqSknEa4LV9Cxv9ZUchP8nL5Cd5GRhVhRR9fB8py57GAOK81ZxY8hUfJU/1K3hvrH2VaXk55DU0cG5lNedXVBIL8O7PoXw3pI+APSvA4YJhp8LAGQcWT2yshZoSiEwAd+yRfWOyxkFENDTWBH6u5fFNMReRoFLoFhERCSLTdFFWeiaLF5mkpOzAsppWL4OWwbuDAO4yvBzlLGj/sYCMylIM28Zuo6+98cmHh26gyFvBO9/9HtO/+11ipx/v79MT6TZq87/mn/3vxHtQ4L5zy6Nct/MlnIfsImBHreAdYydfkYynaeb1/iXD7t9WQL+FD5C6byXHlq8EYFncCBYkjOfaXS/xUdIUoP1/r4ZtcXnRVuZWFjC00QNADVAPuABj4cNNDZtC9lePQvpoOPNPsPQpWPUieBt8x0d8G2b8DDLHdO4b43TBmLmw/JnAzzUcEJ3SuccVkTaFbfVyERGR3mrr1q3U10ezZ88ICgqGtzxoGC3/bEeE0fH2Yx1duWkcsnG4DVRERvH+yMm8Pmosm266icqPPu7wcUS6m8LIDKqdMc1fn7P3fc4s/BhHK9v2Da7dyb9X3cKxZctb3G/aXs4o/IjB+V8woXI9LquRv/Y/n4vG3seS+NEcX7aMNQvO5pF1v+aEksW+D8sO4bA8nL5vPneU7GoO3ADRNAXugxvblu8GULgGnjjJdx21t+HA8XX/g7+dCDsXdfI7A8z+zeErrvvD9sJRF3T+cUWkVRrpFhERCTK7lTfmndVeNrfwjWRHNdTh9jRS7YqkIcJ1cCH0Kytq2R8QV1/L3rgkXp08i4jKOn4wbx6xM07AcHTiTbpImMQNnsOogk04bS+bogfwavrJJHoqKY5IJMZby+lFnzKrZDEOLN+6CDa8vPIWNkTn8VHSFN5PPoabd/2TWaVL8GDgxMYCvr/7Zb67+xVcWNhAsqeCs/d9zLn7PuLtlOP5/qh5NJoRgC9wx3uruWvrY63W6NfFG/ahHxJY4K2Hp86E6+ZD2rDAvzlRCXDM9bDgYfxeVM1wQPoo30i7iASVYQfznUEYVFRUkJCQQHl5OfHx8eEuR0REhE8++YRPP/3U//C9v10nrq8uiYoludY3fdzCYEtaP74aOIqqyCgG7stn9rrFh51jAYsGjmLFAN+b+Ud+dyez77qD2OOPC/jxRbqCx7LZVd+AAeS4ndjzH6L2kz8SSzUAT2Sey13DfoCBzZTy1Vy38yVmlC3GaVvYtoWrldFvaFrfMID7LQz+mn0Bdw++AdP2Mrv4S+ZtfoS8uj1BeqatOOsRmHBp4Od5GuDlK2HDm75AbXsP/OmMBE9d02i47Qv+g2bCeX+HGE0vF/FHIDlUoVtERCTIKioqeOiPf/S9zfcnSAewwFqL05puB18rZmHQ4HTy6bDxzNywHLfXc9h5XmBN/0F8OeQoTMvLSYu/5E8DM0i6UNNKJYwaauDr/8DWT3yLjQ05mYbB3+Kfawt5raCEFS6L3L0eHtjweyaZHzT/k3kv5VguH3MvAJfteZ37Nv4RD2bzdd1tBejOsjBYFTuE/vVFpDWWBrHnDrjiYOr1cPyP/F9szbJ8389lz0LZDojNgPEXw9DTYNci2LXYt2L54FmQMTqk5Yv0NgrdIiIiYVS/ZSufXX01XzSNHNv7VyhuLVx3MnC3Z/8v9rZ6tYCvBo1mZc5QANJKivgiziJ+9uyg1iHit6/+Cu/dSUO5l7LN0TRUOvE4B1CbfQGxKWMBg+V1XhqsDcxN+RngG5ytyndzzsw/syZzKIPqdvHZ4ssxO7VHdQ/jcMGgE+G4H0DucUF/DRGRjgWSQ3VNt4iISJBVffwR/QsKmPPW22wcOpQ9/fthGwamx0NVfHzT6uX4UnEI3iz70+PG9Ozmv5tA7PTpQa9DxC+L/gZv30bR2lj2rYrz/QDbBhjFsO1hahLzKJ9yM3sabM6I/zuWFxqrHOz+IplCbxJfX+JbrPDyPa9jYWI2r0vei3kbYOM7vlvaCLjwOUgdGu6qeh/b9s0GWPwklGyBmFQYcx6MPNO3SryInxS6RUREgsyqrQPTJK6qionLlzNxuW/F5NrISN6bfQp1UVGYniisiLqw1Ld8wDBq3FEAOLxeZroMzKiosNQifVxjLXwwj/JtUexb1TRStH+g2rbAsDEbt7Cvcilzs/5J3Y5qtmxIo7HSt5BZY0JEc1eTKtfg7AuB+1BF38A/5sD1CyA2LdzV9B4Ve+BvJ0HlIdfrb3jLt+Dc5a/r+y1+05ZhIiIiQeYeOhQ8h19LHVVXx3FffAmA0xON4XW1ugVRqNQ7nHw5aAyL80b67rBtbNPk+lnHdlkNIi1s+gC7voqitbEcvMq2Ydqkjq5k6Fl7GXpGAdNH3k++u4o9aS6qkw+8fU2qLCe+qhKAesPVFyaWH862oHof/G0WfPhrKN0e7op6vuWvwAMjDw/c+xWug5ev6NqapEfTSLeIiEiQxZ04C0dKCt7SUt9CRgfJ75cFQENkcdMU2hBdi9li9SibPQkpvDl2Gl5H01ZHTdeSPzwqlxGxGuWWMKkuwlPjoKHiwIg1hk32CSXEZNTjiTBYNjKe0iSXbwVAvBj1DiJ22hiWgcOyOOvT93j2W+fyYcoxTCtfidE3ozeU74TP/ui7jToHJl4ODidExEDWON/fpX2WBb9O8qOhDdu/gPyVvu+tSAf0r09ERCTIjIgI+v/xfnZe831swwDvgSmvJYmJZO3aRX5OTnCXVG6tDq8T2+HBNBuZM3E4A7P782lpJTZwfFIcl/dLITfKHdoiRNqTkIN1yIzwxEE1xGTUYxuwfGw8lbFNb1ebtpE3DplEcum7/+WLcZN5PvNb/Gj7s8R5qzWVc+2rvtt+sZlwwq1w9NVadK0tf5wAlVsCOMGAzR8pdItf+vxrkoiISCjEHHMMeS+9SNzJJ0HT6uVmbCyDikoYvHVbaB/cBtNyYdoR2NgMG3YU58w4lTsG9+OdycN5d/Jw7hrcT4Fbwm/QTCLSUjCdB2aEJA317b1dnOKiMi7isJDYmG1z8Lbb7sZGHvnDXQzdsIWLxt5HlRnZV8e621ZVAG/dCm/8KNyVdC+WBY+fDPMSAgzcADa0siWjSGsUukVEREIkcuRIsv/v/xi+YjnDFi5g4Buvk71hPTtzcg6bdh70x67JxGvWY2CwefPmkD6WSKc5nJhnP0Di4BowfFHZFefBMGBvWutrHtROtrDdYB8Urd2Njfz+4T9w6T9e5a7o60M9iaTnWvY0vHJNyF9/ur3CTfDgWN9U8j2LO99P9uTg1SS9mkK3iIhIiJkuF47ERCrfehtsm0bX4aN3QWODwxuFYTnB9L2xbmxsZPfu3aF5PJEjNfIM0u7+C5EpADa2x/dvo9FptvrvxI6E0u96wATbPBC8bWDChjX8ZOMzXVN3T7X6JV/Y/OtM2LkYakpgzauw8kXYuzbc1YVOYy18/FuYlwiPTILyHUfWX3QKDJwRlNKk99M13SIiIl2katdObMMgtrIqNA9gg6sujeiqbMqTv25xqKCggP79+4fmcUWOkDn+LHLfPZmSv9xL5bonSRhQQ3Stl1LLxjYPD971Y22KbvUQ9z8T91oHBlAcGc++o5M5J/PLrn8CPVH+cnjy5MPvz54C5zwGKYO7vqZQKNkGCx/xjfJ7grhN48UvNl86JNIR/aSIiIh0kZ2VlWBbDNqyJfgj3TYk7JuIqz6JiuQ12I7GFoedTn3OLt2bGRND6s9+Q+I9b4HDJCu/rtXAvV/jABtPJpS6YrnlhJu47LS7mJS1SddzH6ndS+HJ2VCRH+5KOs+2YfPH8Mix8KdxsOivwQ3cx9wEOUcHrz/p9RS6RUREusjiyCgMGxIqKui/c2fwOrYB26QidSVVid9gORpaHDZNk8GDe8molfR+/SdgXPkW8Z4oBuyqBQ6/tNu2oHpvLI9VXcSVp97JN4kDSKKSXLOQdnK6+MP2Qk2Rb8/vnmbHAnhuLtyTCc+eDYVrgv8Ykalw2j3B71d6NYVuERGRLmDbNuVOB+tGjgRg2pcLiK4K0jRzAzAtbNPb6uEJEyYQGxsbnMcS6Qq50+C2LQwZ9yDDKnJxNB54y1pnu4kujKDmmxyKUpJJrS1jbPFmfrDy32EsuBda+S9Y+Xy4q2jd/k9hbBuWPQe/H+Rbgfzvp8Gm94M7qn2wjKlwuxamlMAZtt3KspA9SEVFBQkJCZSXlxMfHx/uckRERNr0wAMPUFFezsi16xi5bh2GbfPK3POCNtV8/2rOxkFrN48YMYK5c+dqern0aLbtZd3q53lk6zbejZnO2QWfcN+mBwCo3uuieH0s1QUuBp66D3eCV1tRB5PDBQOmgTsOolNh6MkwbA44OvmaYtuw/UvfHteWB/pPguHf6ri/nUt8257tXe07zzB9Ux66yo3LIW1Q1z2edHuB5FCFbhERkS4yf/58Pv74Y2zbxuHxkLF3LwUZGVgOxxEH70MDd25uLqeccgr9+/fHUAKR3mTrZ1jPnIdh17fYGmz/O1r9uHcVE5LyYNzFMP3H/oXwij3w/EWQvxJMJ2CA1QhxWXDRP30BfD9vI+xcBJs+ggV/AW+IRq87Ej0UblsSnseWbk2hW0REpBuqr6/nySefZN++fbT49WvbQU8KP//5z3G5XEHtU6TbaKyFPwyBxhDtBCABMuG4H8Hk70Jiju/1zOuB+gpwxYLTBY118NhxULoVrEMvhTHB6YYr/we7l8NHv/adG07Dz4QzH4SY1PDWId2WQreIiEg3VVtby/vvv8/KlSvxeg964xnE4D18+HAuvvjioPQl0m1t/xL+MSfcVYi/ImJ7xockmePg0pchLiPclUg3p9AtIiLSzdXV1VFUVITD4cDlcvGXP/85KFsduVwubrjhBhITE4PQm0g39/Fv4dPfh7sK6ZEM3xT39FEwdi5ExsOAYyFtWLgLkx4ikByqVVVERETCIDIykuzs7Oavj58+nc8+++yI+oyKiuLKK69U4Ja+Y9bPod8E+OJPsHNh1y6sJT1T2giY8wcYNCPclUgfotAtIiLSDYwcOfKIQ/d1111HQkJCkCoS6SGGz/HdbBuqCuHxmVC5J9xVSXcSlQJTroUp39M12hIWCt0iIiLdQGZm5hGdHxMTo8AtfZth+K7DveZDeOcOWPtauCuScEsfDSf/CoacAqbZcXuREFHoFhER6QZM0yQ6OpqamppOnT927NggVyTSQ8X3gwuexi7bw0dPX8FJpYvCXZF0tf5Hw3degSh9ECndgz7yERER6SZOOumkwE9qWn1t0qRJ7bcT6WPKYtJ5P+VYdJV3H+CKh5xj4JzH4ZclcM0HCtzSrWikW0REpJuYNGkSb7zxRmAnNe0y5na7g1+Q9G5bP4cXLwVvI4y/FE6/L9wVBZXLMNgUPUAjTL3djDtg1u3hrkKkXXodEhER6QWMIO3xLX1AST7MS4CnT4e6MmishsWP++7738/CXV3QxDgdeNJHs9OdgRf9++iVIqLh2JvCXYVIhxS6RUREupH09PSAz4mMjCQ2NjYE1Uiv4/XAn0a0fXzJY/DJH7uunhD7wbCh/GDEL/AaDjx629vLGDDtRnDrtU+6P736iIiIdCNz5swJ+JypU6dqpFv888dhHbf55Nehr6OLnJSewplp8Zw5/s98mjR5/xIIzX9KD2Q0xZeJV8DMO8Jbi4ifdE23iIhIN5KXlxfwOTNmzAh+IdI71RT7187rAUfveJv43ePOZvbnj/LPsnG8lnYSp5QsYE7RfCK0xFr35k6AU34DE78DhWtg5Qu+fdjjMmH8JZA+MtwVivitd7yaioiI9BKGYRAXF0dlZaXf55jaf1aCrXgLpPsxKt4TGAbZ02/gZ5NLYc1rUDUNok+HiBhoqILoNNj+BSz9O9gK4mE18iw4+nuQN73lvtqZY303kR5KoVtERKSbGThwIKtWrQp3GdKXJQ0IdwXBF5UEk69q/djYc2HaDbDwUfj6FWioBMsG29O1NfZl8f3h/Kdahm2RXkI/1SIiIt3MCSecEFD7vXv3hqgS6XVMP8dbIiJDW0d3lDIYTr8ffrYV7iqCXxX7Rl6lfQOm+wLzkTr2Bwrc0mtppFtERKSbSU1NDah9fn4+GRkZIapGepUbl8Gfj2q/TfaUrqmlJzj3cfhvBHz973BX0j0d/f2293evyIf/3gibP+y4n3GXwJRrg1ubSDeij5NERES6oZkzZ/rd1uv1hq4Q6V1ScuGEX7R9PDYLrn6/6+rp7iIiYe6TcONimPlzSG1nu7W+JGkQXPhc24EbID4LLn25nQ9xDBg4C77zCpz9iEa5pVczbNvu0bsmVFRUkJCQQHl5OfHx8eEuR0REJChs2+buu+/2q+2MGTOYNWtWiCuSXsW24eFjoGi972tnJNyyHmKSwltXT/B/E6B0S7irCI8z/gzjLgKny/9zbBs2vAWf3gflO8EdB5Ou8i2Ypj22pQcLJIdqermIiEg3FMi+2z3883MJB8OAm74KdxU9041fwW/7gdUY7kq6Vt50mHR54OcZBow43XcT6aM0j0NERKSbmjx5sl/tBg0aFOJKRKSZ0wXXfwGuPjRKG5UM5/w13FWI9FgK3SIiIt3U6ad3PDIUFRVFXl5e6IsRkQPShsOPVsKsOyG5l3/olXsc3LAQEoKwQrlIH6XQLSIi0k0ZhsEFF1zQ7vGLLrqoCysSkWYxqTDjp/DD5XDd577R4A7PyYT4nNDXFixpI30LncVpdwSRI6GF1ERERLq5rVu38uabb1JUVNR8X0ZGBmeddRb9+vULY2Ui0qy2FJb/E9a9Do21kHkUTLka+k04vG35bnjtJtg2H2zPkT92Yi5U7gVvXcdt00bCpCvhnZ+13y5vOlzwDET78WGCSB8USA5V6BYREekhGhsbqampISYmBqdTa6GK9Hi2DWU7YOMH8MVDUL6jjYYO35ZarS3edtzNcMrdUF8J2xeAtwEyx0JUEqx6EXYsgJoS332TroKUQb7Hfe16WPk8GCbYlq+v/X+feQfMvD1ET1qkd1DoFhERERHpaSwLPLUQEe1b9buxDkwHOCLA6/FtvbX8OaivgIyxMOUaSBvmO7dsp+9Y0QZwxcDIs2DISb7z23qslc/DV49BwSpf4B50Ihz3Axg0s8ueskhPpdAtIiIiItJXLHwU3v05YAC2L0BbHt8U9+/8B2LT2j/f6/GdY2q5JxF/BZJD9S9LRERERKSnWvcGvHO7b1q47fX9aTVdJ164Bp6/yDedvD0OpwK3SAjpgjARkc6oLYf3fwlfv+JbMCciEk64DY77oW9KoIiISFeYf3/L67IPZnlh9xLYsRByp3V9bSICaKRbRCRwe1bAHwbCsqegodK38mxDFXzwS7g7EapKwlygiIj0CdVFkL+i9cC9n+HwXQsuImGj0C0iEgjbhidn+6bwteX+gdBY33U1iYhI3+TxY4sw2wsVe0Jfi4i0SaFbRCQQS54Erx+B+vFZoa9FRET6ttgMiEzouF3h2tDXIiJt0jXdIiKBWPmCf+32rQltHSIi0ncVfA2Ln4Cdi3xbf3WkcJ1vKnpMauhrE5HDKHSLiATCn6l8IiIiobLgEXj3Dt/+21Y7lzq1YEP1PoVukTBR6BbpCxrr4JN7fQupWF7oNwFm/wbis8JdWc8zcAYUrA53FSIi0hdt+dQXuCGAwA1gQEx6SEoSkY7pmm6R3m7LJ3Bvf/jiISj6Bko2w9f/hgdGwPz7wl1dz3PSL/1r54oLbR0iItL3LHjYtxp5IAwHDDsNYlJCU5OIdEihW6Q3qy6GZ88By9P68Y9+A+u1jUhAnG6Ycm3H7c78c+hrERGRvmXr/PZ3zziUYfp+b510V+hqEpEOKXSL9Gbv/aL9vTsBXrgYCrToV0C+9QcYfV7bx6deD2PO6bp6RESkj/Bj0bSDZY6Fq96GjNGhKUdCr2QL7Fysbd96OMO2bTvcRRyJiooKEhISKC8vJz4+PtzliHQvv82Ghkr/2n7/E9+13uK/+hp49kzIX+X7OmMMXPYfiEoMa1kiItJLPX0GbPuindFuA8ZfAsNOheTBkDmmS8uTINryCbz7C9j79YH70obDWY9A9uSwlSUHBJJDFbpFerO7kzoe6T7YvPLQ1SIiIiJHZsM78PyFbRw0wOmCm9dAbFqXliVBtuEdeP4ioI2Y5kqFn2/u0pLkcIHkUE0vF+nNjAD/iW/+NDR1iIiIyJEbfhqc8FPf382DFlQzHOCIgAueVeDu6bweeO162gzcAA1FMC8Baiu6rCw5MgrdIr1ZwoDA2j97Jix7DqwArxkTERGRrnHinXDFGzDsWxCbAQk5cPTVcP0C37Ry6dk2fwi1Jf61/X1OaGuRoNE+3SK92Wm/g+cvCOyc12+Elc/DpS+BKyY0dYmIiEjnDTzBd5Pep3RbYO1fuAYu+ltISpHg0Ui3SG82bHbnztv+Ofz7u8GtRURERETaF5kYWPv1L4WkDAkuhW6R3sww4NovO3fuN+/AN+8Htx4RERERadvw0wAj3FVIkCl0i/R2WaOBuM6d+/yFUOPndUUiIiIicmQiE2DUWeGuQoJMoVukL5i3q3Pn2V54/YfBrUVERERE2jb3H/63nfWb0NUhQaPQLdJX3NXJEev1b0B9ZXBrEREREZHWmSbcVeRf2xk/CG0tEhQK3SJ9hcMB1y/p3Lkf/g6qi2D+ffDYDPjTBPjPtb777Hb2kRQRERGRwDki4LoO3rfdWdw1tcgRM2y7Z79jrqioICEhgfLycuLj48Ndjkj399eTIX9xcPscdhocfwsMOCa4/YqIiIRbyVZY8g+oKYbkPBh7ASTlhrsq6Ute/TGsfPLA11d9AbljwlePAIHlUIVukb7G2wj/LzUEHRtw9qMw/uIQ9C0iItLF6qvg2XNg16LDj029Dk691zcNWET6pEByqF4pRPoaRwRc8nIIOrbh9ZugfHcI+hYREelCOxbBH4e3HrgBvnoMPrm3a2sSkR5LoVukLxo2GwbMDH6/tgXLng5+vyIiIl2huti3dsnfT4GGqvbbfvF/WmhURPyi0C3SV13ybPD7tC3Yszz4/YqIiITamlfhj8OgYIV/7b31sPmjkJYkIr2DQrdIXxUZD+c8Hvx+ne7g9ykiIhIq9VXwye/h5avA8gR2bkN1aGoSkV7FGe4CRCSMxl0I0Snwz/OC12fqMChYDWkjwaGXGBGRQDQUFrL94kvw7D6wPoYjPZ28f/0TV3Z2GCvrZYo2QuE6WPRX2L4Q7ADD9n6pw4Nbl4j0Slq9XER85iUEuUMTssbCRS9CQlaQ+wYq90J1IcSkQVxm8PsXEeli1atXs+P8C9o8nv23x4mbPr0LK+pF9r/d3bkI3v4Z5AfhUqiEHLh5NRjGkfclIj2OtgwTkcBZFvw6KTR9x6TBVe/B2ldgyVNQtde3inrucXDx876/+6N0B6x8BT79TctRieh0OOvPMPy0kJQvItIV1o0cdSActmHk+nVdVE0vYNuw5j+w8BHYvQxsACtInRtw9QeQPTlI/YlIT6PQLSKd88kf4JN7uv5xj7oEzn205X0Fq2HHAti7DrZ9BsUbO+7n23+CyVeEpkYRkRAqf+dd9tx8c4ftUm+5hbRrvx/6gno624a3fgqL/wYYNCXu4IhKhov+BbnTgteniPQ4Ct0i0nkPT4N9a7v+cZMGw40LoaoA/nkB7OvkaM4vCiFCi7mJSM+y+dtn0LBpU4ftHOnpDJv/aRdU1MOtfwteuDi4fUZEw9mPwKizNaVcRALKoVq9XERaum4+YXlpKN0Mv0mDh8Z2PnCDbwVaEZGext8xkJ49VtJ1vvhTcPsbNAt+tApGn6PALSIBU+gWkZYcEXDHznBX0XnLngp3BSIiAUv63nf9ahd/1pkhrqQXWPIM7FwQnL6yxsPFL8Dlr0FsWnD6FJE+R6FbRA7njoUbV4S7is7x1Ie7AhGRgCWfe65f7TJvvTXElfRwL1wG//vBkffjjIQr34ZrP4Xhc468PxHp0xS6RaR1aQPhktfDXUXgcqaGuwIRkU7JfuJv7R7PvCcMC132JF89DuuD8HsrIgau/hDyjj3yvkREUOgWkfYMmwFXLwp3FYG59KVwVyAi0ilxxx9P3huvYyYmtrjfjI1lwL/+SdJ5/o2G90klW+Dtnx55PzFp8LNtkDnmyPsSEWniDHcBItLNZQ+H6xfBo1PCXUnHsiaBQy9rIhKY2to6lnyzlZSkREYNyAprLVFDhzJ8YZCuR+4rLAuePefI+5n0XTjjwSPvR0TkEHp3KiIdyxgOP8+H34b3zWi7EgbAtR+FuwoR6UE25efz3r+ep6qilhqjEYBUM4qG/gn8+HvXhbk68dvWT6B025H18eP1EN+Nf8eJSI+m6eUi4h9XNMwrh8jEcFdyuLgs+MHScFchIj3Ipvx83nn8GQorKqihsfn+Ym8tFTsK+NOfNeLZY2z9DIwjeEt73j8UuEUkpBS6RSQwt2+H858JdxVA0z6psRlw+X/B6QpvOSLSo7z7wr8osmp9LyUHbbtsN/29tKiCf338QVhqk0DZtPifGIiUYTBK27CJSGgpdItI4EafBT/bEd4aMsfB6X/0belSW+a7iYj4obGxkZqydrYXNABsypav6KKK5IjkHAO2N/Dzkgb69t/WWiAiEmJ6lRGRzolKgF+VwUNHQXkYAnjBCnhzRcv7nJFwyUswaEbX1yMiPcbG3XupNho6bGfUWl1QjRyxoadAYi6U7wTbj/9n6aPguJth7FwwHSEvT0REI90i0nmGAbeshu99CFnjwl0NeOrgmTNh3TvhrkREurGUuHgMu6NWxhFdJixdyHTAxS/41hxp7X+a6YRh34Lrv/StTXLDAhh3oQK3iHQZ/ToRkSOXMxmunQ/TfxLuSnxeuhjsDt9Ri0gflZEST5ozqt3gbRs21alaK6LHyBgFNy6CmXdAylCITfdNOz/v73DnPrjkecgYHe4qRaSP0vRyEQmeWXdC+W5Y9UJ467At2PwxDDkxvHWISLdVl5sAm2tbXYPLsA3iDBcXzb0sLLVJJ8WmwYzbfDcRkW5EI90iEjymCef+Fa7+CAbODG8tz50LOxfD1i+heFt4axGRbufHl19HfGY8JgbYYNi+sA0Qb7hIPm40/ZJSwlyliIj0BoZt9+w5mBUVFSQkJFBeXk58fHy4yxGRg71/N3zxQLirOCAqBX60EiLjwl2JiHQT//3qM3YtWIhZY4EJ1WkuLp97OekJCtwiItK2QHKoQreIhE5DDTx4FNTuC3clLV07v3ss/CYiIiIiPVIgOVTTy0UkdFzRcOMCyJoQ7kpa+tuJUFcR7ipEREREpA9Q6BaR0IpNg2s/ge99ADnTwl2Nj+WBVS+GuwqRsLIsi+W33cDyCcfw9aixrB49jiUzTyL/C225JyIiEkyaXi4iXcu2Ycsn8MKl0FgdvjoGzYTL/xu+xxcJI6/Xw/LjTiKmrLB58e6D3wwYV5zDyDt+G6bqREREuj9NLxeR7sswYPAs+MUe+PE6mHE7JA7q+jo8DV3/mCLdxLLzzyOmrBA4sFuWcdDf7adfo6ZgZzhKExER6XUUukUkfOL7waw74Obl8MsSuPlriE7tmsfuP7FrHkekm7EsL5Hrt9LWNDdf+LZZd/31XVmWiIhIr6XQLSLdg+mAxBy45iMYcQYYB788GYADnDEQlQquBN/XR2Lyd4/sfJEeqnj1VzitxuZR7dbYgHPr3q4qSUREpFdzhrsAEZEWknLhouegqhBKtoI7DtJH+qalH6p0B7x0OeQvD+wxTv8jpAwOTr3Sq+wpL6X6mbMZVLwSExsLg71p48n47us4onrHuiG2xxvuEkRaZXs8bL39dqrXrSdu/Hhy756H4dRbVRHp+bSQmoj0DnvXwucPQsFqiIiCpEGw9lWwDwoYWRNg9v+DgdPDV6d0W8s2r2D8szMwocXiYvv/3HvivWQef61vVkYP5vV6WD9mPIbtbXO02wZqB+Yy6W2tZC5dY/lJJxGxJx/Ttpv/zXlNEwYPZuwbr4e7PBGRwwSSQxW6RaT3syzfSHlro+UiQINlYf86FRdtB1GAwpgcYm6YT0xMcpfVFgqLT5tD7LZtrR7b/6Yg+3+vED9kVJfVJH3X8uOn4y4qAmjx72//z2JjXh7j3nm7y+sSEWlPIDlUc3ZEpPcztXyFtO+jBS9zageBGyCteieVD06k5trPiE7LCUktlm2zr6GRCo9FgsPk95//j8Fb32ZQ7S4qnTF8lHosabmTuG3CNGJdrk49xrjXXmXNMTOIrKtoHs2HAyHHO2eGArd0iZqyslYD9/6vbcC5bRuWx4OpqeYi0kNppFtERPq8DQ9OY3j52jaPFzsT+CT5aObHpFJCGXONlazM+TYrYi6if0QUJyRG0S8+hSKPRf9IFxPiolhSUcOe+kbSXE6mJcbisDxUrXubf+8pZIGZxs7ILArNGOoti0y3i7kZSeysa+DZ/GLqLRtsm1u3P8Wt25/CgwMHXryYOLFYGTuMy8b8juePHs/olJROPeeGhga+vvJSIlZ+g8PbABjUxyWQ9MMrybvs2k5+J0UCs+yEE4gq3NdhO+/IkYx59T9dUJGIiH800i0iIhIAh9364mKNhoN5g27gmX5n0WhGgG2DYfD+/gbVAI28XNYIVLTZ//T6rVy/7Vm+P/gnVDtzfCPKDYDRCMC+xlpWV9W2OOfCve9w6/anAHDibfrTAmB01SYeW3c33464n80nJmN24tIJl8vFxH+9HPB5IkFVUelXs/pdu0JciIhI6GjOpYiI9HnbR13S6v03D7udv/c/1xe4oVPrAqQ2lHDX6t/w3SE/o8YRib1/fYH2+rJtfrjjuaaIfTgnFseWr2RY9Rb+tWVzwDWJdBsO/xYmNN2du5RCRKQ7UOgWEZE+7/jZP8SLwcHXW62JGcwrmbOxjSP7VXlx/pu8nHkajYYDy/AvYAyoy2dw7a52f0l7cHBy8QL+vUf7aUvPlXHrrXR0naMNDP3737uiHBGRkFDoFhGRPs9tmqya8zfgwGJir2ScgtPyHHHfcd5q3k6djtf0/4oul93YYRvLMHBZjXh69Mos0tf1v/giPA5Hu8G7we0mdtiwLqtJRCTYFLpFRESACVPPZ8dl71IekYANFEUkdjgC5499rmTqzMCmxu6MzKTSEdVuG5ftYXXcMKYlxh1JeSJhN+STj317cuP70OvgW4PTyajFi8JYnYjIkVPoFhERaZI7+BgSf7GD0u99yldR8XiDsLd7jSOKMZUbcQQwal5vunku60y8bfya9mJSGJHEu8nH8pPRo4+4RpFwik5LY+zaNTi//W0aIyLwOhw0uFxEXnUV475ejauTW+OJiHQXWr1cRETkEMk54xmxYgXb/bwGuz073Jlcs/sVPkmZGtB59+VdydTylYyr3ICB3Ry/Gw0HHsPJ1aPu5te5CUT6uRCVSHc39P774P77wl2GiEjQaaRbRESkFX8++Xyi63cccT+fJU2m1BnH5btfA8A8eHsy2zeBvbXx9BpHNOeN+z/uGXQtu9yZvvvMSF7MOI3ZEx/n2kkzuWro8COuT0RERELLsG27Ry/BEsim5CIiIoHYU1zISYsWUOrKgv3XZTft1R2IzAiTp2o/4Js93/B40kl8HTcUgHg8xLgiGRoTySVZKUxJiOFf+SV8WFxBvWUxLMbN2rJyvqmzMGyLBIeXf40ZyMS09GA/VREREQlAIDlUoVtERKQDX+dv5Vdr1rO6MZZKIxLbNMEwcDls4uwGkuwGzIgYGl3R5ES5uD4nnSiHyZ76RtIinExLjMVpGmBZULWXOhvM2HRcmhouIiLSIwWSQ3VNt4iISAfGZA3klayBR96RaUJ8FpFH3pOIiIj0EArdIiIi3dxHS98hYuFviW+sYEfuaZxxzu/CXZKIiIj4SdPLRUREuqmNezaS+tTxJDbUtVhszWvAwoGnc9zl/wpbbSIiIn1ZIDlUq5eLiIh0Q3W1NfT/+9TDAjeAacOxW95k8bOXhqU2ERER8Z9Ct4iISDf07r+uJtrjbXU7sf33Tdzyv64sSURERDpBoVtERKQbOqng3XaPG/hGvDf/766uKUhEREQ6RaFbRESkG3J7vR22MYDIzRrtFhER6c4UukVERLohr2niz0qn3oi4kNciIiIinafQLSIi0g0tSZ3Q6vXc+9lNt5hz/95FFYmIiEhnKHSLiIh0Q1OueguPQZuj3QZQGeEmJXNIV5YlIiIiAVLoFhER6YZcbjebLn4f7yHD3ftHuGsdDiJ/sj0cpYmIiEgAFLpFRES6qRHDpuD8VTmrcmZQ53TQ4DCojYhg08QbibqrBFdkVLhLFBERkQ44w12AiIiItO+o773e/HcXMDR8pYiIiEiANNItIiIiIiIiEiIK3SIiIiIiIiIhotAtIiIiIiIiEiIK3SIiIiIiIiIhotAtIiIiIiIiEiIK3SIiIiIiIiIhotAtIiIiIiIiEiIK3SIiIiIiIiIhotAtIiIiIiIiEiLOcBcgIiIigmXBk6dC8SZIHwVX/Q8MI9xViYiIHDGFbhEREQmv3+VBXemBr3d8DncnQmwG3PpNuKoSEREJCk0vFxERkfD5bXbLwH2wqr3wh0FdW4+IiEiQKXSLiIhIeNSUQUNlB22KoaGhS8oREREJBYVuERERCY8/T/Cv3cOTQluHiIhICCl0i4iISHjUlvvXrrIgtHWIiIiEkEK3iIiIhIczwr92rujQ1iEiIhJCCt0iIiISHpe+7F+7az4KbR0iIiIhpNAtIiIi4THwBKCjvbgdkDK4K6oREREJCYVuERERCZ9f7GvnoAHzSrqsFBERkVBQ6BYREZHwiYiAeeVwxp/AcPjuMxxw3j9gXllYSxMREQkGZ7gLEBHpaWrry3h5yS1UNJRj4mBS/5OZOuzacJcl0rNNusJ3ExER6WUUukVEAvDyopuwq76iPyVkYmJgU7FrOQ/vep3zJ/6R9MQR4S5RRERERLoRhW4R6dVs2+aVj08n0d5wyP0wceJ/SUke43dfb6/8JbFVH+DAA4ADq/nYMDbw6rKbufbEd4JTuIiIiIj0CrqmW0R6LcuyePeDISTaGzAMWtxME5YvP4s9+fP97m9r8RIceHFgH3bMxGYIG3l92c+C+RREREREpIdT6BaRXsm2bT78ZChO0xey27J27VV+9VdauZXBbGoxun0oDw52lK0PtFQRERER6cUUukWkV/ro42EYdvuBe/+xPXs+7bC/woq1OPG228bAxmyaei4iIiIiAgrdItIL2bYNWO0G7v0MA9at/3GH7XJSplJLVMePTYQfFYqIiIhIX6HQLSK9zspVNwV2gh/pPDoylW0MwtvOy6aJxdEDzgjssUVERESkV1PoFpFep7Z2q99tbRvGjHrYr7azhl5NOYmHBe/9y6ptYCxThnzP78cWERERkd4vpKH7nnvu4dhjjyU6OprExMRW2+zYsYMzzjiDmJgYUlNT+eEPf0hDQ0MoyxKRXi49fU5A7TMypvrVbnTOmQwddCubGdIieJeTyCZzEtfNeCWgxxURERGR3i+k+3Q3NDRw/vnnM23aNJ588snDjnu9Xk4//XTS0tL4/PPPKS4u5oorrsC2bf785z+HsjQR6cUGDbyRbdse6rCdbcPIEQ8G1Pf4vAsZn3ch63a9xbr894h0xnL66J8R6YrrZLUiIiIi0psZtm/FoZB66qmnuPnmmykrK2tx/9tvv823v/1tdu7cSb9+/QB44YUXuPLKKyksLCQ+Pr7DvisqKkhISKC8vNyv9iLSNyxbfg2lpR+1edy2ITPzZsaM/kEXViW9UtU+eHwmVOwBA8iaCFf+D1wdL7wnIiIiPVMgOTSs13QvWLCAMWPGNAdugFNPPZX6+nqWLl3a6jn19fVUVFS0uImIHGrihL+RlDijzePTj1+iwC1H7qkz4f4hULELsMC2YM8S+G0mfHp/uKsTERGRbiCsobugoICMjIwW9yUlJeFyuSgoKGj1nHvvvZeEhITmW05OTleUKiI90MSJf2fWzPUMGHA9Llc2cXFHM/34JZx04mbc7qRwlyc93Tt3wrZ29nj/+P/B7lVdV4+IiIh0SwGH7nnz5mEYRru3JUuW+N2f0cpWPbZtt3o/wB133EF5eXnzbefOnYE+BRHpQ0wzgqFDbmX68Z8y5egXcLkUtiVIFvqx9sgzp4e+DhEREenWAl5I7aabbuKiiy5qt01eXp5ffWVmZvLVV1+1uK+0tJTGxsbDRsD3c7vduN1uv/oXEREJCX+XQ6nXJVAiIiJ9XcChOzU1ldTU1KA8+LRp07jnnnvIz88nKysLgPfeew+3282kSZOC8hgiIiJBV18V7gpERESkhwjplmE7duygpKSEHTt24PV6WbFiBQBDhgwhNjaW2bNnM2rUKC677DLuu+8+SkpKuPXWW7nmmmu0ErmIiHRf7thwVyC90aInYf7voKrQ97UrDmbeAcfeGN66RETkiIR0y7Arr7ySp59++rD7P/74Y2bOnAn4gvkNN9zARx99RFRUFJdccgn333+/31PItWWYiIiExd3JYHvbb5M2Cm5c0DX1SM/2/MWw4a02Dpowr7RLyxERkfYFkkO7ZJ/uUFLoFhGRsFj3NrzY/hon/LIUzLBuFCI9wcoX4NVrO243rzz0tYiIiF96zD7dIiIiPdbIOfDttlYwN+HWrQrc4p+PfuNfu3kJoa1DRERCQu8GREREOmvy5b7Rx1N/B6kjIGs8XDPfNxU4Njnc1UlPUb7L/7YK3iIiPU5IF1ITERHpE6Zd77uJdIZh+L8NHfiCt6aai4j0GBrpFhEREQmn2MzAz7k7Jfh1iIhISCh0i4iIiITTGf8X+Dm2B/54VPBrERGRoFPoFhEREQmnYbMhOivw8yq3w6PHB78eEREJKoVuERERkXC7bX3nztu7Gt77ZXBrERGRoNI+3SIickQe/9EnNNZbLe5zRTm45sEZYapIpAfr1OrkBswrC3YlIiLSDu3TLSIiXeLh6z46LHADNNR6efi6j8JQkUgP16lVyW0o3hL0UkREJDgUukVEpFOeuHV+h22evWtBF1Qi0svcURj4OQrdIiLdlkK3iIh0Sn2Vp8M2Fftqu6ASkV7G7YbbCwI7J214aGoREZEjptAtIiIi0t1ERsEtG/1r64yEpJzQ1iMiIp2m0C0iIiLSHSWkwy9LAaP9duc+0SXliIhI5yh0i4iIiHRXpgl3FUNi3uHHDBPO+RuMOqPLyxIREf85w12AiIj0TBmD4tm7paLdNoMmpHVRNSK9mMMBN6+E+ir49PdQUwzDToNRZ4a7MhER8YP26RYRkU577KaP8Xpa/zUSEWny/Ydmdm1BIiIiIl1A+3SLiEiXuO4vsxg1PfOw+8ednKPALSIiIoJGukVEREREREQCopFuERERERERkW5AoVtEREREREQkRBS6RUREREREREJEoVtEREREREQkRBS6RUREREREREJEoVtEREREREQkRBS6RUREREREREJEoVtEREREREQkRBS6RUREREREREJEoVtEREREREQkRBS6RUREREREREJEoVtEREREREQkRJzhLkBERESkO7Ftm4tWbOSLshpMA+4d0p9Ls9PCXZaIiPRQGukWERERaXL+sm/I+mQln5bV4AEabPjJxt1kfryCpaUV4S5PRER6IIVuEREREeD7qzbxWXlNm8dPX7GF3XV1XViRiIj0BgrdIiIiIsDrxVUdtpm2cH0XVCIiIr2JrukWERGRPu/f+SV+tWuw/eywvhpeuBi2fwnYkDQILv8vJPTrdI0iItIzaaRbRERE+rwFZZXB62zho3BvP9j6KViNYHmg+Bt4cCQ8f0nwHkdERHoEhW4RERHp8ybGxwSno8Jv4J3b2z6+4U14+1fBeSwREekRFLpFRESkz7u0f6pf7Tp84/SP2R138tVD8Ngpfj2eiIj0fArdIiIiIsD42MgO2zw9akD7DWpL/XuwgkWw8G/+tRURkR5NoVtEREQEeOfoEfRzOdo8fk1mIqdkJAfxAW8NXl8iItJtafVyERERkSbLjhtLY2MjIxespcrrW6p8ZLSLj6eOCs0DeurB6Q5N3yIi0i0odIuIiIgcJCIigk0njOvcyYYDbK//7av2QmIHU9ZFRKRH0/RyERERkWD5warA2rtiQ1OHiIh0GxrpFhERkdAr3wMvXw7luyA6Dc74P8ieGO6qgi85GxJzoWy7f+2jg3iNuIiIdEsK3SIiIhJafxwNlbsOfF2ZD0/Mgph0uOXr3ndN882r4O4MsOvabzf1pq6pR0REwkrTy0VERCQkquYlYc9LaBm4D1ZdCA+N7dqiusqv9kLywLaP5x4Pc+7punpERCRsFLpFREQk6LzzEojBwuioYdVe2LOyK0rqej9cATcugrjsA/fF9YNrP4Or3gxbWSIi0rU0vVxERESCqnFeQmBvMP73Y/j+h6EqJ7zShsNP1oS7ChERCSOFbhEREQkqJ3Q8wn2wmn0hqkRERCT8NL1cREREgqe6IvBzktq59llERKSHU+gWERGR4CnZFtgoN8D5/whFJSIiIt2CQreIiIgET/ZY7IDaT9Fe1SIi0qspdIuIiEjwGIZfodsGyJoEV78f4oJERETCS6FbREREguuo77UbvG2A8/8J137URQWJiIiEj1YvFxERkaAyz30AT30ljg0vAQdWMrebbvx4J2Z8fJiqExER6VoK3SIiIhJ0zov/BvwNe/l/qf3v5XiJIeaXuzBNTbITEZG+RaFbREREQsaYcBZRE8rDXYaIiEjY6ONmERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEYVuERERERERkRBR6BYREREREREJEWe4CzhStm0DUFFREeZKREREREREpC/Ynz/359H29PjQXVlZCUBOTk6YKxEREREREZG+pLKykoSEhHbbGLY/0bwbsyyLPXv2EBcXh2EY4S5HerCKigpycnLYuXMn8fHx4S5HxC/6uZWeRj+z0hPp51Z6Iv3chpZt21RWVtKvXz9Ms/2rtnv8SLdpmmRnZ4e7DOlF4uPj9cIkPY5+bqWn0c+s9ET6uZWeSD+3odPRCPd+WkhNREREREREJEQUukVERERERERCRKFbpInb7eZXv/oVbrc73KWI+E0/t9LT6GdWeiL93EpPpJ/b7qPHL6QmIiIiIiIi0l1ppFtEREREREQkRBS6RUREREREREJEoVtEREREREQkRBS6RUREREREREJEoVukFXl5eRiG0eJ2++23h7sskRYeeeQRBg4cSGRkJJMmTeKzzz4Ld0kibZo3b95hr6uZmZnhLkukhfnz53PGGWfQr18/DMPgtddea3Hctm3mzZtHv379iIqKYubMmaxZsyY8xYrQ8c/slVdeedhr7zHHHBOeYvswhW6RNvz6178mPz+/+XbnnXeGuySRZi+++CI333wzv/jFL1i+fDnTp09nzpw57NixI9ylibRp9OjRLV5XV69eHe6SRFqorq5m3Lhx/OUvf2n1+B/+8AceeOAB/vKXv7B48WIyMzM55ZRTqKys7OJKRXw6+pkFOO2001q89r711ltdWKEAOMNdgEh3FRcXp1EY6bYeeOABvve973H11VcD8NBDD/Huu+/y6KOPcu+994a5OpHWOZ1Ova5KtzZnzhzmzJnT6jHbtnnooYf4xS9+wbnnngvA008/TUZGBv/617+49tpru7JUEaD9n9n93G63XnvDTCPdIm34/e9/T0pKCuPHj+eee+6hoaEh3CWJANDQ0MDSpUuZPXt2i/tnz57Nl19+GaaqRDq2ceNG+vXrx8CBA7nooovYsmVLuEsS8dvWrVspKCho8drrdruZMWOGXnulW/vkk09IT09n2LBhXHPNNRQWFoa7pD5HI90irfjRj37ExIkTSUpKYtGiRdxxxx1s3bqVJ554ItyliVBUVITX6yUjI6PF/RkZGRQUFISpKpH2TZ06lWeeeYZhw4axd+9efvOb33DssceyZs0aUlJSwl2eSIf2v7629tq7ffv2cJQk0qE5c+Zw/vnnk5uby9atW7nrrrs48cQTWbp0KW63O9zl9RkK3dJnzJs3j7vvvrvdNosXL2by5MnccsstzfcdddRRJCUlMXfu3ObRb5HuwDCMFl/btn3YfSLdxcHTH8eOHcu0adMYPHgwTz/9ND/+8Y/DWJlIYPTaKz3JhRde2Pz3MWPGMHnyZHJzc3nzzTebL5OQ0FPolj7jpptu4qKLLmq3TV5eXqv371/lcdOmTQrdEnapqak4HI7DRrULCwsPG4ER6a5iYmIYO3YsGzduDHcpIn7Zf01sQUEBWVlZzffrtVd6kqysLHJzc/Xa28UUuqXPSE1NJTU1tVPnLl++HKDFL1mRcHG5XEyaNIn333+fc845p/n+999/n7POOiuMlYn4r76+nnXr1jF9+vRwlyLil4EDB5KZmcn777/PhAkTAN8aG59++im///3vw1ydiH+Ki4vZuXOn3tN2MYVukUMsWLCAhQsXMmvWLBISEli8eDG33HILZ555JgMGDAh3eSIA/PjHP+ayyy5j8uTJTJs2jccff5wdO3Zw3XXXhbs0kVbdeuutnHHGGQwYMIDCwkJ+85vfUFFRwRVXXBHu0kSaVVVVsWnTpuavt27dyooVK0hOTmbAgAHcfPPN/Pa3v2Xo0KEMHTqU3/72t0RHR3PJJZeEsWrpy9r7mU1OTmbevHmcd955ZGVlsW3bNn7+85+Tmpra4kN7CT2FbpFDuN1uXnzxRe6++27q6+vJzc3lmmuu4bbbbgt3aSLNLrzwQoqLi5v3kx8zZgxvvfUWubm54S5NpFW7du3i4osvpqioiLS0NI455hgWLlyon1npVpYsWcKsWbOav96/3sAVV1zBU089xW233UZtbS033HADpaWlTJ06lffee4+4uLhwlSx9XHs/s48++iirV6/mmWeeoaysjKysLGbNmsWLL76on9kuZti2bYe7CBEREREREZHeSPt0i4iIiIiIiISIQreIiIiIiIhIiCh0i4iIiIiIiISIQreIiIiIiIhIiCh0i4iIiIiIiISIQreIiIiIiIhIiCh0i4iIiIiIiISIQreIiIiIiIhIiCh0i4iIiIiIiISIQreIiIiIiIhIiCh0i4iIiIiIiISIQreIiIiIiIhIiPx/pXBmNHczmj8AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 1, figsize=(12,12))\n",
+ "ax.scatter(\n",
+ " umaps[1][:, 0],\n",
+ " umaps[1][:, 1],\n",
+ " c=[sns.color_palette()[x] for x in labels[1]],\n",
+ " lw=1\n",
+ ")\n",
+ "plt.gca().set_aspect('equal', 'datalim')\n",
+ "plt.title('UMAP Embedding', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 263,
+ "id": "71c83195-a565-44f0-a1d1-f1ca34a1f4aa",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAYvCAYAAAC9SVaiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wcxdnA8d/sXpVOvXf33rtxwxhM7xBCTwglISEhIYUUAiShvklIICSEECAQQgst9Oree++yLVm9n6Tru/P+cZIsWd2WLJf5fj62pNvd2dmTbu+5Kc8IKaVEURRFURRFUU4AWl9XQFEURVEURVEaqeBUURRFURRFOWGo4FRRFEVRFEU5YajgVFEURVEURTlhqOBUURRFURRFOWGo4FRRFEVRFEU5YajgVFEURVEURTlhWPq6AsfKNE0KCwuJiopCCNHX1VEURVEURVGOIKWktraW9PR0NK3jttGTPjgtLCwkKyurr6uhKIqiKIqidCI/P5/MzMwO9znpg9OoqCggfLHR0dF9XBtFURRFURTlSG63m6ysrKa4rSMnfXDa2JUfHR2tglNFURRFUZQTWFeGYKoJUYqiKIqiKMoJQwWniqIoiqIoyglDBaeKoiiKoijKCUMFp4qiKIqiKMoJQwWniqIoiqIoyglDBaeKoiiKoijKCUMFp4qiKIqiKMoJ46TPc6ooiqL0EinD/9paalBKKNoIFfvA5oL+s8EWcdyrqCjKqUcFp4qiKKezulJY+SwsfRLwt72PxQlR6TDuOhh8LpRugS9/A7VFnZefMh4uehwyJ0MXkm8riqIIKaXs60ocC7fbTUxMDDU1NWqFKEVRlK7a/Ba8fcvxPWdEMpx5L4y9Buyu43tuRVH6VHfiNRWcKoqinE6KtsDfZ/Z1LcJicuCWTyEmra9roihKL+tOvKYmRCmKopwu1r5w4gSmADUH4Ylh8EAMbHq9r2ujKMoJQgWniqIop4PdX8IHd/d1Ldr3zu3wwgUQamfcq6Iopw0VnCqKopzqfDXwnyv6uhadO7gMfpcMH98LQW9f16Zn1RRA1aG+roWinBTUbH1FUZRT3bPn9HUNumfV32DLG3D7IojN6uvaHL1gEB5KbHvbL8vBaj2+9VGUk4RqOVUURTmVlWyHyl19XYvu81TAy1eE86keDSmhrgK8np6tV1eZZvuBKYS3hULHrz6KchJRLaeKoiinKtOAf87v61ocvYrdsH8RDDiza/sHfPDkNKjb33qbsMOvS45frtXfJXe+z0OpcH9579dFUU4yquVUURTlVLXncwjU9nUtjs3eLzvfZ9ET8EAsPJzSdmAKIP3wYOzRt8R2lxnsfB/ZhX0U5TSkglNFUZRT1a4P+7oGx840Ot7+hxGw4AGgi0HnyyfBxDBFOc2p4FRRFOVUtW9RX9fg2GVMaH/bX8+A2oLulZf71bHVR1GUXqeCU0VRlFORtyac5P4E1OWOdWc8DL+k7W01RVC6raeqpCjKCUQFp4qiKKca0wy3Kp6AJFBriYM7V0FUB8uW6na47nWw2Nre/uo1vVK/HpPeQYtvo5TRvV8PRTkJqeBUURTlVLPocag98RK++7FQFzOA6O8uhORh8KMdcMnT4EoB0fB2ZLHD+Bvhu6sga0r7hVXsOS51Pmq3LwCtgzymwgLfWXr86qMoJxGVSkpRFOVUkr8aFj3S17VowQSC1mjs17+Kvd/MwxuEgAk3hP91l3aUb1+X/O3ojjsavy6Hz34Ny//c8vGpd8H5vzt+9VCUk4wKThVFUU4lb3+7r2vQinbPXuxRSUd3cG0xrH8ZDq0JB6T9ZsDoa2DU12Ddc92siBMmXHd09Tha838T/qcoSpep4FRRFOVUUVMAVfv6uhYNdJh9D5z1y6MvYtu78NatIA2kNJGA2PUh8tNf4NZd6MKOFxuJsrbzMWr9z4ObXz/6uiiKctyo4FRRFOVUcWBJ3507bTxc8iSkjTm64/NWwoqnIXchICFlFOSvakiaLxFA49pOAog16gCIwo8EgoDesK1pDaiINLj2Dcg6yjopitInVHCqKIpyqlj6ZO+WLzSIyYSvvwp5K8BbBbE5MPxisEUcfbmr/wEf/Rg0/XDS/bwVXa8WLd/MJCDuWgcJg46+TqeA+pDBGcu2UGpCP6tg6fRR6Lre19VSlE6p4FRRFOVUUFsCZb2Y99MZDxO/AdO/B5EJkDqqZ8ot2QYf/ST8fWerQXWgsbVUNn7/1ET4dRVop2dSmtQFG1v8vD8oyVi8BQEUzR3XF1VSlC5TwamiKMqpYHP3xlM2JsIXHe4FXPYMjLqy/Xyjx2rNcw0tpqEeKU7QLEDd+TGMuLBHyj2ZHBmYNicbtherAFU5gangVFEU5VRwaG23dhdAEA0rZts7fG8jJPY/5mp1Km9ljwWmjZoC7s9+cdoFp1tKK/q6CopyzE7P/g5FUZRTjd5Bwvd2aEC17mr5oC0KbJHw4nz477egOq9n6tduJXqxjcTv7r2yT1DnbMvv0n4dta4qSl9TwamiKMqpIK5ftw/RMZtmvTcJ1EKgHupKYet/4U+jYd2LPVLFNg2eD6KXJun0m9U75SqK0qtUcKooinIqWPZ075X9/g+gYF3vlD3ploZW305Hv3ZZ43haLvlzR7spinKCUsGpoijKyc5fB6a3d8+x8LHeKTcmA659DSyOw0HlMWiaDNX/LHDG9UCJJ5fL4qK6tN+3U0+/50Y5eajgVFEU5WTnrer9c+Qu7L2yB86FuzcjNGeXD5HN/jV/TAAMvxRufqdHq3iyeGbcwC7t98DwnF6uiaIcPTVbX1EU5WRnPYYE+F0ljz4HaZe4kuH7q5F/Gt1hB39jACp+sh8i48MPfvZrKNyEmHwrjLy4d+t5Elg1Mp2p2wrb3b54VPZxrI2idJ8KThVFUU523sreP0fikN4/R2w24tsrMJ+Z3nIZUsJBqQFYbngHBp3V8rj5v+n9up1EcpKTKU5OZujCjdQ0a1qO02D77LEI0XPjexWlN6jgVFEU5WRnj+n9c8z5We+fAyB1BNoDNci8tbjf+TbCV0P5wAvIuOQxbDbH8anDKWLXmeP6ugqKclRUcKooinKycyX1bvkjLoMRl/buOY4gsicR/YPwwgJdm+KjKMqpQk2IUhRFOdkJAXGDe6dsVwpc/WL4HIqiKMeBCk4VRVFOBd9d3jvlXv+WCkwVRTmuejU4Xbx4MRdffDHp6ekIIXj33XdbbP/GN76BEKLFv2nTpvVmlRRFUU5NFhtMu6tny0wbB2mje7ZMRVGUTvRqcFpfX8/YsWP5y1/+0u4+5513HkVFRU3/Pvroo96skqIoyqnrvN/BwHM63080TjfQIHkUba7ONOR8uGNRT9ZOURSlS3p1QtT555/P+eef3+E+drud1NTULpfp9/vx+/1NP7vd7qOun6Ioyinnxv9C3ip4/hLA13LblDvggsfbPq50O+z5AuJyYPglqitfUZQ+0+ez9RcuXEhycjKxsbHMmTOHhx56iOTk5Hb3f+SRR3jwwQePYw0VRVFOMtlT4YGS7h2TPCL8T1EUpY8JKWVPLGfc+YmE4J133uGyyy5reuz111/H5XKRk5PD/v37ue+++wiFQqxbtw673d5mOW21nGZlZVFTU0N0dHRvX4aiKIqiKIrSTW63m5iYmC7Fa33acnrNNdc0fT9q1CgmTZpETk4OH374IVdccUWbx9jt9nYDV0VRFEVRFOXkdkKlkkpLSyMnJ4c9e/b0dVUURVEURVGUPnBCBacVFRXk5+eTlpbW11VRFEVRFEVR+kCvduvX1dWxd+/epp/379/Pxo0biY+PJz4+ngceeIArr7yStLQ0Dhw4wC9+8QsSExO5/PLLe7NaiqIoiqIoygmqV4PTtWvXMnfu3Kaff/SjHwFw880387e//Y0tW7bw0ksvUV1dTVpaGnPnzuX1118nKkqtpKwoiqIoinI6Om6z9XtLd2Z/KYqiKIqiKMffSTNbX1EURVGORpE/wAsH8vmkuBINydWpsdwwYAAxVvW2pignO9VyqiiKopxU3jhUzPd3FwIivJKVlEAIpMk/suK4eMiQvq6ioihH6E68dkLN1lcURVGUjmyodvP93UUgtMOBqRAgrKDZue1QPalfruKhlRv7uqqKohwlFZwqiqIoJ41vbdwVDkYbNf++kWbnKY9k4P8WUO4PHr/KKYrSI1RwqiiKopw0Ck1LuLW0vRFpjcGqENS7YpmwcB0Bwzx+FVQU5Zip4FRRFEU5uQjRdotpGwJWO3ftPNjLFVIUpSep4FRRFEU5NTUEsB+W1WCc3HN/FeW0ooJTRVEU5aQRI4z2u/TbIgQhCcVq7KminDRUcKooiqKcNF4ePaDrOzcLYi1dHAagKErfU8GpoiiKctKYkhjPrfG2rrWeNqSayrRbSbap5PyKcrJQr1ZF6UBlZSUvfOempp+ve+JZ0tLT+7BGiqL8btxINixYxzqpdT4xSgh+3D8VoVpOFeWkoVaIUpR2/OGai9rdds/rHxzHmijKye+tp58md9NWSmMSEULQ313Od5756zGVWVpVxZh1e0Frp51FCL6blcSvBqar4FRR+lh34jUVnCpKGzoKTBupAFVROldSUsKbP/slL59zGQfTMxGmiRQCISVTt23k6vpSrv/5vcd8ntJ6N3ds3cVOn0akRWd2Qjw3ZyQyNiqiB65CUZRj1Z14TXXrK8oR/H5/l/Zb/eG7TLnwst6tjKKc5P73ox/zp2vvwONwAiC18FQHKQSrR46lPncP8W++yflXX31M50mOjOadqZOPub6KovQ9NSFKUY7wl5uu7NJ+S156rpdroignt7/88uesHzgSj8OJqeuttpuazpZBw1i0YWsf1E5RlBOVCk4VRVGUXhG3bz+fTZvdZmDaSDcM9qZkcuDAgeNXMUVRTmgqOFUURVF6RURtPfXOjsd8GpqG1+bgQG7ucaqVoignOhWcKsoRrnvi2S7tN2TWmb1bEUU5yRl2K/HVVR3uo5smMZ460jMzj1OtFEU50angVFGO0NU8phd/78e9XBNFObnVJsdzydIv0Uyz3X0MXad/ZRFDhgw5jjVTFOVEpoJTRWlDZ2miVBopRencjU8+zYwta0krK0EzjNY7SMlZa5czZkDO8a+coignLBWcKko77nn9A8689bstHhs6Z54KTBWliyw2OyMf+gX3vfAkc9cuRzdCTdui6mq5ctGnzDFrueZb3+rDWirKaWj18/DkRHh6Khxc2de1aUUl4VcURVF6lWmafPbQT6leu4fy2ERCFguWxBju+N1DWK3Wvq6eopw+Nr0J79zaxgYN7t4Csb039lutEKUoiqIoiqIctm8RvHxJx/v8ogxstl45fXfiNdWtryiKoiiKcqp75arO9/nHnN6vRxeo4FRRFEVRFOVUZwY636dse+/XowssfV0BRVH6lt800RBYNQGAKSUCEEL0bcUURVHaUV9fzyuvvEJ9fT1Dhw7lggsu6OsqKT1IBaeKchoypeSFgnL+kFtEpdF2DsqZsS6+l5PMmfFqLLeiKN1X6AvwQkE5b5VUESovIbZmP3Y9F3tyMv3iRnL9gKlMi3V164OwaZo8/PDDhEKHMz+sXr2a1atXM3LkSK6++ureuBTlOFPBqaKcZqSUfGNzLp9V1na439LqOpZW1/GbQencnpV8nGqnKMrJoNjrY/bKLbhlYxghGevQ+PSMcQBscHu4asMeXCX5zF32EUmVJbw7/zp2p14FQrC2RvLfjfvQZIgPJg5nQkxkl87729/+lvbmcW/btg1N07jyyit74ApPQUIH2Ua+4eZcXVuEprepMaeKcpp5p6Sq08C0uV/vLWSb29OLNVIU5WTyxz35jFuxAzdWEKLhn8YmP6R+tYEKt5vrNu3FVZzPte8+h6u+lr/e8FPyMwaE94WmryY6F6zbzerqzu9JK1eubDcwbbRly5Zjvr5T1rmPd77Pt5f0fj26QAWninKaeSy3sNvHzFu3m7QFGxm8aCOv5Jf0Qq0URTkZlPmDPJ5ffjjIPJIQjFyzl6qQydQNi9FMgzcu+iaGzd72MQ3B7SXr93LB+xvZVdx+kPrZZ591qY4qQG3HtFthYgcLXlzzOrgSj199OqDynCrKaSZ1wcYeK2vr6EwSE0+Mm5miKL1vyuKN5HXSM9yCaYLWhXYwKUEIHDtqeGX+SGYMan1feeCBB7p0yoyMDG677bZuVPI09NKlkLcKhAYTbobzH+n1U3YnXlNjThXlNLK73tej5Y3acggrh8g7c6ya3a8op4H8oAGa3vUDNK0p8OxQw3ZtqM4fv/o3i/gaDovGxUkxDI50dquOhYXd7x067dz0Xl/XoEOqW19RTiNfVrh7vMwgkLZwE5XBUKf7KopycpNH8yG0G8d4NBezBy1kR96L/F/uIWat3sWUJavYX3OQsWPHdq2OUrJz587u11M5YajgVFFOIwGz90bxXLJuT6eTFRRFOblZzF78EColSJNaIrlKvsZT3MElobep9nk5Y10F343KZkX/EXRlVMEbb7zRe/VUep0KThXlNDIqqnvdY92x1+tnTU19r5WvKErfe2XskIYgshc+iDbM+v8Xt1EoMrmXP/GBfiluSyxSaJiaxqaswXwwdgahjlpjpcQ0TXy+nh3GpBw/KjhVlNPImfFRpNp6b6j5x+U1vVa2oih9b05SLE6jYRnMXuopqZPRPB64Fw8RmKLZ+NaGmf26aSLaPXfj+FbJF1980Sv1U3qfCk4V5TSiC8ELowfg0Hpn8pKvF4cNKIpyYth/zlSihb/FY6IHW1OlgOmrFzFxw/uttkV7ahlRuJ/lg8awePBYdqZkE2wxQUs0fVUTo05eKjhVlNPM+OgIFkwexg1p8dgausZ0wN4DZQ+LdPRAKYqinOh2z53GH4dmgRHksfX1XHwo2GNla6bE44xkzuo1DN35+uENUiKFxmejprE9rR87U3NYOHQ8L087l4LY5qmnwkFyZGTXVp1STjwqlZSinIb6R9j5/bBsfj8sG1NKtDbGbxX5Anx9w252+bo2AcKpCa5MievpqipK50wDynZDfRkkDISYjL6u0WnhmvQEXiuq4KOMahal2DreuSvppBqYmkZ0fTizyJzV69k7cDaGNQ2LEaLeHv4ALDWNxnbaoMXCR6Omc/W6BcR66xpPyPz584/iqpQTgQpOFeU011ZgCpDmsLFo+iig88T9GvCXETm4LN3If6gox8oIwUc/hvUvtbNmuAZDzoMrngFHzHGv3qlOF4JfZ3i42G3rMPi0GZLRB/LYnp6E1+HsNEi1GCGG7duCQBDtsRBd9SX96ieS4a7AahhUREazPb0/5VGxAEihIYXB5owBzN67mXDXvklSUlLPXrBy3KgVohSlB01aupFDwcaXlOSieCfPjR3ep3XqSe/klfLdfYWYDT8LYF58FD/ol8rkGNWFphxHpgl/nwUlW7u2f/YsuPk9qC2A2hJwJUNcTu/W8TRw+coFrPB2rcdEk0E00ySk2w+PT20eqDYEuPOWfsCErSsBMG12yocMxWGEW2Yj6+uJrKsjZLXy5diprB4wsulwR8jHN5Z9jBAG11//DQYNGtQzF6n0CLVClKIcZ0uKq7h6xwFA0NTXhOCDCh+pC9ZTPHdC31WuB12enczl2cmYUlIbMnDoGvauLE2odEswEGDTpx/gqXHjjIvDW1uDNE1ccfHEJKXgiovHW+vms388jaemmuiUdGbd/C36DR2Bzd4To4dPAsuf6npgCpC3BH4b3/Kx7Olwzm8ga0rP1u00Uml00p3fjCmsmDrctreSl/pHEhAWZLPZ+K56N7PWfMGoXRuA8K3UkzUYZ8hCVK2bCevWk1pS0rT/GcuW8dp5l/LK2ZcAYGgaIHBFlanA9CSnglNF6QFX7zgQvpMK2uiyEqdUgArhoQAxVnX76Gm7163k/cd/1+3jqg8d4P2H7mv6OWXAIK5/+IlTe0nZFU8dexl5K+GFC8JLOfabcezlneJ+tfMAn1ZUE2/VeXnMUJIdNmx6RJePF1IysNbkpnfeYrp3F09deCXjd6+kJjoee8BHWukhtGaduSFXLNLmwFVby9mff4El1HL8e2S9h1vfepU6q4P/zTqb7Pp8EhIOcO2197ZbB19JLeVPbDz8gAbJd0/Eltz161B6n+rWV5RjdOXarSxzB9sfR9XwEts0eSApUepvVGnbjmWL+ejJx3usPKvDyV0vvnHqBqgPxNKsm+KoBKRGvkxBtznJ/s47aAn9eqJmp5w7t+zm7bL6Vl3wujCR6JhNn8w797tPVjPjvScAMITgX7MnkVpdiUQijijDl5JNMDaRM5avIKOgoEXg2lzAYuWKx/7GNwteZGTSXi6/fEGrfcpe3oZ/W2X7FXNqZN6vPqD0pu7Ea6o/TlGO0bLaQMc7NCSOnrN+9/GpkHLSkVL2aGAKEPR5+eRvT/RomScMKTnWwFRKMBAgTVb5Mrnt9y/xrwduRH78cwh18po+jdyzbU/rwBRACAx0TNlJYNqQ/1STkrvX7GfG/55ssTmpuhq3M4RsowhhhLB5fWQeaj8wBbCEQtz63mtMS1zI+LK7qXhjJ+4lh6hbU4xnSzmFD6/qODAF8JoU/mltx/sox43ql1OU48Rrdr6Pcnrav6l33hS3L17A+Xf+qFfK7lOf39f5Pp0QApwYDNRLGCBLuMaymA2hHP6wxMrdq1LRZv0I7axfdjn90anqlZK6Y3sOhODGrYVc/sX/iNu1GJBN7ax7p0xC91US7bUQFOEbpNYs0HWUl5Ien4jo7IOIgAt2fEHJWQOx5MbjpQwvZd2uqlns7fYxSu9QwamiHCNBODF0h6TkjJjeS1Bf8tZ2gmsqWjymj44l7frRvXZOpedsWfB57xR8co/aalvJtvBkqB7UGHuNtxxkPAfDT9uS/8PY9Cr61S9C+jjQrT16zpPBp6WdtDZ2gZCSGz/5H9b9S2ls7RZZ2aR+9042rF0CeypBSqxHdORaQgZJcYMRzlLqZxggwb5Xw1LaOlDWpKR+qknSnq8fc329e6pwDlb5mvuaCk4V5Rh9OnEQ89fmhn9oq4VBShDw6sRRvXL+Q/cuafNxY0s1h+5dQuajs3rlvErPsUdE9XUVTh7rXuz1UzS+jDX3Ifjn2ZiAsMchxlwNA+dC4uDwv1Pc/0rKO2817WC7DsyMiGDgAw8gQx40ex16bBS2/v0QQpBQfJCiPTtbHGMJGYyphIyB06iYvwZP4g5qmkYOGNi3CWL/ZUGvO3xeCax3nsWl9QOO9lKbhMq9oILTPqfGnCrKMRoTHYOloUuqVUtVw8+jnb3TNXjooRWd73P/0l45t9Jzzrjiml4p1+pw9kq5fWr3J8ftVI2vWg0Q/ipY8yy8di38ZRI8PQ32t/3B8FQxPdbV+U4NY0qP1Pjc3TMsg8jJqbimDyBiwhjsA/o3TdKbd+t3GnZuWEbZMJlZbNB/0rcpvuRTPPG7WhYG+IdJKu4OIq2Hz1k9YCJpoXGtJlQdDcdgtVjDiUAFp4rSAw7NnYhLM8I30cYbdUOL6aRIjc+njeudE9d2YWlR/ynYtXuKiU5Kpquznbtj3re+3eNl9qVQKEiw+lBfVyOsbAf86yJ4rB+8/wMo3dHXNepxN2Sltxt8NhECAuHxnboAa8OfcYSu8eyofkzpIMC1WKzEJKYjAQON2BpJwvBrqM1ZRzCyBLQ2BurrEEoDz2QTqenog+ezdvRgpsieWezEmqgWEzkRqOBUUXrI3jMnUTx3PLekuhhhh0cGJlI8dzwfTB3b11VTTgJ3/euNHi1v8NQZjJw9r0fL7GtPrvoCKyfOzEIJ4K0KL5/6zAzY/r++rlKPS9Z94W86ClBtSWCapMkabslI4o9Ds9g8YyQXJsV2Wv6oq37KJwPO45/ZNzPQa8eSOISajGXU4qKUZAK0keRfgu/sRKznPULpiDMY7UvpkVZT+/TkYy5D6RlqzKmi9LCHR5z6Y9GUnmdzOPnRa+/z5kP3kb9lY6vtQrfgiIwkLi2dxOz+bP7i4zYDBmd0DJf/7NekDRp6HGp9/NRXHMS1/a2+rkYLjeFQrbQTJb3w31vg7s0Qnd6n9epJm+dMJ/vLpQREBy2KDenyDsloNpYU8ODMrq+49aPNhyiU/UGHJGsEG2J1/hx1K1u1cEuoVfqZzUKu5HViqAkfpIEZBRZbFCJUx2DnyA7O0DVioIukS0+t18zJTAWniqIoJwghBF/7VddWiDrn1jt7uTYnkLyV2F+6nFtCvr6uSSsF/gS2O4YwWW4l1qyDlX+D+b/t62r1qLx5M/nr9qX8psAAPbr9SVBCsCrQ9awGh6o8FBbVN/28ZFAO909xAoeDxKCws0CezUYm8BvuJZZqkAKrN5Fao4ZskdL1C7Fr4D+i5T3aQuYvpne9DOW46NVu/cWLF3PxxReTnp6OEIJ33323xXYpJQ888ADp6ek4nU7OPPNMtm3b1ptVUhRFUU4m/jr4z9fQQz4sJ1CXfqPgFpMD3ljeTD0bkLD6Wagr7etqHT0jCF8+BA+lwwMx4X+P5nCnywLC2aWcp99Yt6VLp3p5xQEEEOOv5ds7PuKxyy5GIlt1CJhCp4p4XuP68ANCElswhxg9BtmFDyxahIXYSwaS8cAZZD46q+U/FZiekHq15bS+vp6xY8fyzW9+kyuvvLLV9scff5w//vGPvPjiiwwZMoTf/e53nHPOOezatYuoKJVaRVE6k/norHZTSTVy3atynSonsS1vgq+mF6aLHTsJ5Eyq4sLkr3A7LWzLTGBIUQXWV66Cb31BUBPsqNiB3/AzIGYACc6Evq1w0WbY8QHoVuSQ8wkGokAIrBkZCF2HvV/Bv6+g1epbvmp4/lx+lnUDj/W/teMAVQg+qew4mb3P52PJkiV8ubSUERXV/Hb5s6wZPYa7Xn+BM9etxGaECOo6a4aP4Ylrv0V5fAKm0FkhZ3GTfJGEymwiSycgpAbWiDbPocfaiJiejj0jCnv/aISupticTISUxydLsxCCd955h8suuwwIt5qmp6dz991387Of/QwAv99PSkoKjz32GHfccUeb5fj9fvx+f9PPbrebrKysLq3VqiinolAoRPGv2k4pZb9nGElJSce5RorSg96+Hbb8F6QB0I1V3I+f5nWSgAkE0fhzcgpvO3U8moaGxjk5Z3Pv1J+T6Ew8fpULeuGFi6FwTatNIT/kfpSEoSUQMXQwGQM+QLfJdp9fCVwz+vcsjp/c4Skd/mLeGTGV8dmt84X6fD6ef/55ykpLqciz8s1Vr2M3goQsOtaQ0Wp/Qwh+8e0fs3rMBACeKnyNKVvPRpf21ifWwDkqkZjz+mOJ771FT5Sj43a7iYmJ6VK81mdjTvfv309xcTHz589vesxutzNnzhyWL1/ebnD6yCOP8OCDDx6vairKCc9isTQl2i/7ai9ISdI8NSmrp3gPuan4y6bWGyItEDAg2Ozz/XDIvFktetCzWoZKIeBEW6tJHPG9DgSEhZ+UFPEDOZhC42bq6Edlrps/7PgVP/nGw8Q743uvQlLC3i/g8/uhtO2hclKCNDQiEoPUFrjxbFzH/txEBl/Q8bKfPz74YofBqV36+Aavc9XzIdb8ZD7xkS1n2y9atIiysjLiS8voX1WK3QiCJtsMTAF0KXn0b//HilHj+evVN5K5Zz6y4hDE92/aJ/XeyZheA0uMDS3iRPvrUI5Gn7VzFxcXA5CS0nIwc0pKStO2tvz85z+npqam6V9+fn6v1lNRTiZJZw1SgWkPqttR2nZgClAfahmYAuwIr9h16NUNvV+500W/mU2tpnDyzOK1ySCagP0ucJpJxBuxDPRn8d2D11P4+yXIYDfHz0oJQX/n+/nr4Pn58MpV7QamEO6ZtzhNMmZWkzWnHIQkJtOH7KBaApji3kqar6Tt7dLkLD7jDOtSslNKefntlguAhEIh1q9bR2b9HtLHbGZM1dbwcWbHbeECmLp1I39/9D5i5GL0uH5N2yzJTiyxDmxpkSowPYX0+etcHDF2RUrZ6rHm7HY7dnsbzfmKoig9rPpfu47uwE11HPKtJ/ObE3q2QqejUVfC578Gb3id9xOtS789esO4zeGePeyJfZQY3YFPy8Ko+Tqx9UmUP/IiSddmwaCzW4/hLNgAuz6Cytzw91W5tBgHGjcAbngbEvrTynvfhfzVTT9K2eHkegAiUwOkTa0i5LW0Gm7almwjjyKZHK6T0NCkgSl0RrGZr/EfdGFyYdkC3q2Yxw+aHVe9NZ8LKoMYQxLxR3vQQxWEB0F0/lvVkTh9XsSKDTBxDshw+BJ31ZDOK6ycdPosOE1NTQXCLahpaWlNj5eWlrZqTVUURTneatcUHlsBu+oJ1QWwuNpIIq50nS0CrnsD/nk2UoIhOn7j8jg0kBBxZMqgPjTIux8JaOwgYP2cgoipiOJL8L/8TVbFDqQgegLTjRqyq5YifKWIziLEqlx4ahx8ezmYQVj2p3A3vr+OI6PLLkyuRwiIyfFRujGq0/7UoND5ju2PjGAui5mDW8aQQglnyc+ZxCr0howKeshLXYIV0/RDyELlf3ZSXbCB2pmL8EUdpLo6lfIzp5K0tZoRO3d2XklAkybk78E3ZR+O4BAixiRhzz7+c03qqiop3Lkdn8fDwMlTiIyOPe51ONX1WXDav39/UlNT+fzzzxk/fjwAgUCARYsW8dhjj/VVtRRFUQBwf3rwmMsofWkb6XeO74HanOaSDreO5Vss5IRC7cZQeZlOEisCOP3mCdPKKgBDh8IkO6YmiK1ZS/mSfeSZTgZn72N0xlYqs5xU615sTg2Hz8DSlanKf5/VYshDc40tpkd+7ayi0hCgyzb3lcAHybNwWbZxNp9yNp+2WYyJYJeRRHpUIbXVuwl+oFF9aCt5Ux7GFCF27ZxJWVk/4pMOYVxVjvkHiebt4m9LSvC4wSKJv3ZY147pIXVVlfz3oV9RkZ/X9Njnz4a/Trr0auZcd/Nxrc+prFeD07q6Ovbu3dv08/79+9m4cSPx8fFkZ2dz99138/DDDzN48GAGDx7Mww8/TEREBNddd11vVktRjor34EEOXHgh8oiB+465Mxjwt+e6XM6WnTv4auN7WOQesv0lTHLGEjv/dzibjaM60u9ffYzgvl1oBtRkRvCt+bczMGvM0V6K0hVdaXLqhJlX1wMVUbBGgsWO3z+YzNBWvOg4MNDb2LUswUbAqpFYFTzu1eyIxYDqGCslyfZw+qb+BnqtoCTZwpjtkoH1tTQOvdQkGBqIEATcGt5yG5pVEpXpR2t+0UcEplJCvWHHZfE3/fke+WdsSguaCLVZR02HorUxpE+tbjOYFcCimCmkyEgmijVNraTNGWisMaeyeoDGJTrseno16fVDqBjzNlILkn9oBOXlWYwYuYCEhAKkKag7SxD1kY6QXXvN2YwchE3r0hCEnuJx1/D83XcQ9LWdJmvte2+y9r03m36OjE9g/u13MWD8pC6fQ5omRbm7CQUCJGX1wxl1+mYg6tXgdO3atcydO7fp5x/96EcA3Hzzzbz44ov89Kc/xev1cuedd1JVVcXUqVP57LPPVI5T5YRTs20tBVfe2NASI5vWcZZC4lu8lDUXDWfLhRO58Oa/khJx+IZimn78/jI0zUHp/mL+vvg5RiavYWRScdONf7V0EfvuZUTvC5GfcBl712xBGuE3nbrIaFKll7PX7MMeOvxmu/W1ffzg5quoSxvGwnkzjtOzcHqJuaQ/1a/s7utqKAC6BUZfQ3BNPaYRjdBWsk/kMJiDrVpHpSYoT7RRFWMhtibUejudj3A0JbxhzGGVOYLfWl/AJY59ZSoJZBX6KEkJpzgKxmuEYkymbHAT4Qm/3rVmwZZmgtRASzSJjvOhmVBfbMMeHcIaaTYlqi9eEw06pI53U00E0cLbdmDZ0HoqcVETvJBoy6sIYbbYHqjTcR+MwPBrJEyoJTKqZYAvJdyz/Hm+qJ+Eea4NLcnXOOwUTJACqryJfFZ4HrHucgZUpeLw6oScHuqj10MNFBwaTr/+G4mPLwifV5PUzZfY9mnYdwKCDoJUgZkai+5MBsD0hdAjj88kqFXvvNFuYNqW+soK3nn0ATKGj+Sa+x/tcC7NX++4EW91VesNms7tTz9PVHwf58ftA8ctz2lv6U7eLEU5GiXvv0L5T36HaBaUNieFxIyCkl8GMb+K4cvrH+WBcVM5sP9PFBx6Bes+A1nnJJBpoCUGWhzrq7JStCaZmgNR4Tt7Y5kNXxsfSampY9zBUvSGl6uhaXjsDu78+YNUxiWRe87U3rj0015nCxx0RkuPIP37E3uoNqe5yv0E/nojZXW/JM1+AxsZygJxBkmUczZLSacME9g0KprKWCuaKZm8oRqXt3XrXmOA2vg6MwVUxloxESyom8z9tbdhoCERrLB/j2RR0yOXYApYMOtwjtPkEh+jd7Xfum6KcB19Dg2HzwwHrCYUr4sGBHGDPBjxgvKyCPblJuByBpg6pvMMNmWB36JRQ7z1901BqxmCPe+mIY3wiFcDODghipFpJeS4qhEm5C2Px1PgwNA0NN3AM8XEM81ELwX7Lg3LHh1qYWvOCDYOv4IaR4jvHizEkbcUWZJLdWIqBfOuJm7mk6Af0bJtQMQKjchFGnqpQIRaB6lSgHPGD7AmjgQg/Xcz0Cy9n3RISsmfrr8c02i7xbkzVqeT+LQM/J56YpJTSeo/iLUfvQvBrrXu3/HMS7jiejH12HFyUuQ5VZTjze3exY6dv6S+vpysrNsZPKjj4SPBsjIW3vItyiLqGddOYArhG6juBsdege/SGiZtvY9FdVVYMJAC/ANAE95WY+SkBGuEga/K1iIwhdYtOyXRLv49dxiLpl9AlKeOs9at4Kw1y7jmkw/5ww238+SGjXx//LjuPSFKpxLuHEvFX9tJJdUFcfPbmE2tHJ34/thuexbrX5ZRGbiH8bbH0DD5glk8y/UMII8JbCar8CCV8TayCrxEthGYNgppUBNtpSLOSlGqg5BVwzAFiWIXU7evYXFBuEdivTmEs7V1WETbZTX/INlZq2zzl7nNb5BUGcCk/TlImgwHqBEN1yFE+ASJI+rZ92ESNbmRJAyrJWtMNUlx9awpz+jg7M3KpRaveSYB+TE2wummilbHhcebNlyDBsTtDPK2MRqLMBhcWkNOUTUaEt00wRRELtOJXKa3eB4ALPUBDtYUMW1vHradXyAFiMhk0ib/mLjIPAqODEwBdPDMNPHMDF9r7MsWIlaIcLOsNMEWiXP8jU2BKRGWXgtM3eWlHNi4HiMUJLnfQJL6DzjqwBQg6PVSkhse4lhdXMTBzd1LNffmb3/JN//4t6M+/8lIBafKKa+ychUbNrYMRPPy7iMv7z4A5p21r9UxZiDAohtvZNnUKVz91hvtBqaNpC6x7tcoG+8gtl95096i8b+GB2qJYgMT8eEgQxximHUbGdNLyf04u+OLEJBQWUBpXBwH0jPZPHg4r86/hMeffBjdNHikUvD9zp8KpZuc2dEk3DuJiv9bG25K6gbrsFgcQ1uvkKMcg5QRJNyTSdkfPsYduppx1jcZzU4Okkk9ToJxfqLcITIPecjO97b7qhWAbkJljJVYd4jEqlrqI3QKUx3UuSzcOOINdlUNpsSTzIvGuZynt15dqbkCkrHGV5Fc2X5LmEl4PGyjtBI/utH+akxNdZUtV58SGshYE8uwIME9Nip2RqHHhzDHhshKKMfj14jwdZypwJBJIEPUh85BC+2gaHUs9cUtV1TSgHiPjwh/kHqbhbKYTBaNPwsBjN+1ldF7d7UIyJtfx5jivYwuz0MLhcJ7SEHE9LsQ1sgWQwk6Yh19FXaPExnyokUmY0kdg9AsDc+DZKG5ibI/rmDMmDFMmTKlR3pOgz4fnz37FDuXL24xk8zqdB5z2ceisiAfIxREt5w+eVxVcKqc0srKV7B58w0d7vP5FwOpLhmLqzaCCcEpRI6fSP36dWwYOZJEZx5aqAuD9CVIi8RFfas3GyHCkwT+w018zvkYwoKQJlJoJGvFfDvrSXR7CMPf8ctRSEn//N1sHRbuJi6PjeeB23+I0+ejLiISQ0r0HpjEo7TkjHWS+VDLVZ/MgIGUkqL721421nVuNjFzsjscZ6YcHT02mpSfX4j3nUrcO0Jg/4IBRrgr+0CthTciIrk+t67TFWYEMPigpym4iq0JklXo40CWk93ZLs7MWsrru65gpTmCJ4JX8kPrW4Sk1tSC2njcBnMIRTKWyH6S2NpyrEHZupekYd/8jHCQI0xJRpGX0kQ7kmCHy4WGdIHVkE11loDXqZN3lwBvEGsRFGVGIhvi3gM4iKsKMHx3Hc4j0mlJCSGZTkAOAyEIminkfpyMGWxZ44KkFN4+81yWjJ9CndNJSLcQtNrQjBACwYsXXcXA/AP89pk/kFZZjj0mSOxADzZXCCOg4c5zUld0uB1ZSxqG5gqniLTX9gNTCw+q7YBmtWPtP7vhupsPeZJs1fLYRzG4YdmyZaxdu5ZvfvObx5SGUkrJe394iLwtm2ga0NvwNejt+ljT3uKrqyMy9vT5sKuCU+WUtWv3oxw69I9O99M0iE/bBGmwNrSW0nUpDH7DoP6cs0mPDHd5SU2CSbstqMIUeCe3n7rmeW5nEfOQIvwm0Pi1jCQeEQ9wW+IfiCyo77Su1maTogxdZ39GNqJh8tS3N+fy7JgBKiA6DjRbuCuzcdlYaUqM2vB4Yj3KhtDU76A3iQgXEdd/B0Lfwl+ey79XvMPFm//MG9F23o+MZH69lxSja03djb+pxslI/fK9eJw6A2P2N+3zZ+NK1svB3KJ/zJna4WEeT4Yu5Qnja5yjreW73h1sHBXNuK1ubEesHCYFbB8ahTs63PJlCUmcfonHqXcaRGtmuKyQLjA1sAYlsbUhrEGToFMj2J9WYwmqYqysGR/L1PXV2AMNwXRDlapDd9KQMwpfqadVYLp22Gh+cedPMDQNU29IDdBwsKkfDhkOpGdx9w/v47N3biV1SA3SPNwDH9PPi7fCSt6iBIyAxvYkDa9lG6OMHOID0UQXT8OdurLNADW8rKpg0bqNZFkN0uIngTOWOJ9Jra+Ild7lVFOL1eEkGJ2A1HX8fj+vvPwSo6Id+OpqiU5MYuSZ55CU3a/D57biUB7L3/wPJfv3YgSD1FVWdPLb6Du2Pm69Pd5UcKqccqSUfLVgBBDodN8j2fUgWaMOsadgBACGS0cikQK0dkJPqUlCqRIjte0yi0hjoTin7WOFjiFh6bB5nFvwvw7rJoDShJYn0Uyz6Q3k/cpaNrg9TIiJ7LAcpecJTWCJUSvXHXcWG/bUYdxw+c8pPPtuPn91DtUWL99MTeKDguKjWp9bAjl5HhYOapmoaok5mh1mNqvt36WYJH4Z/Ab7ZQoPWl7kOv1LqgotbB4bzfIp8aSU+UmsDCBMiTvKSmGqnYD9cHmGRWCK8Oz93OwIBuR5Wo1XlYDfJqiL0DmQE0lNTDiwtQZMMgu9yIagtc3bkiYIWuBgppMhueEPvaUk8Ik4k1JrHcNC+xlpZGEcWN3isDpnBPfd8SNCuo7Umj17bXzgNXSdC/zLSB0SnizW8Hm76asjLkjG9EryFyXSb99e3h85kj22YuYGR5Gz83r8rnz8UfmHr0GGr1kagj3v5bA3Jo2XJo7mYFZW+LqDAUbvrGLaumIifB4A7CWH8KX3JxQdh7uunk07NqHV1yCEYN2H7zHu3Is46xu3Y5oGq9/7L/vWrsLn9eL2e9gdnULAaie+ppzU0mJ00ySjuo5ktwfdlLidNvITovHaToyudKvd0flOpxAVnCqnnCVLZ2ASaDUOqisaZ66mztnLwTUTqalLITB4L7Y9At8IA8d2HalJhCmQInw3NeKh8s5Quydbzqym5f3aYgqdLQMncc5X76O1kzzDFILKmEQKUnNaPd5ESv5VWK6CU+W0lB7lRHPEgywg32bj/cgILqz3dPtNTgCRPpOCkpxW26yEeEzeil9z8YD1JXJEMYYU6EKyo3Iwi/IGMCd7BUWpDopSG4KJNrLgm0BJoo2UsgDJ5X5ys50kVQSIqg+39gYtAp9doybKwq4hUYebPYGgTWN/TkTnF6IJDiZHsH7fbKqIp0QkNVydn/WWXHbpBVyWsh2KDh/yybTZ+O22pp6dDouXBnflv9Jucn+hgSstgD0mCDXg9NRT73KxwLqNr/mnk736V9RkLKE6cyEhRyVaIJLCfQYl6xLZmT6K9+Zf26K8oNXGhpFT2Jc9hBve+TsRPg9SmjgK9uGxDMN0RhK0O7HXVRNOQiTZu+V1Av9exa4vSgkFNFyxFg7FZbI7YygVkdFk2AqoT4/B3F3D3Be2EeEP4dM1aiIdOH0BRuWVsicjhSpn+K+or/pDZt/wrT46c99RwalySvD5SqmsXM6Ofe9h1pShOeh0Gb72CAFWRwBXXTUVMp3im3SyHjTRSwXl3w/iXKNhKRFIB3gnmngnmmCDABZstJ7RWUt0p8sRSk2j3ukiylPbapshNEIWCx+e/bW2kxc2+36z23NU16wop4JLR1/CM5v+hhTwfwlxjAoE6BcMoXVldaQjrC8e2/Dd4deuJnT8mgsAB36qZSQHZAr/Dp3DB8ZULtu9jOioEO5YnVZZ8IVg5HY3tqBJVH14zDICIj0GA/K8eOyCymgL1pAk0mNg1SS7BrtaltGoixej2SR5JRqelMbANPxFAnXCz5r0yYzfsqJplv62AUO6lggWGOTJJ8Nf1uG+0gRXug9/jRWpiYYWUslOSwGTQ4OIyz+buPyzkVKyqXIhhe7VBHULH829EilEq+uUmo47KpYlU87h3MXvEbJY2d1/BGZCJGOcRYwK7WW/GYMnwUX/sZvxFVvZ/mEJMjYeQw9RV1VHXNV+pubup/H3KpAIQ5IbH42h6xTER7U6b18O0rFGuph88eV9WIO+oYJT5aRzMO9VioveQOIjFKzHHwgnc7bsAC0NiOKoA9NGQoArfR/11ePZsv8stAe/IOUZiH5Dp+YGg+CAZsGmhFBQ5w39Wm7QXm5VVgJldLaQomaEsAd8mDQudWjBYoQI6Ra2DR7L6vGzqY7pPBFzlKXt1llFOR1cPfRqXtj2Av6Qjxpd5/r0VK4tt3JDXRkJdH21rnps7AuGu5MFEokgBh+zbAcQmGRQxH6Rw9vybAKmZJ5Yxi/s/yFe1OLdrbFqQiyGDhwx9nh/jpOp62taJNtvFOGXRPhDSMDt0DkYbMh9fAyRkREU6FU16JE1GFGxrbbvdmUxXF+P3QgPgdKkiZCySwsvWWUXV+DSoNYViSci3NorBRSL6vD3GAh0CoLb2O0OZ0TYPWAUAZu93QBcajrbh4wjpbyARdPOJ2C1oUmTT4VAH2Ry85q3GJu7gPx30jBNMC02RHUNmqZh2BzoAR+HE2Y1DCXQBYeSozGl1iMrw/WUiZdczZnXn55LoqrgVDkpuN37WLN2frvbHWs1REDiHSJpc03DbpISRHQ9cz9YxvrRo1gbuoS063eREpeLvTKIWWoi4w185RohGUFJXDouaz2bGMsYwhMmGm9xM1nMG1zf/g3flKTtP0h5ZCL7hoxk69Dx1EVGYw0FCOnWlmO/OvHtrKRjum5FOZklRSTxl3l/4Xuf3Y5fmtQLwT+SJM9UP8Jay4+JFP5OyzClIFIEOF9bw2fmJJwEGGIpZ6BegVWEu93nsZx1jOISsYAplk0tekycfpNJm2rYNiyKOtfht1hhSmJrQk0Nse2udW9A1Qex1F6itejO7y5pQuWuWCQCa3VZm8Gp1DTc0dEklZcDMGHnVr6adEaXyt/vzMSj2Ykw239OhQb+Sis7hw8/fLFSghHE9FbhjS+gcvBXlBq7kAXhdHoVcUktxtK3JWSx8vnsy5qeRFPoZNebXJUXYkjFQA7U7sSQQUAiQg2rhJkGloDRxn24cahFY2DafImG4x+opg0dyXW/eey4n/dEo4JT5YTm81WxbHknaxMbYESaBCdwzC2mzQ37sJwx372f6TNmsPf1N3AXxZGYfTcxEwey5ctPKV2+D4vNRvJIJ9H25xjCblYzlTf4OufzIVGEu+gjqWMeH/M5F7V+R5ImNjOAnuTlla/f2WJb0Nq9CTZ24Lyk2B64ckU5Pr78ahxw5FCWSKZNfY/IyKNbwGBq2lQ+jpvJm7kfscThQIgAla51/KXucn5mfa3d4xrnF9XiZIschlW3c5llKzZCaEIihUYEXi7lM/pxiP4carcsl8dg6vpq3C4LtS4dzYSEqkCLWfztNdDVHHTiLbeh+Q26snh8W0GuNMEI6JRuSgjndPW3v/yqJg28QyT+KCszDq3gH3XXUhsR2WFw6JT1pGiFrLIO50zfxjavRZoQ9GqsixpF7oABLbYl71xJ7Y4XCcZqeGZ4cWlgjQoQrLVhDQXCXfrduPCzioM8vNlHqfcgS4rebbbT4fwqR35tret79jgh+P7Lb2G12jrf9zShli9VTljBYD2Ll4zpfMcj1/o8RlJCqTuRGe8OJ/sfzyJsnd8wqqrWsWnzLRhGHRLII4cqYsmIHMjXJj/G+8WV3L9tGXV6HHUiuulEQ9hGTKiWNdbph0/e0Y25ne0C2HrGSBLsJ8bMUkXpzJdfDexwe7+c7zFw4A+PrvADy+DFCwDwoaEheSD4DbJFGbfqHyGQmGhYGlZWMNA4IFM4RCrvy7NZb2RRZ+q4hI9KGUW2Vs0vrC8zRWxDxySIhqXTwTpHWfXPE/BW2PCNkuGJlp0wQ4AArVksWV/iIG9BOv4aOxIw7RF4BoxodazV8DF22gc4nYfzeK7zTOYZy/fxWh1N4z4b8zLbpJ+b+Ccz5SKsIoQeMhm/wU2UNxReLKCxcdQE0xDkLUig2Ehi6ayZ1LtcICVCSi744ENcnvD4+PLvBwkMk+R+0A93gZOK2CSe//oP2r/gxpxVDTI8Jv9dWo8uYUHxy5R7C9s8zGIYpFXXEWEG8Yx0UJGZiNtIxVfnIjJ3G6KLoZDARB7VdNvWLrj7pwyfPvuYyzlZdCdeU8GpcsJasHA0pnl8Jvg0fxVU1Uczbec1ZPzgh2j2nksPJKXk1fxSXtq+EKSb8VEx3DjmQkZER3L9xr18WVXXcmYvHNHKKhmgG1SELNSIxsH8ggsTo3lmVD8s3ej+V5S+1Flg2mjcuJdIiJ/R/RNICS9dgnlgKT+Iu5xfV3zCfP/vWWK7m+XmSKKFBztBqnCxzexHllZOmubmRXkZNSGDu/W3mKLvAsAvLbxrzOCfoQv5jeNFhpp5HCCZTeYgbISYrW0iUzu6/Jhtfdbc/W4Khk9HCknZz4OE0mg9VKlZj3PJpjhK1yfiyvSg6RJvhR1fpaPFrsHkDOwJLgJY8XE4i0D/AevJzNreomhDalQRy0cHrmZT4ghMvyC1rJBxe1YxZ84K7FG+5rEhmiHJOuAle7cfa4SBGRTUHHBSuctFsN6CKQRep5NPzzuXoM0GpklacTGzFi8BAe4rQ9SfZeL+aB65+eHA8t3517K33/DWQ5raeMK+v8vHdQeClKV+yFeb8wjEJWM6IsA0sLqrsFaX0a+4jP5RZXjONwgMAKEfvuHXFTvJX5SGv7pr93qHFsBnWjmW4HTI9Flc9IOfnnY5qVVwqpyUpJT4tmzBn5uL317NVttve7dnRbb4gi9gJz1wKePOe6BHg9IuVUVKfrorn5eLKsMPmM3XLDRJkB4+nTGZTOfpletOOfWE8xAP6tK+Tmd/zpj+xdGdyF/Ll8/N47eWCaTUH2BV6V3cpH3Cg9aXmnZp/BwoBfzR/BYHQ07+ZH0aAL3hA6DXoVERbcMtIvhvxTloXjvPGec1taAJ4Ab9U35jfalLtyvZ9N9hzWOU3E+S8FdbAIERHW49DWbL8PK5knCgGgIaOklCPo2dbwwg5LOEL6R5uVJi1U1uGrSeGD3ctX9QS2WJNpnaRIPBg1e33SXfLAb011ooWZeELTpAyrgKhAZaNYgAGHHherg+04h6T0fItp8BCeycMYADIzNxu1MBwbzPvyChopyarxsEJyaif/pNVpaFcz0HLFY+nHc1e/uPQJgGQkpMTUc3Dc5Y8yVLpp3bVPbLy+tJcy1kkbaDsopBLSsvJf1KdtN/+hpCWW2HOtIEI6ix++3+BNxd6Vbv/ljUxjMPm3kmF931424deyrpTrymxpwqfa5g2TJ2/uo+HF4vCEFNTCS2O3IRPRwftrilSMDUCOoaA7K+SXbWTTgc6T17wm4QQvB/w7J5dEgmX1W6KfaHmBQTwXBXF/IZKspJ5GDeK13e1+vdj5Ty6FqY7FH8LD4KR73GZkc4knvJPI9DwWTus7xMf60EgDocfDfwQ5y6xuPWJxBINBHONbp9iIvyBFtTsDODL3FVGizcPJy9gRxAkqa52cxoHtJu5Jfmy52HLUd0jkDD9w1zcGL7eyjZEH7j1t2CxEctBIZIfGNMpBUshyAwQOKbGi7A4jAZdEke+z/OxO+2N3VPSyGIsXq5PGtbU2AKkGUWc735Plvioihr5ybb/Om2uUJkn1mEDIBzs8D1kY7tULhF07RLPDNM7DtEp8Njk3dUszlrIlHOcmo9iewZPJiEynJ8o01S9lxNrTgcjthCQS7/9D+UJqSya+Ao/DYHcdXlPOB/Cd2RyfUFg8hP64eh6QhMtsSso+zAmFaVF8Ike85aQontV05ooFtNUieUkbcwo+OLCB/RyfbWwauJxnW/+z2Zg4d0oXwFVHCq9LEF555HUn4+aaYZvrcJiK+qwnjESvldIYyMo2zYl83+6UAApJmA1dAQwsmQiT8nNa392f99Rdc0zkmM7etqKEqv8Xjyu3nE0c+atgs/lTHZ6HUrQPOB6eArcwJfBSaQSA2RwkuxjCNGBLiOBcSI8DAiQ8D6MTHUReqtupHrYnXumfw096/6OTO1fKI1P6aEgJHIdjGIEeztsLZHpj9tWugpfSLrSwwiBleg7Q5iegApEAjsuwX23VrTanTuq1qORXXEBJgYe4DghigqXeFlLgellTNiQHGLsagQnjMqgRG7a1kUbwO9sZWxsYJt19exVRC5REevEk0LkWh+QeRCreGwjqca2QIBQKPWm4BFBMjLymSwiCC54GpcpZM4aK5u9ZtOrigmuaIYkNi1EMusWVT6nZx56ENeveJ2ALalH8RXkkNbfydZjl3IlNZLpLaqnwaxg9zkL01DhjoeHqULE0N2vE+/iAoOeMKp/wxNxzNkHIlZ2Z3WQzlMBadKn1k072ySCwqahpYLwp/E/VkSqUni/q5R/oBxdDPwBdh2CqyHBP50SfZF79O///CevQBFUbqtf787KCp6rkv76nokogurFbVnXtZZvFaUj8uMwha3nEDFXBoDmHJiKJcxALilIJ0yglLHKgxKk+0t0kC1oIEtwsetWZ+SlDePlFAMEkmBVslyfRbDyEXDbD2Dvp25jk2pUCfdwpix13HXf5ezckQtf/jzg6RX1bSIGT39BbW3B5F6w1UYgA6O9YKYD3U+mTKZDUNHklVRxMXOvzUFpqaAukgLsiHpvzvKwt5+EYcD08YTtMO+WRD/giXc6ms25AdtWCFPmOFMsLJpkENrphC4o6OansAQVjQkS7Ou4MrCyQBsc9VAhQi3lLd85hBoxEZNgEAtgoMkVZVy3dvPsnPuDFYnSAYfjGnzvLGpBU3PUWc0HSx2g2AnwWmCrZ4yfySynTcmgWzKNiAB34ARZGZl4XCoIVndoYJTpU98PP9cspsFptIqcV9iUD/TDOdEAghydIGpbDi2HgLnTGLOWa/2UK0VRTlWTmd8l/ftl/OdYzrXDSNu4H/7rqE6+jyizcWYgQRCtWM5HLGYgIbV6iWAFY1wK1thir3TzBkjUg6Rs78/jVFdtplIIDSAj2wWztVewCpDhG9gAiGMhu/bacUTOpRswaprPHPNTP6dm8dNv32KmWuXMmv9CuxBH7szs1gx8Qy+ufZ1hsZvx4wGvRwiVujYdgr+fvn1/Pfs80EKcnwF6Gv/igQOZDvJy3ASsja0cJryyKGpHQtB9H81MFq2jjYfX7pmaAr28V7ik2pxBoM4dmtErNTQPOF9GpdlHrJzFwf75eB3OBAyhF8LsclyELO2jPrIIKLfcLJqAgzSBuO0RFEXrKbcyGVY5GxibIkIBFWBMj4reJ7EqlJmv/0W8XF+9qfOarPqpl10+T1EmmD4O49i3UE7Tj2E17AcEaCGW27HxRWxsSo8RCyQkIpptTNz5syuVUJpooJT5bj77+VXMDIvr+lnKSSmDWLeshD9nsQ7yaRuvkEo9ejKl0B5KJZzvv05CdFdfyNUFOX4GDTwKfbuu6vDfRyOHHJy7jim8wyJG8ITZ/6RHy/+Me7gbHTNgzPxQ/yegRjBeAzDCZofTCi2RjQFUQFbJysFCQjZ3IgjIh+r1BnpO5+nNY3ptl2MlgKkBZ85Eau2j2jLm+2UJ8LRUYMbBmQTU1bMU+lZPDNiHAlmJDPKJX86ECQlcA/Gxs0EC9djUM3S/tn89boLKExKaTq+zhKJBLYPdVGc3HK1JamJzlPWNWeBsgcMIr+SRL+rN7WcNjIFjIwopnpWeKiBHwhlGoRSJJFfaVhLNCSQWlhEemERYzdtYtO4seweOpSx4z7C6ahD1usM3BnNMPcdpMY0y2/rhEGMP1x3KdlQ/vnhc6NRVuVEi/Vg2p2th2D444mTRZ2OCpEmVOdGY3bSagrgM21EW3xkRtRwyBNLYztvtNXHQFcl22pSMBEYrlgCSRnMnz+fYcOGdVqu0pIKTrspEAhgmnU4HCroORqf/f4PDMzNbfmgBL0+/AIXIYFztYZjnUbF90MEB3Z/zGnQtPDgige5+oK4nqiyoig9LCfnAqSU7Mv9fpvbkxIvZPToPx1Tl36judlz+eKqL3hv73u8tHob+3NnIkOHu4Etrj2kRq9ka9GZePUPcBDE4TPxODsI4KTA6mu9nLAmNKxYGFwZxfqYNDL16xsPQHbUt2yGIGtqi4fSdI0zcrcCMC8wmhwzEQ0NhIYlbRyWtHEUOgT3zY5slbS+1J7A6rQB1KW42z5fdyeYaVA/z8R0SOL+0zKXsibBsUcgRHgGf8xrOs5VWouWVcHhnnUhJeM3bCRgteCaWYGmAVZIm+bF4/0bodW/wBKIbbMau2pWU+ZvOWbZoUWQVReFtKRSodVSJtxNwWhx8WAys7Z1GJs25mQtXpfY5afDHXLgDjlIstcRYwvniC3xRrGhKiM8zcEZwagrvs6U6WcQH69ihaOhgtMuWrX6CurqNh3xqGD8uFeIj5/a5jFKS/6KfLQvFuPwt1zu7shxSsIMf7KPf85Cye+C3VqO1JCCpQXTuHpiJrrWzRuw0muWF1Zw7ZYD+K1HBhuCJwel8bXslDaPU05d/fpdSL9+FwJw4OB/QbrIyJyF1RLZ4+eKc8TxjVHf4GtDPVz/4Y3sLjIxQhEISw268yAlCMY7ylgYnMb5LCa92EdlfEdphSSxh85sZ5sgI2Igew6txsgOoQtLw3jMdhLqCx0iEmD4JS0ezszMbPp+p15AfzMZgJCthvrETZgWP+udmcS4B2AKHXdUTIvk9BuzMxhs1oRbSnuCAO9MSdTnEkvZkQNqw//inrVg3yFapZSSHM7L3Lj7mG1bqGpWNkiCjnIKRv+dzMW3IOvLEFYnWmwOQmgYMsTOmtVNZWrojE84iwFR49CEhgyGszpUUssC2zaqRB0+r4u8PWPJGbKpcQRHK74qe3jBgjbznLY/GU8CZX4XZX5Xi3HBIiqWWx//E1HxXQ92ldZUcNoFixZPIRRqK8myZMPG6xgz+l8kJakxJR06uJyyu+/F4unajVJIgV4D9m0C/5iutZ6aQEhaWFs8hxcvH3oMlVV60it7irgnvxhsbX/K+P7eQn65r4g9c8cd34opJ4x+OVcdl/NEWCN48fzneXD5A3xx8IumsZdSmixJXYSlcB5uM5pzyhYRVxWgKtbaxtqgAkdNf6KKprV5DiEEGjqmKcmv30U/10gEGvaUWqgiHIxKo2FnHWwRcN3rYGkZDKemppKZmUlhYSEFspJdej7RgxZQnrWUVUxntXsq9W4nY3asZ9TOdRi6hbVjZ7Bu9LRwkGoPcuTUomMmofraEHEvWNBrGwJNTRIYamLbLXBsb2+SkECK8ERX3ZmGdeA8XOkTSPzSij86n6rsL6hNXQ2aSSi4g7p1j6BV+8Ityo5YHCMuw53SD3+zRVmmJl1IVuTQptb1xnRjsTKSi/0T+cr7OfF5OxnwTi7mCAt15xoEc8LvJWYQ0GF57iQKVqQwxJN7OK00zcNRiWYziEj0YZrgKXQR6fHyRtaFFEZmENQdRIfcZPkKGa0XYo90MP+yy1Vg2gNUEv5OVFSuYePGr3e637yz9vX4uU8V9cs/p+r+W6mt7EfAX4kt1PmSfBC+6dWeb1B3QcNYrLaSRXN4U10ogq/ybudHl99CTkLPt74o3WeaJulfbQxPSW63izT8WxzpsPHlGSOPX+WU01fRZoqfO5MtdhsaEB8y+G5qMn4sDK8aTVZdNjZpkDFgKznpe7Bo4WBSmJLYohEk7vwumuFqs2hTmux1r2dj5VcMip7A+PizCMoQ6zz7GBS5nOFJ27DLKoTNBaOugEnfgpi282tWV1fz/PPPU1dXzZixH+N2OXlU/JpKkYgmjXDwKUGTJhd8+SZDc7exbch4Pj7zch7w/oqBzt1oogff4huLMiDunxacm8KBYfk9QSKWaThXa63GpDanZQ4jYvxdIDREU46r8OS0/Vo+xtJnSCktawgQRbMTQtG8ZDaUh2f8x9tSOSfj5varaRoEDy7Dv+nfLR43IyXSAnWzQtSdKxE67KwczJd7ZhB5oJ5EXzku3UNcipuBow4gEiQFBRlYV4O/RFBns/Ne2kUUOdIBiRQaEQSYY9tHql5PVlYWN910ExaLavdri0rC34M2bryxS/tVV+8kNlYNej7Slkfuxb/9bQJzbehVhUS/340/OUnTKigR5SPxJG1DynALaa6ZSZVII1bWEPS5SI+ZyfhRN3Dp/NbjwJS+8+imA6B3Mm6wIWjd5gv0foUUBcBdQKphkOo5vKb8q4XFPBkXwxcJG9mUuAnd1AlWDSfAY/zG/xzzPGuIqw0Q8tVT0U5gCuGgam/tRiQSDY2QKCM/+Bo+M5G15enszB1I8ogs5t5/M1onXe6xsbHcfvu3WLX6avzU8QiPUkMsAKbQG0+IIQXvn/N1PjBNbKEAk3dsJLoUtDkS4QdpAXTCE3XQsGAcXZtq40EaVN0awvKIhfrpJoGBEtcnosPAFIuDiLF3gqYfMZY4fB39jEz8ESMIsih8GtGQy6VholjConLE6EikqZHjGokpDTTRdm+M0HSs2dPwb3qF5gGuVi/CY0KLrAg9fL8ZFr+HYVP3wBGj84IhC+uen4DT4sNjsUFGFBEZOfxgVA47PRHs238Qq6eMDK2GyAgnkyfPYtasWSow7SHqWexUsEt7Hcx7itjYp3u5Lie+uro6Vq9ezcEv1zPVXUXFuZ9gTDXAFDiOHLLbCSEFvpFg9aSwI+8M0mNuYMqUucTHJ/VO5ZUe90apG7qyIiCAEJy7egefTlH5aJVeFtG62zUnFOIPZRXUVFSySAzgB76fIo0ofCPS+Kv/Nr62djk+Yw61RvOetMOdwI3B0vqKz6kNhoeBHdB9rLZto9g6HU+EDTtB0jNr8R1YyKbv7GTcXx9C6B0Pqq+u/gDYx0rmUkV82z0QDUtOSV3HrzvZ2n8oW3PHMPre/VhqwWu38u8bL+b9cfMxNAsPci/pFB7lk0d47KYBB79mJWJIOMA34mRTcv62WDOngsXewWpfEuvAeQQPLGr4MRyUaglDMCv3oWk2rM44AvU12PUIOpuCL3Qb6DYwjpzjAO7CJExPMZqj7TzaUgpcKwRXbNxI9NPPkDFvThv7zKSuro5QKER0dDR6J79HpXtUcNpDbLZTa4zJpso6Xi+poE5KLkyI4ZzkWLR2biqmlGysqKHm44+o/PR/xOX4GTy6nKLEwmaftCWmq+uf1aUm8Q+X2BNGMHrMk8y+OKcHrko53rp7u95U7+f2zft4dszAXqmPogCQMRFisqCm9WpVMabkQrOYPxk2cgHLzhpyIxN4i8c5IziMlrlKw13PUkKx5wA73aso8+UD4bXgNyQmsSLQH0+zT2i2UIgJWYloB1finDYdTBNrUiIxV15J3Ne/juZycWjHVnYtX4Kvvo6I4W+DBTYwKZzgvb2grOH+7PR5+fMTv2VAQR66BL/Vyo+//yt29huEqYUjsfvlw/zNvAWL1vnqSe3SwZYdoGhNImmTy6mfZhK5tP1XvBbfv+G5a6e1U2joUamg21sGlMF6bJf/Eq1sC/PzSsgPlGGa25D9B7eYAHYkGfSC0XZvTGpxBWuXjyL9rC0I02xRjJQCyizEvQsBq5206ZPbqa8gKiqqzW3KsVPBaSdstnQCgc4/YQ7o/4teq0MwGMRdWEhEfDzOHngxeA2TqvoAoaBJUpQdZ7OJKg+tP8BfqqpazPB8o6Qath8EIEITXJQUy7ezkxnhcvJuSRXvv/MBtz73FMlBN/r3wumf/I0zI5sNdwoMlBgxEq2m/aXuGlcZCWQ7SH/kYVKGXHDM16v0nbv6JXFvYVm3jvlfRS3/W7CR7WeMIN7e1WZX5XRX7w/x7sYC1uyvRAjBtAHxXDI2o8X9rYmmwfzfwZutxy1KqfGkcT/VeAE7loJ6khBMpXGSZeuMExKT6mApZb5CQEOzBtmXOoUvQ63XUg9gYWWoHzIHRm7bTqTHQ6C+nrI//JGyN99k89SxHNq9A03XkVIyZmQZAghi7dIEp5s/fIsBhfnoDWO535x3ITv6DUJqh+vtrAni+sqK73L/sawOi24z8FY42fdlfxKHVxA5xUPEatHq/i41ibQZXTuPNMFix5ozC9vQCyHowfPZX5B1RSA0MgCK8vHmbsQ59bvo0eltFGEQPLiEFm9AzWhSMn1DChtK/VhnVhOdWYLQJIbPgmOZlYQPQ+ATRN10HVpERLefF+XYqeC0E5Mnfc6y5R1P0hDCht3eVhqKY1Nx8CAf3vsrBu3dTVytG0PT2NF/ELFnncU59/ygw2PrDYPPymr4d0EFh7xu+gWXME6uwR70cqg8lcV7p1LuTcSia3xtYgY/PGcoD6zbz1umt9l6es00JG32mJK3Sqt4p7SaWzITWbZwKU88+SialNRcFyLYv+Fm0HgfbF6UBu7LDOL+ZaH9pe4E5d+8iBk/fhRNdZOc9L4xNIN780s6nhDVjhHLt3F+tMYLE8f2Uu2UU8WaA5V868U1uH2h8J8a8M6GAh79eCcvfnMKY7NiWx808jIw/wkf/QS8lTS2gv7DvIL3TY0qGidsCDLQuQcPpZjEI0hBIx5BNBpnYaVAmPwnZgwbYkdiAhFSEmH6mGVs4kzbJuyEeN2cyxY5oOn0W/zJbO6XSUx1BdaQSVp1HTu1IGW7dwBgGuFJWGZIQ7eZ5LCfzYzD7KA/whoMctHSr9DNcIuoBN6dc06rPKiXLPmSmC8EjjqdmosNZBtPT1MB7b1sTTBMncqEsXi9cRTuhS39TEbWb2PIrt1YGya+SgG+MZL6WZtJ3Tud2qQ11CVvwNQD2GsziSmYjdUfjzQNjKpchDOOiBk/RDjjkUEvniW/R/prGupzuKVXeirwLv09EfMeRLMfbrSRUiID9QT2fNru8wQSa/xApsVcwaHnHieu0kLIJrD4JKaQaFJgm3cO/X/yww7KUHqTmq3fBbv3PEZ+/rPtbBXMO2tvj51LSsl7JVWs3ZPLoCceJ6a6nMo4BxN2H0Q3JPsyYqmIjMef0Y9hDz7ElFgXURYd0zT5T1ElX5RVs7i6Dk/Db9UiA9zEPzmLL5BSoAmJYWoIIXlt1xV8mTcHISDRZSd/any3g4inH/0VQ/P2Q4RByaNdy0kasUwj+r86mr95wo7w+ss5b75J1Cg1Y/tUsqq0hku35nY/8TeAlHwnzcH9w9U4VKVtBdVezv7DIvwhA/OIdzNNQKTdwlf3nElSVDsNCKEA7P0cWVPAO2vy+azYxSehUT1UO8lZ2gYu1ZZxnr6GNeZQfhT6Lmk1+ZxRsQIdA82U4Xk/7bw+MmcXET+0mkotkbv5W7j1tJ1900uLeeX+wwGV127ngj+92Gq/53/zE/oV5WPGgGmTGHEmnjkS3yjZNAkVE5rWl27v6iTs3TmVkpKWLbN6KERCeQUpCfuIn7gPMxZs1dlIa4BgZDGYGjRlERCk7LiR2ENzCZZsxZI8omnCVGDfl/i3vN5+BRBYh16EY/jFTY8YZghZnQ8hL1pEIqa/hlD+amTQg7A6Mb1VGKXb0ROH4pzxA6SUWOOL8O1fRqimEkdWJvFXXUnE5MkdjI9Vjoaard/Dhgz+GdlZN7Ni5TmYzfKsxcefxfhx/+iRc7y8dy8/zXc3dNsIwMJ5E8bwk3+/glkMloYPjEPyq9Cowti1D++SJbyZ05+3zp7NttFT8Ylm6ZMaWjpDWHlefIfP5AX8VtyLjQB6wzij64a9RaknkS3lIymOEJ3Pqj7CtE1rGXEwnELL1092eYChZ4aJd4JJ5Jca0R/pYLGQcOutJN12G1qkSgF1qpmaHMPmqcOZuWIlbi2m20Hq34p83K9iU6Ud/155kEAbgSmAKcPd/a+vyeN7Zw1usa3GX8OygmV4Qh76x/WnKt/G5vJCtpiptJuxvUMSPXIPlqgNCM3E8GYRrJnArfpHTNZ2IZDM1LfxqfgpvxbXscY1jQmVW4jUqghZGm6eRywramoaS0KXkicSKSaNNAooJBMhDaRodgyAENQ7I1o0dlqDITTTbBpr2sg+pIqybwYJNeT5Fx6IXKKR/EudUBaggyUf/GMkNdcajdmewhq/N8NVHTx4FaIkgyIO37uFw8B1Rj4xGftonB9lOKsxrHXhH1qMdZWUjPgXek0ELnNSi5n8wUNrOn3OjYK10Cw41TULxPdHShMhNERkEnr8IIQQSBlO1G/63Pg3v4rpLkKPTkdED6P/M52njFSOH9Vy2of8fj+/fPFx3uo/F68lsmnGJUKQXFHCf+67G012PExHAiFNY/nM4TzxtTup0eLaffMfJTfyc37b9LNhCvZWD+DxtT8gMCQas3/Xx7NmFhdw93+eZ+Ke7QD4RppUfrdr+UsbxT6nk/2dR0madUW3jlNOTlIa/GjN27xaNyj8QFeDVClZPD6BIXHZvVc5pUfVBmrxhXzEOeKwaL3bBnLm7xdyoLy+w31Gpkfz4fdnAWCYBn/e8Gf+vf3fBM1wNhZX0MW5h84F4HVjAN7gUaSka7h3x4cOkRT/GoWp5UhhJfnQ2dzsz2WS2MVwLR8TQR1OzvE/jhRWkvzVXLn7Q2oijJaBqdD434U3sSdzEJo0MIWOkCZp/nKm16wnhJU1MaMptCe1OG7crm088vRjOILha/vlt+9h5ajxmA3DpC6S73ItL7eOv02wHhAk/tmCCIanXiEgMEhSN8/APyL8s/WgIGKlRjDNxHNm+DERtBO18+scqo7D3f9j0tP3IITZ9c+hpsBZNZTsdfe2eLjui18j64o7PFQ4YnGd93gXTxTWGPaEijdjTQsPG9JTnaTdPalb5Sjdo1pOT3Ale3ez945ryYvL4LU7fk1I1w/fXBq+Xrrw1fCPnZQlAItpMmfxNoZuvZ9ffefH7Mtse2b7VsZSQwwxhMfv6JpkaPw+rFp4clRX523mFOTx7CO/wNowJgrCNzVCdP4X1dBV5FwpGPnHxThSU7t4VuVkJ4TOE1OuZveaLayr68YHGSFYXp5LdEQaiVYLFrUs7QknFDTYtbKY1Qv2UFNRj1urYlfyagoyt3LZiEu4bcxtRFqPrVekqK6IV3e9yqf7P4U6K6ONKZyRMok7KleSqBk4hBehu7k3MItDtMye4gsevlf97ovf8tWOtfj9c/D5cjANO2l4WRqKw29a8cbqyKqjmCMkBBHAeXo/BlbdQ2zJZv4eDxX+fvxFTqRGOnDi42eWV/matpCH7P9huZgCdjg0aQLOqipEZQFawIdpj2DVxDPYkzEQISWm0IkJ1vJ/u3/PReWL0Bom+pgIPkicw0+G/Jgaa7hxYeOQEfz98uv5wRsvAnD9p++xctR4kJIkSvg6L4fre2TDsAbBfpLKb4aw79MQHjCrdWwFFuL/riHk4Qmr4a86lioD9xUG0urHPfpfRJsa/uJ+lH01gnhbMSQHqE1yhoP2uJJmXflHnlviTdiJKUJo8vCbiBaVhlFf2mKs6RFPOlpU999DGrvrLamjMTDR0TCKvRQ+tpr0n03pdnlKz1Mtp8fZF1edT/rW/ZhC49qHnqIsJi48c/QIf/z9nYzfV9VGCe0zNI16h5Nb7nucitj4Nve5UT7HeXzc4rHvfvkYHi2SwNzUTluzMooKePk3P27zxl11fRDvdNlhb5ilACIW6Ix9aj22yPYTWSunLp9hMmPldgoCXQxQpcTi303IMZRYi85N6Qn8ICeFSIuaMHciCPhCvPfEBkoPuhuCFg3Z8FHXay+iZsDjnCWCzI4bhiUyBfrPDq+MZHV2+RybyjZx+2e3g09nxr6rGFA5BoHGIMdSzoh6kSg9nFdUSqgOZbNRjuSbZngBFV0TXDI2nduGBbnvw8/ZrNUTrJmEkDpTxE4OylSKSaBxZndojIZl89G/LSYj+AMR5EiBJjR2aQUste4iBOwzElgbyuLb+ntcri/lsuDDZGvVjOAQUXVlaEaIoKeWspxRJKXNZHxpEREhP3FGLFm2B4g39mM5ohkhhMaOyIFcNOFp/Jod3ZToRojXf34n0Z56kJIvr5rI78/6Hrfm/ZMLvlqMc6sAE/wDJfXnGASGSJAQ+ZVG1Ec6mjd8hzeiTLTa1rPvmyu9L0AoLfy9c5VG9Ds6uvvw/jXR0RR8205MdiFC6/h5HfTl39CNw38XodLteJf/qcNjHJPvwJoxscN9OiKRmEj0hjeu+OuGETFG5dLuDarl9AT13p23MHjrfgBWjxxHWVz7XUdBXXR71JNumkT6vFy66HOev/SaNvfx42j63pRQ7k3AZzjQDBOtzIeZ5Gg3QBWmycsP/aLd21TMfy2EUsOppJoq39BSaimEhKcsaPVWhm/dogaan8YcusbiqcM5b80u9nS2KpSUICUhezjvaXXI4Km8Uj4vd/PBxMEqQD0BLH1jD2V5tYQTxIVf1wLBhMi3meR6A2tVw++4sij8dfNr8Pl9cP1/IWNCp+X7DT93fXkXwYDBpdu+R7wnFYHGCOenzI15pmm/as3OR7EDCArB3Jpl/KPa4Db9Gxim5KzoIq764n+IlLWEDn6b8eTymPU5fhz6NiXENZTQGJBFouv1YBzdyvQVSH6Ch1eFCw0YYqYTCBmssu5hkF5OklbHXwOXMUvfTK1pI75sD4m12xHSJKHOizMYon9ZOe/P/Iz/ZoWDbl0Kzqur48eVkHhEI6IFk+H1+7i84AAl1gHEhCTDa0z88+8jv2QNsnwlI2av4IVDq4ncI5E2wNTRfALHNnBus+I+NwROiH63ZUig13b8DiSRRL+iU3exiV4Cca+FM7E0F+V2k7XGwJ3TQWAqweKLRzMcLR7Wk4ZjyZpOKH9FGwcJ9LRxWNLHd1jHzghEi/fZynf3quD0BKCC0+MkEDIZuDj8AhMIcjOy0Q0Do510SWtGDGLy7tXdPo9umpyzanG7welItjR9L4Av8+bQeFN+JDuNX5eU4o9plluy2QD9V/76T0Q7SY0BNL8g8U8WvBNNPGeYGPESrUYQsUIjYo2GsLkYvm1tt69JOfVEWnSWTB/BWSu3sd0boM1O1IZOHeHdjow8PHtaAjs8PoYu2cJ9g9K5Iyv5+FT6BOOtD7DuswOUHqhhxBmpDJua1Wvn8tT6WfnhHvZvqqS+LkRIgqFDhBBIn4lGEJdeQJ2RA2jYRD2FgRHs8c5iiHMxFnF4pT1JOA1Q8J8XUHTF++SMnNThh9XPDnxGlb+K4WXTSfCkIxBYhYfZ0eHJqD6hc0u/OWwWhQgZHnv6f9EJpGcHsNrfJ7qqgB9tHkuo7gyonI3mPESus5wLa35HEEer84kSiTCOvuXUAIqRLCbEPKwIBCOMTDZaDuAXQaLxkZ7s5XspvyLKgIqKTCKX7mTa7v04mw0/GJur8dpsnQ+mSQwh+cQVwQaHndcKi4lrSBVlaJDrSuOmoX9lf0Q8esOssHczIGJoFo9ujiK2/1qEBUgzqE8FdHBfZRL7H52I1eH3n+hPLchOWjXbY8/VcPxZJ5hs4r4ghOsrHeE7vF0DnCs1ai8zkJb22j4EcXnntGqhFULgmHAzwZhMAns/R/qqAfDZo4geeDa2QfOPWAr16DV27+Pp3twJpXeo4PQ4WbBmH1mhw7k97cEAZgc35I9n3MCNn64m0gd6N+8ZKVWV3Pjh27x8YbOJRlLilF72y8E4hYd0CtlQNpqv8mdh1QW/u2wU10zO5nojm+c3F/BkWQUVOqAJnKEg31n9Dm7vIdIAo6HemmzdsiAMQcTqwze9Ro7Jk+j/8svduxDllPfVtJH8r6CU23cXNORUPOLNqX4HMrLt1GIh4P69hfyroJwlU4ejnyat8e5yDy//amWLx4p21fLlC3ta79x8IYz27iMNCUKEDjIU3q/eWs3ehA1sTltAoieTrOrhJNVlkVifiY4FHfCbHir1GmzEomPDNPo1nSggXRQHh1EcHMam+ou5POGXOLT6hq2CPNKoMmKpePN+fvtVGpXZlVw86GKuHHwlMfYYALzF+VR+9BxL61aQomUzsmh2U5UHOZaiYWAgOG/gmZQbe1oMZxQYFMoDOPw+KvJvBcNO43Rzo24YNUeuENLM1K0+NrSOWbtFB5Y3BKfhnzWyzAS22iv4aNR0SmPiwQxPd8+uqWDO9j2HZ903sBkmNy0w8ds0Pp+gYQhBsVXnr0kx/LSimtycCA6muvix/gTlhJ8zo9l4bK8uyR33Dyaz53ClGlmh+mYDrU7g2K4hhaTLkw6aaR5MWsoFroU6lbcFiX/W2iJVoMUriHvBQtVtoXAaqcbZ+jKcWzaiYgRxeee0nf9aCKyDzsYy4CxCnlL+qu1jrWMU/9Ziu1/hDq5DP9qVCJReoYLT46SkII/sZn/80zev4+mrb2p3/3pXEj/7zg08+rd/Ex1eurhbL51bPngTkLx84ZVNrZ9e7PxL3IIUGkn+YvqbsTx4tkZ/z5cENzzBx1sjqRt+E1+bcDG327IwTZPHX30TX+4BQgX1DM7dDdC08kiXRUXR76WXuneMctq4JCOZSzKSeTZ3F48crMYAosxSamQEIdeITo/P9QaYvGI7n00cQqLd2un+J7O6Kl+rwLRDXQk4ZPhf45wTiSQyGMvY4rmMKT4TgcAk3KKnoSMxEWjYzQjsZker54TvWJVGNi+XPUO8JR+HVssA+0oGOZbxhnYxqcFahu6eT+1OG0tWHuK55B8SEzWOgR6duWVfYq8fQ4bvR5i6TqEmqbKa9AtqJFtyEQJeTBxDhbGnneU8TKQsQs/ejLF/WrMtba0QcthWuxGe/HMMsYoEQs2CX4nEKnU+Hz6ZsqjYhmpo4Ty+b7/SolZHun6BycLRgqBVYCL42BXJjAECwyJYKaZTKtLaPC6dQ0wWq9ouVAAm1F5gYD0o8E43CfQzQQrsOwTONRpasHtPgDAF+CT2nTr1s02iPm/ZQOHcqKGtnIm/v4+65A2gGVg9ycTlnU3sobmIZhOhpDBAhjvc87RyDtVuZbo2joPRUKRFcSCkUYJJSrfTfbWvcTiCJbnrY6GV3qOC0+Mkc+jQFp8KM8pLmbNuBUvGT8HU2u7a3zn4Qm68vz/nLvsPk3fkMqhIEt9xxhQgfN85mJrO+mGjGx5ozASgN90uK2wpRDoPsHjLTtaUhPDZz2H56AkEPBYOvH8LWbah7CwwodDgi6ETePr1fx/1bWD4mu4PT1BOP7cPGMrtDQvo/HL3If5VWN5+a98RCv1BxizfxlUpcTwyNJPIU3R1sTce6d3X0pEtV43fa11IYiyRGITQsTQd1/iGH25JHQ5IDvinsNh9G5HWWtzBRCLRiEAScA9gs5HFjhKTXAkpdXdSoZl8ERWkTjvc3W2T4BBxjJCCV2KTkEYNot0oXGKLWIGXae1sby0oIC0kKNblUQeoEhja7DkTCLZHCwriWw5BGViQR/+igg7LigjAhH2SVcPClZkdFSJkEQghWMvUljlPm5nMSgw09PaeGw2CAyQlDzdfPEXimwC1lxokPGXBeqh7d31hCiJWa5TfE2wVnAJYg+kkbD43fHJhImTbf1flA97D1P2sKEim3DCZvnMFtQVvsG/uuSTFhzMx/Akfj9AzS4uamIQwsGEl4brOPxArvU8Fp8fJ7BHpbHZZcdQFm27cP3vp73gdTlaPHIduhDCE1qJbUxcm9xhBhlzwLYL3zIKaKt554lFmrdlKYr27zfOUJSaycuIk/nbBNfgsh8eOOnw+zlm9hDnrVxHh81EVFc3Qg7kk1NZgaBrCNPnB6y/y8fQ5/Pmau5h7aCUDiiooj44lq7AQW+goxuFoFoZv39L5fopyhAuSYvhnQXm3jjGBN0qq+G9JFWunDiM94hj7Zk8w0pR43b07Hq6jWdmH92k/YLHQsuW6Me1Q80cAQjiQQUfT+YKawJNqZ5LFQWGogvhyO1WaybuRQaJMwZBAOPwssJh4NXiBmdzG69QIfweBafhsulnZ6TUdaXBQp0oL4Ttc5S4LL6ECFzY8FyaSWuFlQ0IEQprIZmMk49w1nZZnArGNueuRnOEKNY3R9eNoMzAFcOKlS1O6LLS6RjMCyr8fIuV+a9PM/a4SHjCOSBYjhSSYKQn1LyN6hxb+vbcRmEpMAq4CKgf+D4DM+HiqtpxDUlk5mmkQMOqJ1aNIDblZJqP4P7zcjaMpttaOomu+8QOZLjVskxKxpaqFYE4EKjg9Tiy6Ru5PH2bEr3/S9GJwBvw8+pfH2NZ/EF9NnkFRaiKeFAsXZ+dw1+S5DUc2S5GRmsiMZ/7JZ5ddhrHT3aotoyA9nWUzZ7B84Gh8FhuaMJgsl3OO/1OGVezGHmXgtOk4d4uGLpOwxnWYkZLzly9k6MFc/nTtLeRQQV5cMglFJd2/4Khkhq9Z1P3jFAU4I9bFpOgI1rs93R4KZwITVu3k0sRo/j56QKf7nyz83hN7okZ7gW3bj4cfDYetEqsJ/coqqI8+QJzTw+4RmRTvT+GOGjtRzbIASCQlmuT9yHj+Ji5BagEkWocBqtls5bxYA6q70KieZmhcXm/j1ahOskkcQW+4pvtxEoOGiYmJZKF1G4aW3mqt+vLYuKbvQ7oDU7NgDdYjmgX0GlDZkHXHpUmczT4bZHGQLXIsZhsBaiHp6NLofBWXtrbrICPBM83EtaDrvRASiZEgW0yIkoTP4b7CIJi2gsTdX0Mz7G1+yBFoVOZ81vSzK6qS8RM+QHsv/HzE1tRQlpzMbFsuH/uH8T9gISHOxUoOGvOw4OpmH59E4pMB5HCNnKvVUnQnChWcHkdXfe1i3jGCDHzsV1h8ZtMtd+T+PWQGDjH4jU9JTOh85vEZ/3iWjZdcRnxVVdN9JaTrrJo2FSkEO9JzcAoP9/IbBrIPaQXSwZ8C/nEhvFsF8c9aINT6rqQBgwry+MvvH6AoKZkDV6RwMDWjW9dpv+EGBvzql906RlGaE0Lw8pgB3Lw5l9VuT+cHtOG9cjefL9jIvjPHnhKpyyzWnhtfd6IQzf63B6NxVIzF7trP1JJoXEFbm8MMUkz4Vq2Tcm4h0ruToL6t3fIlGoHg5KafZ/gsrHYYlGvtdNlLiDYhK6RR0oWZqBoQh6AKiQ2YiYWvY2cYOhLJAa2M9fp+KkU9iXWRLdafBziQnsWWIWfijxiPOza8cpot4CajYBHZ+V+gmSHqHbBhQLgNevABCelNTxlz+YIPuKzNuq1kBjeJ57FLf9sz5NsLTJvxjelecIoAz0yTiFWHrzPkFFTfEiI4VAI+Csc9ScaGH4LUm7r1JQYCner0xbjTlxwuToDTWU9ojI5tpcbAffvYPXQoEQS52L6dPUYi+0LJfIRBPJL9op450mAc2Z32AkgkXgIU1u1CjHYw++Zbun6dSq9Twelxdvm1V2BeczkLv1qG55NXsSXGM/vuX+JwdL0L0pWUTH2Mk4Sqw0n6D2VlErTZMBEELDbulE/Qj3BO1aZepIZ7jH+ExH2pQcxbHf/6kyvK+d6/X+D6B//I/rRMsosL0dtYqcNoGNivS0m/jz7EOeDUaa1S+k6c1cJ7Ewbzk135/Luom12zUpLNQSKpY/SCUuYlDeTPowf2TkWPE4vt1BxH26gxmHDV9W8aCtBWgNH4oT6p1uTSdQP517SBSHN/q9ZTiYYUkfg8MxGpTizuIMOqLcSYGq+7AphHTHpqnO0/32tDIIjsQpO9BG7BzqXYkITHq36WqvNKggVTE7hqEskrrscMBagodsEgA+yHh29N2OujLP1qkIfH1AasUezvdyGVccMYt/kv/OtsgyCRpOyezua6Kdz2uYsoWx2zMldwdvYirrf9i1f4Rsuxp1ISkHYW5F/A+ZnvhCvaPC42aMrS0C5BuGEDkJrEjAThBy3Q9kFSkwSzJJ5JJkmPW5FAQNNYNjmFoSMOQkNWQk/CDg6c8Svi8s7GVTwZzbTii8qjKvsL6pLWH35iOTzKrf5Mk4gVGlFuN6M3b2bLmDHYZJCRlhJGWkoOZzoQgnXAOnMvY0LZDDUzcBlWNM1Cs6Z6gmaQbdVLqYmrZOK1VzDsjNmnxAfYU4laIeokFfR6WTVvHgmVVUhgy5jR7Bw6DKlr/O+MSTxu+UHHnxsDkHqvFc3X2adLeOHiq1g1Yhx/euK3WENBLObhu3ZI0whaLDiBYRs3INpY7UpRjtW1G/eyoKquS/tOliv4Gq9QTBrvcDV59Gvq+nVpNnbMOXlbUle/n8uaDw/0dTV6VZvphDpQ5fTy1vhXCclNTWMsBZKQNRN34l0Y1vSmfXNKglyyuh6PP8RCZ4ACy+G3v5SQ4EyflezQ4Q8Br0X6yLeY7S5MYgXeI4pIBOviNO6ZEIHXIhDm4ZZZ3TTRNlahl/sxY20EJiWAJojySr7/QTXtpheVJnr0O+yYtIavtt1FvT8Ws9l4VQ2DGLubX0x9gv2OQfyPK9grhgKQVFnOlQs+4cqvPsEYHKT2AoPA4IYTBSBipUYgXRIcIGk3TagBkYs1oj7QqZ9lUjffAAvYtwmi39DRaw6P8DStEs8ME88ZBnEvWbAc0gjoGisHZVDvsBEz2E3O3MLwoqci/P5hNqSOW1p1HtbtLlJS9hMdU4oEqqvT0PUAAwZsCK/6VZ2KuSiBkZ/vBSQFmZnsGD6cqvjw4FbNMDCbT4JsbBWWkG7GESsjCWKQr5fjE0GQJkOGDuW6665v5+KV3tCdeE0Fpycx0zBYPXcWUWVV7Bw+nK2jRiE1jbpRHs6Pf6vT4xP+bMG+q7MVQKAyLo5rf/Nn0kpLuPHjdzhz/UospknAYmHViLFMLjvE+AULe+aiFKUdf88r4cF9RR2OQZ0pF/JtnuIFvsWX4oKWG5sWlJCsnzKU9Miemel7vL3zxDoKd3U+kaY3dDdwPF5MAZ+OrmFr5j6ENAjaBxCyDWqdN9eUuHyS2z6rIdIvqdZM6oQkQgrizcbcpwKBgUQnULWBp/oNwRBtT7W5AzsXWe28kWXjuUE2ZFtBrAwvDWpbUYJWZ2BGWAj1dzGjWjB7u6/d4FQiMSPq+SRtNzsrhmC2kTFBEwZDY/fy4wlPgw6hAw5czzmIq/S0qm/B4BS883wM/Gc1QSl45duSc0cEW5XZrAIID0gnrVpdI5Zo2P7nYusZQ4lPOkSiuxTrQQ3rLoHPYiU/IZpD8dEYerPu/dH9SMk+QExcCYbQOOAfTH7xcOLK2q6DpgWYMvVt8vPGUFAwAjCJrPMwcO8+kspKQYB3lMm6yGn4LTrYnNAYoJpmm8uCNxJCMmXKNM4///z2r1/pcSo4Pc2E6ur49PIrWTNjOgDxGfsZOXBpp8fFP2XBsaPzlk6vw8G/r7mWLZkD2J2ShWaYZJYVMXvjGu48byYZ8y885mtQlK7wmyb/yC/j4dzWQapN+vkr32Ij4/mLuKeTkiTFc49t2cO+VFNWz7/vayeHZQ9oHoSeqAHpkUqjdf5+fkyn+wlTcsZOH2dt8baxVeLSC4goKSTt0HLcDg933f4rgnv9aM1WDpIWQWhQNGZWRKtxpG2eUxqIAh/WbdUNk50E1yFIq3Z0On3njzFejE6e/j8Ff8eATZUY0WDfKcI5R4+wfPp0MtO3kf2Wm3/P1Xh/ClyZEGSmy8CU0Ji/35CgixaLA7YSKI9k7eZLMCwW9FCICauXsTvWiYlodZAEfGn9CMUmtnisWS97m39dLulgiN1K0BNHsaiiTKs9YkfZrLBwhTVPHdbKYqx1NQSSMggktp0DFuA73/kOKSkp7W5Xel534jU15vQUYHG5mPrmGxTccw9FGen4quI6P8gAa17nbzimENS5XMR465ixbyuXrFzA6NXrCWLjzE/expqQ0ANXoChdY9c0vpeTwtgoJ1dvym2xbRKrcOLlAy7t+J0VAMHbheVckZ7YwT4nrpikSL77zFmtHjeCJlJKNF3g94Yoz69l1+oSDm4tw1drtFFS29rKdXq8HG0w3HyGe4fla4INA+xHBKfhcCm14kuGb3kHd0QMX067kpVjphJrdVIwIxrhDiE8QbDqmPH2cATXRVLoyGQHRoUTS32AZE8VuoxACkeHuXxNoCu/taKN/RhaUE3dtSEc29t+Ww/YbdSKWPwWN5+NF0hN8N8qG7l+gzNdQbJs4ZG+e3waX9VaOSc6yGBH634KKcFndWJYwucxLDr7L8mh7lAi9sID6P7DU/WlEPiSswjFtHyfEEd8bbFNCmYHhzPITAU/VIp6dtjaygUrWnxBCIQzmsS0LCLKiqmtyqfMUYPhav2BZcqUKSowPcGp4PQUkRgbw4y7f8jip/5MSXo6gYIobKm1tJk72wDnaoFeL5o+wbZHkxKf3c6IrduILqtihz0DkZHDWa//C91u76WrUZSOzYqP5rnhmdy641DTY4mUEUTnAAM6CUzDfrKn4KQNTtujN5vR73TZyBqeQNbw1h8gpSkxDBMjZOJ1B1j+vz3sX9f9fKA9rXEiVOMqVF1lCNif0vXVwTz2xo778N+JqXmpdu7lvZQBXKtfR3XCDGINOG9jCKglP0HnxbNjkLG2jgvugEUzua/oH+yNGchbMy9kYYXO15e2P47aELA7QQuv09tZ2WaIwoQk/pl4GXcnvERkhb/VsxdZV8eetFHYMw/isx8OD9d7LKz3WJplpBVoSAYHtDaDU4CKysyG7xonIhlMnPMpFosPX7mNikMpFBSNIhQZDXr3wgyr1Mgw4tlhKSBfK6dMcxOio5RYkn4yj0hjNAlmBlYspMWNwRKnscnYyTZZSqBhnKsFGJo+hIyMDEpKSlSAegJTwekpZOTokQx/5hlevvYGKgoHk3HOBsw4eXhWphn+aj0kiHkz/Kvvymf/rIICsgrCn1xnvv4EkWPH9tYlKEqXXZSayKuazrXbDgJQRxRauGOxS21ooZN7RNMxEZrAoulYrDp2p5ULbhsHt8EHez7inVeWMrp4NiCwNiSSF/iw4CVINLIh7DlyFajmjzXX0cz7lsMHwjeoOtc+IrwZaIaj3eNalhG+j60d1I1FFwImf4v2EW9qBJGU6gJpGcKZDgee2AHYjmiujK89ioXnmxHSIMGoYemkmeyK7IfXbmNvmkZJjE6i2+DIrFWNPy4fFYHcVN+USaAtFiPE2PJ9PHHjrWzIHI1hvklJrJ8kN1iaVdvizsUvB5E3KgsoblVO84T9Eto8p5RgGBZKigc1XhlgYtEN7PZwyrfIFB9VwQhC9bG0vyhr+wKaweuOhWiYxOKmv6hghxwcTq3Q5odOwQFyQHeDxX24opLwWIXG65DhJWW3Fe5m2zvhpbgzUtO5/KorSEw8tT6kngrUmNNTlGmabP3hHXiNRXinG5hRoFcJIpdqRKzUEN1cNznttVeJHTeudyqrKMdASknWwk04pJunuZXf8hv2imGdHndGtIO3J3a+3+kkaAS56N2L8FQEGVwymcyq4ThDEfj0eqyudXxHvE+CVo3HjGRraDwLtSl4hY6zLocIb3hWvGgR5LTuopdI7NQAIQIkNjxmELTW4nOWILUQQYsbhy8VpzcVzbA1G5vYMjA2RDiIem9qJFv7dbEnR0r0A3VYdx9eZc+MtmIbHMMPvqpvc4KSBJ6dH01prN6lVvm2aNLAbAzWGspwef+fvfuOb6s6/zj+uVfTe8/Edvbeg4SQAAkQGsIMs4yGWcoo68emLYFSKFAobSmFQmkZZbWUPcMme+/pJF6J95Kn1j2/P+Q4cbwTW5Lt592XSywdXT2yLemrc88wuOSHKlIqvI3jSnUFbhO8Pz2cnf2tmLdXYMqpaeUUuMG87FUMigxn16ATGHbATURNDSP2/J1PRmfiCNOweGBvikZOosaE4gkMrB7I5/0/oM7SduC+PaGedFvTNl6vhS1b5lBVmdDk5zBk6DJSUvY0fp9/YCiZmdPo9PZarWlvmE6TQayttG04hlWZiDXCCVV2IpSNA+ZyLv7FFcSntL/GuDg2MiFKNPJ6veydfyaerKxW2yigaugI+k2ZgGvLFizJKSTcfx+2uDg069GfxhLCn27asg+96G8MYjePaw+23lD5ziZkzhpHuLl3rx16NHIduVy7+FoOVB/ApJkwlIGmaejoPDLjYeYbNshdSa3XyZ05n5Bd349wVwSaYSa+chRDSidiMay4TIrsBA2lmQhxQXGETla8ifG5HgYUeTAp8Oi+MHZkICxJWI4yNZ/FbXKHEVKbitUZDegoZeWfcyIoiLceCjBtBBndUNjcijoz6GUu8BiocAsqwsJxO+s5bUNtq319W9KtvHd8eMtXGso3k8iigzIOLS7d7thnX5uBhR6GHnBh9kJhtInNA2y4LAdnKBlYNpZjKq73dR4qGk7Ba6TWVnJhXTRmk73JmFu37mXwnmfZH5HJ+8dbOBBnoCnoVxzChMIRZKfWsTluR4vZUVMasc5YTiuZRnJyJhGRxQBUlKdQWDgYr7fpe4Kuezhu2n+wWA6NP3A6Q1m1cgFdFk67i4JoFcowTyqDJg5n2PmT0WU5xG4j4VQ0o5SiPjOTA/fdj2vLFt+Fdjux11xN4k03yfqkoldwOOv51dIHqcHOJ9p5rYQDxUnRYbw9cVhAauwJ3F43X+d8zfd53+P0OhkVN4pzh5xLfEjT05/bS7dz49c3UlJXglnzDRXyGF6SrKkcN/4J3imB6sPWRR5lNXFJ/jMYS0/HWxcHaLhMYPX6loPSla83tCZiJ/WhRa1PclIQUp3Bx+NHsjvtiNP5Db/zyGovNSE63sMmLg3KdzFjex2vz2k+SWbOplqm76hvdor9cN+NDuHHMSG+RfM1U+Pi75rTSUTuP9CiaqiKuQrDkgCAyfDg1Y6+t/Xg44l0uKn2GOgHatHqvGhOL1qtFw0IVTDGZOO46grMePEM20v2kBosuoP5Xy4h6bs6jBpwhNrwhOpUDIohzzaYFf02sXFADboBh62iRYQrghMLTsTu7dgwCau1mmnT32t2+a5d0xtO/wd5QAXMSmeBcxp7TYVkpTg47rjjmDx5MiaTfHjtShJOhRB92p7KQm5a+wl7GEwVkYeFA8UFiVE8O1p2Mesqbq+br3K+Yk3BGgCmJk/llPRTsJgs1HkNVlZWU+c1GB4WwqBQGw7HJtZvWEhthYX6sgHo1mrcrigO7D+ZIlcGuRER7El1MmfXj2hNRkI2UIDSKTXN5D+zYtoMfhHVXqrCdAYVuJm5tY6MUt9g0pdPieBAnLnJuqRTdtdz+rrWe04P3vUfzyjHq+XgMfdHU3XYaldjq12OrpzURJ1HbdQCNMNL//oCckM7t/Wz704aPlAZvh5+87YKTHm+dUs90VZ0lxe99vBBsYoI6jnHups6eygx/VcQF1LKmMQUUiyDMIXEodcZhIUOIXbUKXgMxXtv/pud2VkU2ErZF7mPaks1Vq+VtOp0+tf0x9zCTNrIyEg8Hg+1tc23Ex47bgPR0Vs4fLS3Yejs2HECpSUDmpx1D6qo2tjbDhlGPAO9SSy3bMOpKYYNG8bFF18sAbULSTgVQogGebVOlpc7mBIdzsCwkECXIwC3u5L8gv9RWvIdhnIRGTmBnNCzeKXEztZq3xJPCfk5TN2yCl01BNTGiS0mwsvT+ePZY/GaO37GRzMUCQ4vUaVvEOmJY9PguXhMJlTDKfjQeoPbPqxotefUwGB3ipV3ZkWge0sIqfoaa91aNOXBbR1MXcRpeGzD0FDEu8r5w64nWTj29536uWjKIN5VzqDaPEIcNVTkmKiqtVEQlUhdejRGcgjWJYXodQfDqULXDDLcJRRo0di9LobrJfzqhnMYMzit3fsrKytj045Mlm7YQUFFLV7DIN5bgn7ENtWpqalcdtllhIWFkZuby7p16ygtLSU0NJSxY8cybPgQsrOeITfvXxiGq/F2WQzkX1W/ILa4nvjqSiLra4iob/sDgF+0lJJbuGzKlCmcfvrpWCwdXwlCtK5HhdNFixbx0EMPNbksKSmJgoLmswlbIuFUCCF6p7czs/n3D0tJrijF7gaPEYJyOtmXFMmGEWM7f0DlIcTxGedvceC2JPLR+JnUWu2NY1VP2F7HnM31zW5mAB6TwRvxWeT3G4onNQwsGlqNm9jSEvRwHW+knRivg4uLv+Dy/I+xG07GzPiAWlP7H4h0ZWBoOmOqdvHfTbcT7Wm6xNTVo37Lp/Gz0Gq9WJcUHlwAC9A53byclIY1R2NiYliwYAFpae0H09a4XC62bNlCYWEhZrOZYcOGkZ6e3qEtf91uB2XlSzG8dfxYl8it2eHMWreSgQdyeeXMC9AMg2uWftxkC+wO6+pu1w4eT9d1Jk2axOzZswkLC+vCAvqeHrcI/+jRo/nqq68av5dudCGEEBcPyeCcgWksWL+bdVUt7ejUeWHuEGwGrMwYTq0tBKvbxbnrf8BkeHlz2lycFp2TttQR6jrUb5MfY+LTqZGUuxXm9Q7Me6s4mGxq0EimhBX2Xza7r8vyP+blfgt8406PoCkDDUX/+gJSnCVcUvAZ5xV9jV25mrVVGqBpmPZVNeapfuH5nDfwW04ZdTtuNyQkJDBgwIAOhci2WK1WJk2adFS3tVgiSUr0bQmavS8fk1bInNVLmblxDfUxESwbPg7T0QRT6PrxAB08nmEYrFmzhl27dnH99ddLQPWToAinZrOZ5OTkQJchhBAiyNhNOp9MHsaN27J5r6iiYzPgW6OZsTOQV2Zk4GlYHN5lsbIjJYMJuZmgaawZamfdIBsZxR5sHkVZuE5RtK9tSFUZtv6fU3dgISrUCoaGVuuhgFg2GQMYrWc1Ga15T9Y/WBk1ji3hQ33b7TYMIdCVF4VGjLuS5asuw9TGyrwezcSayNGgFJ7hEYxN38HFptfJCKlmynFvEREx8uh+Ft0s3mrBqyCytgaTUvQvL2b+1pUdWIM46EamAr5ev8WLF3PuuecGupQ+IeBDPwB2795NamoqAwcO5JJLLmHv3r2ttnU6nTgcjiZfQgghei9N0/jb6AF8Mmko06PDseta40z5Dh9DeUlxlZAXP7gxmAKMqN7DS/t/xcXujwhx+U7pGyaNfckWdvS3NgZTlEJ3F1Mz4HScpyTiOiEZ16wkXCfGoo3cxd+SnJg4NDS2rsyCY7mVZ/7wEDcufp2U6uKGOgwMzTfWtdQSw8fxJ+Fp5a3Yi853CRM43vIdV/MCT5huZ2HIKxw/7FJmnvhd0AZTgLMSojFpkJeYgkfXiXQ4QCnKQ8JbDahNf6XBNx1m06ZNuN3NlzgTXS/gY04/++wzamtrGTZsGIWFhTzyyCPs2LGDrVu3EtfCvu0tjVEFZMypEEL0IU/vzeeJ7ELfN4f3ph653mnDW1yGq4j/TRzG1bkuNlfVYQAJrlK+X30lkZ5qzBg8nX4FTwy4pnM9sw3rmlrqtxNlmIk3dK776C0m/bDFtyipOrRnmbJrvLfwDP45ZgE1phCshptb9/yTy7M+JNFWg6F8mxp50TFhsDVkMM+GXoJhUxhmqI/px1/mX0y0tWdM0Hl8bz6f/LCMF37/K/anprLkxFnkRieQVlHcrO3BJKJpkJS8E7crhLKy/gRJH1qjW2+9lZiYmECX0SP1qAlRR6qpqWHw4MHcfffd3HHHHc2udzqdOJ3Oxu8dDgdpaWkSToUQog9RSnH79hzeKiw/4grf/0V4aon1VtHfW8kFsTbOnTCHkNBINjhqOXf9buq9BndnvcytOa9jwqDYEs32sEE8MvB6NkUM9x2rs8MHlOKkdStZ9NKfWr5eU5jtBkPOLORt01nMZBX9KcTp1TlQF0mIyY3d7KXMHMtnyfP4bPiFhEeFMTg8iiv7JzE0rBNbtAYBpRR/yi6k/vHfc/a3X7D8+OlkZWSwN74fQ0v2NzmB71Ea5oY9U9MzNpKWthmldAoLB5GXOwKnMzpQD6OJSy+9lGHDZI3ko9HjJkQdLiwsjLFjx7J79+4Wr7fZbNhsHdymTgghRK+kaRp/HJnO3IQoXsorZrOjFpvJxBkJUVzbP4FhrQS5CZGhvDs6nQvW7OS8oq8osUbzm8E383HCyY0Tl8I9NVgMN+XW6M6NcdU0Lln8EV5Nw9RSv4/S8NSZqNpvh3Sw4DtFbDLBwPAKVsRMYdx1/2VQaAw3ATcdxc8lmGiaxm0Dkqn68x9Y9+JIpr7yMlGVleijvWxLHkCks5ZURyk6YNIO/bwclYnoGQrwkpq6G5PJza6dswL2OA73xhtvcNZZZzF58uRAl9KrBV04dTqdbN++nVmzguMPUQghRHDSNI0zEqI5IyG6U7eLLC9hUu4uPJiYP/E58q0JTWbUV5tCwawdvJMOH9furGdEdutzJnzHU1QV2MkelMLu0HQqPBEcCEmldsJC5s64CEsvXK0mwmLmpBuvR11/LUO2bmT6t++QX/IZe1Uke63p1NcZWHUPbs0CaFRUJFNbE4k9pApdV8TH57FrpxsIjuEMH330EYMGDZLT+90o4OH0zjvv5KyzziI9PZ2ioiIeeeQRHA4HCxcuDHRpQgghehGlFHWOSpw11QzNz+GpYVeSb0tsvtTTUa4GoHdwmaRyFUX60LWUJdYQPuAuTsy4jG1ZS/nPj69ht2icOGoy8TFjjqqGYKaZTISOm0TouEn0B6Y2XO4+cICdCxeyfXQkRIfj8SaQvXUKg8cvx2KtR9c9DBq8gb17prZ1eL/6+OOPueKKKwJdRq8V8HCal5fHT3/6U0pKSkhISGD69OmsWLGCjIyMQJcmhBCiFzAMLxu++JS1n76Po6iQnQNH8dXM+dSFRjTuENUVau0h5CSl0L8wv/VpPAoqx05i1sy5xCfM5/OsbG57+l9klSQBCQCEfrad80a+z6/P/wV2e3yX1ResLKmpjPzvf0n+z3+4s07nh6HjuHHZV1SscVCTrEhKyCE+uoDyiCLKqxIDXS4A+/btC3QJvVrQTYjqLNkhSgghRGuUYfDps0+xY+n3AGwbMo5PTr2oY2NJD59C3kFn/vg1d7zxUosrdSpACwtj2A/f80ZFHb/dmo1zSRG4DbQW3onnD9nAX66+C123dvj+ezpDKf6RV8LrOzI5delHeJXl0M/f0HwrIATJMqiLFi1q8fJVq1bx+eefo5RiyJAhXHbZZf4tLEh1Jq8F1xoNQgghRBfavWpZYzD16iYWzzqr05OcWtVC384nJ8zmi+knNtzfobdYBRi6Tsbzf+MvxVXctSuP2t2OVoMpwCeZE1i3+8uO1dlL6JrGdWkJfHvqdE4656KGIHrwQ0LrwVS18t/uYrc3n3C3f/9+Fi1axKeffophGCil2L17N4sWLeKdd97p5op6FwmnQgghepUaj5eVFdWsqKhmzacfNuaZvelDcdlCuiaYtnK90nUev+J6fvPz28mP9Z2mV4DHbGLrM3+mctx4nthXAIbCtL+u1WAKoGte3l61q2O19jK6pnHixAncdM3PSDZV4fspNqwbe8TPzMDAox1cHN93ZWu/OdVFsXXq1KbjX+vq6njxxRdbbb9t2za+/LJvfdA4FgEfcyqEEEJ0hdy6ei7auJesOldjBLkpO4vQhn9XhUcf2/anR9CVgaHpaMqD0syNPakmw2Dizs30Ky8ANMqio3jx5mt57pST+Udeia82j0Iz2g9KxdW9b/Z+ZySkDeYX9/yW6qUvsWP1t5TVelijJuDC3BhSdU1HN3x9bVpjT6uBr//N2/C9Duhoh8fWo/xbCAsLa7ai0B/+8Id2b7ds2TLmzp3b6fvriyScCiGE6LEMpXg9u5hf787DadJA0whV1UxiDWHUYB3iYa02jf1JGZTGdO1kGkPTebDgCX5ImsgeNQQrLqaoVczd9Q1x5loqTzKxrP/xvHbcVXw+8zjCTCZy6ly+G5s1VMMQyrbEhcu63ljDCJ99K1Nm3wrAXCArK4uvvvqK/dnZaIaBoZsI00LQlYYXg1qLwfp+iSS6vwNbLjlUE1U2lMGOwVix+kJqC8HUbrdTX1/faikZGRlccsklWK1NxwF7vd4OPRSv14upFy4X1tUknArRDRxOB9mObHRNJy4kjmhbNE6PE7PJTJglLNDlCdErVHk8XLJsF2s9TtIK9nLSysVk2LKITqwkZpADW6yLkhMSeJNrKND6NRkjajVcJLlKqdVDKLVGd/7OlWJB0WJ+sfMTzqn4ir0ZoTjtJt/55BEKa5Kb4ZnVPDnmdH48+XgizL5AEmNpCCa6hjclBFN+66f2DWXikukTOl9bHzBgwACuvfZacnNzWb58OZmZmTgNL4mJicyZM4chQ4ZgKMWyip+yxVHJRE8F85JSGRgei8fjwePxYDKZyM7Opq6ujpiYGPr164d2RGCtr68nKysLk8lEv379CA0NbaWijnE4HLI+agdIOBXiGHgNL39c+0cWZy+mylVFvacet3K3ezu7bsekmQizhTE0eihxIXFUuarQ0EiLSGPB0AUMih7UqVpcXheFtYXUVNRQsb8CwzDo168f6enpzV5wheipqjxeXjtQyl+yCyn3eMEwmLP0EyZsW41JGbh0M0X74yhaF48tw8WzP7mXChrCgKYR6anijqxXuKzgYyK8dQCsiRjF0xkL+SZueut3fNgpYIvHzdj9e3gw628oILXQSUqhk6pwMx6zRmidF6tTkW1L4dwJsxuDKcCCpBj+klMEgHdQJKbCepRXNRsjqaGYM6iIKUPO6KofXa+UlpZGWlpai9fpmsbMmAhmxkQA/RsvN5vNmM2++DNkyJA2j2+32xkxYkSX1RseHt5lx+rNJJwK0UEer4e3d77NP7f8k8K6wmM6Vr3hO21UU1tDUW1Rk+s0NF7Z9grXjr2WWybe0mKwrHJV8dq213h/9/vk1+aDcXB8FeiGTqQnkrTqNAZXDyY5PpmLLrqIhISEY6pZiEDLd7o4Z10mOfUuNMNgVEE2k3euJ2nnusY2dZYQMoeOpCokiqzUIb5g2vAcivBU89H6mxlcm4OZQwvmT6zawRtb7uH2YXfzZsr8lu9c0/hFzpuklRczy7EGi+Elm/7EU94wulERWe0BwEDDQOPfqZdxZ0pck8OMDA/h3IRo3i+uQIWZcU1LwLKpDK3htuCbCHXGqBqe/unP5INlD6FpGh1ZmdNiCY5droKdrHMqRDs2Fm3kidVPsKlkU0DuX0fHhK/nxYsXb8ObqtbWGowK0CDcFc6sglnEWeO44YYb5DkierT5a3ay1lELwClbVjG0MBdbQRZ6bRV7Bw7DNENnVugPJFKEUrBZG89HnMc2bSwAv9r7PL/IfbtJMD1IAevDR3DOxL/gPnJdUaXQUGQuOR274cbUMOdbAW4slBFFCiWNzbPpx5fMYtgF13PSmEnN7stpGNy9M5e3C8oPHb/SjamqnhRrLX84aQonpfT+xfd7k/Lycv70pz+12WbAgAFceeWV/ikoCHUmr0k4FaIVBTUF3PLNLWwv2x7oUo6eglhnLLPzZzNz5kxOPfXUQFckRLuUUqx11PJeYTmVHi/pIVZsGjy2r5CEMl8ILI71hbeE4gN4rCaujXyJ8axrnJcN4EVHx+Dv3MQSTmT70nOI8lY3u78seypPDLia9xJP8U0Ab2XXqD+v/x0XOBajH7YckRcdJ1b+xQXYcFNFGOVEURsawpN339Pm48x3ungrv4xNVXXEWEycmRDFybGR6NJb2iMtW7as1eWioqOjue222/xbUJDpTF6T0/pCtKCgpoCz3juLem/rszZ7BA3K7GUU2grZuHGjhFMR9Gq8Xn6+JYuvy6owa76hnl4ApYhxVFAcE9dkYlNxfAqn8RnjWY/GofUtawlhG2Opx8ZcPmUT47lizO8Aje3hg6k1hRDmqcViuCm1xba/G5RSPN3/Kqq3RXMp72PHN+vehEEI9aRzgDWMb4yt82cd1+5jTbFZuX1A8lH8lEQwmjFjBjNmzODFF19k//79AFitVu666y45nd9JEk6FOIKhDK787MqeH0wPUlAQVkA/R79AVyJEu27fnsO3ZVUAeA47rxdSV0d51KGJTY00jdPVpwdHsmCg818u5jPOwqUdWoYpUlWwKnpCk4lNDktEx7co1TTyYhLI0lL5UJ3GRXzSeJWBRn9TPmu84zFMOrNnHc/Jx88+yp+A6Omuu+66QJfQ40k4FeIIn+z9hP01+wNdRpfy4iUqKirQZQjRpn21Tj4srmx+hVJYPW7qWlg0XVdeUshv/P4VruYrftKsnYOGv/8jQ2gnTqF7zBZKQ6PZVjOUciKJweE7BArDGsL08sHU1/ZDy03p8DGFEM3J9qVCHMbpcfLrpb8OdBldS4MQT0iz7faE8LesOicfFJXzWXEFFW5Ps+u/LK1s/qbUEEgrI6Na3i4UDa/SiHS4sWVH8ZU2r+XA2UXjOD92j+Jz5wj+451z+MH5IWoUqeYBTAm1YN9QhLO2/SXlhBAtk55TIQ7zzLpn8KqO7fTRIyiIcEcwOXQykyY1nzUsRHepq3Pz0c4i1jnr2aZ52Fxb7+v5bKABZyVE8efhyRwoW86eqhJyauIwiGv5gK1sNWlWXtK2mxhZUsljAy/AZHjw6t301uY18MTa2R+RxO+KLsHtMbjR/CEGOqXl8dw0ycRLa72koVO+5ADJczO6pw4hejkJp0Ic5oPMDwJdQtdRoHt1krUUbr3q1mbb7QnRHSqLa3nhnW28MFCjJsSEpozG8aDD2ImDCAq0/iil8BS9wuKi/xJKHTqQwihMPIgX06EgeuR/j/DgnucYXuJbd7jYEttsMfsuoxSYdIyhEXg1DW2k4omsq5mWs53d+kg0p07/wu38L200l+9z4d1cDBJOhTgqEk6FOEyVuyrQJXQNBRHOMGLCE/jnBS9js8n+3KL7bVudz5Pf7OGLKaGohpSoGpZlUsBuNZyprOA4tZJwHMzn48bbGmi8wM0Y6B0+BR/rruBn+R82Lu2U5CptvN8udViPr9IbHo9JwzkomptMv+bU3E1YDC9DivL4cPxorsjSUMV1KEOh6bIslBCdJWNOhWiwt3JvoEs4ekr5vgwDm9tN/8gB3HTiL/nPRW8TZZOJUKJ7eZ1OFj39d9Y9cisFEXswtEOh9HBK01mlzWAGPzDvsNnuANsZTbGW1OLtWjOrfC1WdWjs6oWFX+DVuqnPpZVxrDnpaXw+dDL7o+MxKYVL+TYJQNfovm5cIXo36TkVosFf1v0l0CUctUdPeIyzhp4V6DJEH1Hj9fJ5cSWZtU72lFcy+Lk/M2fLBsJqa9gw4t5WF7EH3+z6fQymH4dWxKgmnE84u9Vxpa3ZGD4Ml2ZuDKiD6vZzTd5/+Ue/87tsAhTQ5rE0YGB+Hp+OO56L1nxDqFcHHezDYmTrUSGOkoRTIRqsL1of6BI6TUPjtIzTOHPImYEuRfQR/z5Qyv278nAaxqHQdvnP+SMwecfyZj2fJuUmljLcWKggBoWimggMdOqx8jWn8R4X48TW6UCZFdKfu4f+H8/serzxst/ueZZYj4MnM65q/3hKoRsGhsmEzVnPtC3ryew/gANJHV8KSjcMEstLMTSNtenDmFNmB8NNxIn9O/VYhBCHSDgVooGhmu+3HcxCzaFcOvJSbpxwo/TQCL+4Z0cOr+SXtdrDmZdwKJDZVD3n8l9O4QvC8J3qziaD9zmfUhJYxixe5nrcWI6+l1PTeCt5HrfmvMrAet9apzqK/8t+hfXhw/k69vjGMaKt3f6O7f/i1vzXwKNRmRdK9keJXHjPX6kNCfW1aac312MykVJShNJ19iX047kd9cScPxTbIBlOI8TRknAqRIMBkQMoLy4PdBnNTEyYyPxB85mQOIGE0AR2lu3ErJsZHTeaUEtooMsTfUCNx8PkZduo8Hh9Qa2VsFYckwqAVdVxP4sYxF50Dn3oSyOHW3mav3ILL2i/7PRp/Na8mzSXO7JfaTKJ4qa8t/gq/oS2b6gUfxhzDUWx8Ty++2nihlQTO6iam1b+mydPbtjlR9ParNPqdpNcWgyASYMRt03BHGs/5scUzHavWsGXL/wJr9fDoElTOfOWuwNdUu9WXQR/mwU1BYcum/1rmHkbmHpnjNOUOmwaYg/kcDiIioqisrKSyMjIQJcjerDVBau5+ourA11GM58u+JS0iLRAlyH6qKXlVVy4YQ+dOa9wgXqDc/hf4yz6I93Pk2QzsMvGhUa4q3kz60YmFGRjNmBV1EheGTif/0XO7/AEq79u/y3nF32FMqBYj2bcie+3XV9DYL39jX+watQ4lo6fTD9VxtpTTu2SxxSMHMVFvHhzy6+Ro04+lXk33Obfgno7peCf50DO9623uWYxpB3nv5qOQWfyWu+M3EIchanJUxkbN5bNpZsDXUoTMbaYQJcg+iB3WTnvP/d3Yj7/lA+rq3jx3AvZeWI6NpxkMYBKLbb5jZTCVl/LGbYP0TRfMK3DThaD0FAMYB9VRJCtDerSWqss4Zw55J8MHpJJBbGUagmgPHR0uryuvPy9/4WcX/QVmg7v9pvb7m2sHjenbFmFZnhZOn4KaBoTbLnH+EiCl9fjaTWYAmz77ivCYmI58ZKf+bGqXu6Lh9sOpgD/OA3uzITwBP/U5CcSToU4zCvzXuHWb2/lx/0/BroUAGakzCDcGh7oMkQfk7dnH9mXX87wygo2DR3B5iv6MW/o21xEFYUkcT9P+RbXP7JXUtPw2C3YcOPCyltczrecikvzrbNrVfUMoJuWbNNM7GH4Yd93/O3N0ExsjBiBFx0TBh8lnNzubexuFxmOEl44/zIAdHcRM+N779jv1+69td02q997R8JpV/G4YMXTHWv79W/hnD93bz1+JuFUiMNYTBaeO/U5imqLWJy9mE1Fm/g069OA1GLSTNw+5faA3Lfou/bXu1jzy1vxRMVy8+2/YVb8V5zD/xqv/5SzcWFt9XS5gZl6ZeUp7X62M7pJO5dmZ5ca2e2P4WjoyovWMAyh2hza7pADT8NYv1BXPUoDw7WOMwdf0+11BkppbnaH2rlqa7GGylj4Y/beLzredv0rvS6cyiL8QrQgMTSRy0ZexuMnPc5zpzyH5ufVtCOsEfzj9H8wInaEX+9XiL98+QMhNdXcedsDeGMNzj4smAIsZRaGZmr9AAre1K5gmza25QAbhCtL6IaXGeXrGsPp6Oo9aG2s3qEZBrE1lVTaQ5iRuZlaWygnOraRYI/zV8lBa/+enYEuoef7+xzY+m6gqwgo6TkVoh2z+s9i5WUr+f3K3/N+5vsYnZoa0nEaGgMjB3LDhBuYO2Aueid2yhGiKxQ53ZStX88bc8/GbbYwW/8aRdORm/WEEK+KmM1iBrIPN2bWM4XlzMSp2VG6zg9qNiijzcX4g4mhm1gSM4WUE78lzlVBRv2BNidSKV1nzIF97IpVFMcMw+Tez5+zvoayPRA/1I+VB5+UQUMCXUK3qF6xn8rPs1FehSUllNhrx2CxWrr+jjb+Bw6s7frj9jASToXogBBzCA+d8BAPnfAQ2Y5sXtz8Il9mfUm9px67bkehMJSBS7k6dVwdnQVDF/DA9Acw6/J0FIG1p86JR9f5+rgTGKrv4Ezea3Z6bT7vczFvoNAwYWCgMZnVXMCbPKYWsZ/+uLSQgNR/TDQN0Ci1xlBqPWwS4uHLSDUsbjOsMIdak8be8B2Ux53G+YWLifZWg8fp/7r9JDIhCUdxYbvt7GERfqjGf1wltRT9oWlYdOdUU/ibFdiGR5Nw1diuvcNP/6/zt+l3YtfWEARkKSkhulBBTQFXfX4VedV5rbYJN4dzQr8TOKHfCZyWcZpMeBJB4ze78/hg/TYc8WE8z1WY8DYb0HLwDePIy73oVBDNrTyH0rqhRylQDgun4fW1pJfmMzZvDyuSNlEWEUlV7LXk/HgaVrMV7soEa1iAC+4eXo+HZy47t802I044ifm33OWfgvwk7962J8eGTkki9oJhXXeHi45i84YHK4JyuMyRZCkpIQIkOSyZd89+l4/3fszHez+m0llJRmQGC4YuYHTcaGxmG5FW+RAlgo/ba/BSXglGfAKXGy9j1r2ttj3ybXALY3iFazlA/x7xJtkpDYvwx9Q4GJ+XyYhC33JRVnc2ztBrSKkvwoKCiVf02mAKYDKb+elv/8Cbv76zxetTh4/sdcG06B/tLytYu6awa8NpZ12+uPc955BwKkSXC7WEctHwi7ho+EWBLkWIDvt7XjEGkEY2E/W1zcaaHnTkZUuZxXM0LDPUC98kAdA0jsvazsBS3w49bs1DWWgMLtsYLsp9Ey15DJzy6wAX2f1Sh43g/97+mB/feJU1n/wPZRhEJ6dy+eN/xmq1Brq8LufaXdGxdhV1WKO7aChLWCLUFHWs7a+Kwdz7fu4g4VQIIQTweXElKIM80jHTeq/p4QzgeW72fdNbgymAUqweMJIBpQUoDPZEV1CWdCchys1VgwbC9Id7da/pkWZd+jNmXSrrmR7kznJgndBF4XTB3+G1c9tuM/IcuPjVrrm/INUzplIKIYToVoVuN2g6StMpdCajdWA2ggcLhmbu3cEUQNMoC4+i0h5GcXgIS0ZdgTJH8q9Jo0k+8eY+FUxFc5ZB0V13sMGzYdR5rV8f2b/XB1OQcCqEEALwGAqUIrKqkqmPd2wbTje9aOJTB6wcOJIPJpyKV7cwPSqMk2Jl/HhvZp+Y2KF21khb197xRf+Ci14D+2GrRphscOLdcMfWrr2vICWn9YUQQmDSNdA0Hnn+aaIK6nDv03APOtR9WksI33MK3zMbB1HEU8wgMgNYsf/tS+hHiNtJ/7IC/nbC6YEuR3Sz+IuHk7e+7fGfYXPTu+fOR53t++qjJJwKIYQgzW6luqCIMXt3oQExfzdR8JgXNKgght/yW4pJ9C0lpek4VBR76EMLzitFiMvJuRt+wBoVTYq9d05EEU0l/mYaRY+spKW9V0JPSCFmTob/i+oDJJwKIYTgkpQ4lr/178bZ+DnhGfzRexm3mZ/gr9xGCQlNdk1qawelXknTmLt9NVH1tdSGydrEbXHur6L4+Y3gPmzgsq4Rde5gIo5LCVxhR8EaaqX/o7Nw5ldT9uYOcHmxjY4j9qzeuRNWsJBwKoQQgnMSo9lcX9f4/fMLLmObPoZf8nfqNJnwo3u9pFSWYmga3ujYQJcTtGp2lFD+r+3NrzAUlf/LxH2githzA7gu6FGypYSTcseUQJfRZ/Sxj75CCCFaYtN1Rg8fggKKo2JYPWochsnU7cFUN7wMK8gmxFnfuD1o0DEMRhZkA6ArxfhJkwNcUPBqMZgepnZFIR6Px0/ViJ5KwqkQQggAzrv0Ijy6iZLoWL8sD2V2u5iQu5uE6kpG5u8LziWplMKsDMbm7QFg29CxXDhicICLCk5VGzu2eHzpS1u6uRLR08lpfSGEEADYoqOIveN2ov/5il/uz2O2sC59uO8bTcPkceM1Bdm6qZrG8ZmbiaqvIS8lncfPO5MQk/TrtKTmm5wOtXPnVXdzJaKnk3AqhBCiUf9rr8FstzMsaw+Z6QMwdFP33dkRIdRrCs63pLhaBwBzIkIYGNrFa1r2JqYg+lAhejT5+CeEEKKJ5MsvI2rkCAxN9+84UE0Lrl5TwOxxE1ftQANM0mPapphzO7a0mH10XDdXIno6eaYJIYRo5uFRA4MyLPqVUow9sBeL4QVgyBBZPqgttvRI6MCfS/xPR3Z/MaJHk3AqhBCimYmRoUyICGn83qKcwTubvptohpcpWTtQmkZoaChjx44NdElBL/GuqW1eH7VAAr5on4RTIYQQTeyrdXLhhkw2VB1a93Q4W/pcL6rd40ZXilC7nSuuuAKrVXaFao811k7iw9MwxdmbXK6FmEi8Y1KPW4RfBEZwjj4XQggREDl1Tuav20Wlx9vk8nzSiFDlVBHdN0KqUtgNg3k/+QkTJkzAbre3fxsBgNVqJaWdHlQh2iI9p0IIIRo9nVVApceL94gz+KVaIjP5zvdNXzi9r2kc1z+F6dOnSzAVws+k51QIIQQAdV6D/xaU423l+i84s2/0mja4OT0x0CUI0SdJz6kQQggAip0u2tpY0tAsfqsl0BKsZqZEde/WrUKIlkk4FUIIAcDj+woCXULQ+O2Qfmh9qJdYiGAi4VQIIQROw+DD4spAlxFwJuB3Q/txblJMoEsRos+SMadCCNHHOb7+mo2ffcE59mh2ZAxiy+DhfWps6eFWHT+KfnZZMkqIQAqKcPrcc8/x5JNPkp+fz+jRo3nmmWeYNWtWoMsSQohezblrF/suvwLlcBAL3KBpYDfInRrL23PnszJ2OmVa39pqstLjpV+gixCijwv4af23336b2267jQceeID169cza9Ys5s2bR05OTqBLE0KIXstTVsbeBeejHA4ANLPCcaGbgt+7sVxSyOWxL/MndT23qieIUH3ndL+lj/YYCxFMAh5On376aa655hquvfZaRo4cyTPPPENaWhp/+9vfAl2aEEL0WgW/fQQ8vrn5SlOU/dxD7YkGHDYhX9cUk1nNb/gVIao2QJX61+BQW6BLEKLPC2g4dblcrF27lrlz5za5fO7cuSxbtqzF2zidThwOR5MvIYQQHVfh9vBJfgke3fcW4BypcI5RLb4jmDBIJp/ZLPZzld2olU0EMmwWdOk5FSLgAhpOS0pK8Hq9JCUlNbk8KSmJgoKWlzR57LHHiIqKavxKS0vzR6lCCNErfFNSyYglW7A7nZgNA4Da4720uvI+oKGYzVd+qtAPWgmgfxqZ7udChBAtCfhpfaDZWnJKqVbXl7vvvvuorKxs/MrNzfVHiUII0ePdtSOHSzfvAyA/PvFQz2m8ybeGUis0IIYyP1QYKIonh/dnekxEoAsRPdSGknLGL9nIsO838Lud2ai+sMVvNwrobP34+HhMJlOzXtKioqJmvakH2Ww2bDYZEySEEJ3xh8xc3s7KB6sVNI3PZpzMOT9+RY09hE1JAxilNmPSjBZvq4BKov1ar38oRtgVL40bxZAwe6CLET1AadkqVm5/mHpXBU4tnKjES7m6cFyTNn85UM5fDpRzXXI0vx05IDCF9nABDadWq5XJkyezePFizjvvvMbLFy9ezDnnnBPAyoQQovdYkZXLH/fm4z3sg/3OAYP56IQ51NpDWG0bylhtY6u3V2h8zyn+KNWvvpg8jPGRskWpaJ9Sis+XnYnFuQMrYAVQoBU8xJOk8gBP4tKafsB5saCCOEsetw3pH4iSe7SAn9a/4447eOmll3j55ZfZvn07t99+Ozk5OfziF78IdGlCCNHjZVbVcu6eYrxmS7Pr/njpNbzxk3NYp01mK6PxtvCW4EWnhAS+4Cf+KNcvInRNgqnolK9WX4bVuQMNmnwBpHCARdzX4u1+n1vipwp7l4Avwn/xxRdTWlrKww8/TH5+PmPGjOHTTz8lIyMj0KUJIUSP5jYM5qzYBuaWX+qVruMI942zfErdz0JeZCY/YOLQ6f2tjOUv3I5TC/VLzd1tsN3KkukjW53XIMSRvF4nqno1ikOB9HAakE4O/VQ2+7Xm2cVtKCy6/L11hqZ6+Khdh8NBVFQUlZWVREZGBrocIYQIGr/LPMBfcos6dZsoVc5ItmLCSyZDKdRSu6m6wPjn6AHMS4wOdBmiB9mU+ReKc55ps40ClnAiz2u3Nrvuu4lDGBEd3j3F9SCdyWsB7zkVQgjRPV49UOJb07MTvYSVWgwrmNmNVQWIUlg0jbkJUYGuRPQwjvrSDrULpeWNKgaGy2S7zgr4mFMhhBDdo87oXDDt1TSNp0ekY5Kfh+ik/gkn0d4pZg3Yx6AWr7O1MqxGtE7CqRBC9FIhutbqbkh9iUWDF0ZlcGFKbKBLET3QgKTZ1BDeakBVgIHGByzwZ1m9moRTIYTopa7qF983e06VIszjZlqImf+MG0DOSeM5Jykm0FWJHixt8MMotGYB9eD3b3E5htZ8RQxxdKSvWfRcLhf8fRaU7Gi4QIMxF8IFLwa0LCGCxV0Dk3k+t4j6PtZ5GqJrLD9hAok2CQuia0zKOIclXhPZWY+SRCEavmBaRQRv8DN+1Oa0eDv5Czw6Ek5Fz7T7G/j3eUdcqGDLO7DlP3B/kW8nHCH6MJOuMz4ihJWOukCX4jcRusYbE4ZIMBVdbuagMzlh4HyGf/sd/cijhHiKtZQ2b3ND/zg/Vde7SDgVPVOzYHo4BU+kwa8K/VaOEMFqb60r0CX4Raiucc/AFC5NjSPCbAp0OaKX+qCwDIcWg4OODRM5L1nC6dGQMaei53n/l+238dRDdVn31yJEkIuy9P6gFmcxsXXmWK5PT5RgKrqNUoqbtud26jY3bcvupmp6NwmnoufZ/FbH2r3/8+6tQ4ge4O4BSYEuoVuZgXcnDCHEJG9nont9XVKJt5O32VbrpN7b2VsJeTaLnqejS+M4K7u3DiF6gPlJsb32hT5cg7cnDGZEeEigSxF9wPO5xUd1uwE/bMaQJd06pbe+ZoneLKp/x9odd0P31iFED2DSNL6bOjzQZXS5hwansHnWOE6IiQh0KaKPqDyGHtDU7zby7h45xd9REk5Fz/OLJR1rN1YWRBYCYFh4CEunDAt0GV3Crmt8M3U416cnyal84VfTo8OP6fY35ZRz2tINuA3pRW2PPLNFz2MLh7QZbbc5+zn/1CJEDzE4IpS9s8YGuoxjMj0qlC0njGGUnMYXAfDrwanHfIzNLhi9dDMfFVUce0G9mIRT0TNd8xlMuKz55ZoOF74Kk1q4TvQMX/waHoqFRVHwcBx8cAu46wNdVa8QajZRMHsCd6bFB7qUTrECy6eN4P1JwwiX2fgiQKy6znGRx/7ByOEx+PnWLL4okXkRrdGU6tmjdB0OB1FRUVRWVhIZGRnockQguFxQkQ2JQwNdiThaq/4Fn97adpsblkPSKL+U01e4vV5u2JbDl6UOXEH8VvDymAGckRAd6DKEACD52w3HfAwNGBhiY+m0EWh9ZIvhzuQ1CadCiMB68TTYv6oDDTX4VRGYZeevrlbvNVhaUU1+3n6Wb9zKGpONsogo6m123FZr41aNgbBoSCq/SEsM0L0L0ZzX66XfD5u75FhfThnGuIjQLjlWsOtMXpMdooQQgVNb1cFgCqBg5fNwwi3dWlJfZDfpnBIXCXGRXD5+JADKMNB0HUMpdE3jwnW7+bGyxm81LUiMYtGQfiTa5MNIsDAMg903L6AubwcAujWUwb9/g7AhIwJcmX+ZTCb2zRzDwCVbjvlYpS5PF1TU+8iYUyFE4Dw1uHPtlz7TLWWI5jTd9/agN5xyfG7MAKx+OPt4TXIM+04cx3OjB0owDSKF777K5rkjMb7ZiTUTrHvAsqWOfRefy7afzQl0eX4XYjHzzdThHOtfaKpd/sZbIuFUCBE4Xmfn2ns62V50mQSrhTfHdfLDRCfFmU08MiJdlogKMs6KMgqf/R2WA75PJ5qhoXl9/9ZrgXUHyLzzysAVGCCjwkNYfNwITo/r/JBCHZgQEcLwMHvXF9YLyGl9IUTPEdc71ursqU6IjeA/4wdz4cY93XL818cP7jOTQ3qS3TediSW/5Q8MmtJQhqJ663I/VxUchofZeWXcIEpcHopcbuIsZsYv29rmbXR8m2P8dmgHN5TpgyScCiECRzOB6sSuKz99s/tqER0yKzaCK1Pj+NeB0i497iXJMUyM7BsTQ3oaT2Upuq6hGS1/cNAMDWsOuOvrsdj7Zk9gvNVMvNUXqQpmTwB8q2H8KbuIf+eXkn/Y2NKxESH8bmh/pkSFBaLUHkHCqRAicH6xBP52fMfaph8PkcndW4/okN8N68/u2nqWVnTdBKmr+id02bFE19K8tLtcg+bV8BQWYMkY4I+SegSLycSdg1L4v4HJbKquo9TloZ/dKqfyO0AG9gghAidpFIR1YJmgYfPh6s+7vx7RISZN492JQ3l0SOoxTwgBGBlmZ3wfWU6nJ1IWzbcwZ2vXo/BGKmxp6f4rqgfRNI3xEaHMiYuUYNpB0nMqxFGqq6tj2uPf46g/dFp6RHI4n992UgCr6oHu2g2vXQh7vmx+3Un3wex7/V+T6JCr0xK5qn8CZ63dxZqquqM+zpvju3eilTg20cefSe2uj1tvoIEnWUPXpb9LdA1ZhF+Io/Dumhz+77+tL8K8/cE5hITI/t+ib6jyeBi7ZCv1R/l2smPmGKIt0lcSzDacOxLbDl8vqXZYN6rSFJ5ERcbTrxA1eXoAKxTBrjN5TT7mCHEU2gqmACMf+sZPlQgReBFmM0unjyDJenQBM8ps6uKKRFeb8P52XKNteOMPfQAxbArXEMh47AUJpqJLyUdVITrp8r+v6FC7XQXlDEuO6eZqhAgO/ew2Np4whi+LK/jZlqwO3+6WtHhZPqqHGP/uBpxOJ0V/ewx3WQmJl/2C8OFjAl2W6IXktL4QnTTw3k86tM94arSdZfee0u31CBFs9tU5OX7F9nbbhWiw48Rx2GSsohC9npzWF6IbdfTTXL3smSz6qIEhNnJOGsfoUFurbTJsFnZKMBVCtEBO6wvRSZF2U5MZ+q25dJosqyL6Lquu8/W0kVS4PDywO4/lFVV4DTgtPpJHhqVhly1KhRCtkNP6QnRSbW0dox5uf8JT1u/n+6EaIYQQIvjJaX0hulFoaAjpsW0vE3XjiYP8VI0QQgjRu0g4FeIo/HD3HGYMjGvxuvvmDePuM0b6uSIhhBCid5Axp0IcpTeu963rV1dXR06Fk+Ep0YEtSAghhOgFJJwKcYxCQkIYLrtBCSGEEF1CTusLIYQQQoigIeFUCCGEEEIEDQmnQgghhBAiaEg4FUIIIYQQQUPCqRBCCCGECBoSToUQQgghRNCQcCqEEEIIIYKGhFMhhBBCCBE0JJwKIYQQQoigIeFUCCGEEEIEDQmnQgghhBAiaEg4FUIIIYQQQUPCqRBCCCGECBoSToUQQgghRNCQcCqEEEIIIYKGhFMhhBBCCBE0JJwKIYQQQoigIeFUCCGEEEIEjYCG0wEDBqBpWpOve++9N5AlCSGEEEKIADIHuoCHH36Y6667rvH78PDwAFYjhBBCCCECKeDhNCIiguTk5ECXIYQQQgghgkDAx5w+/vjjxMXFMWHCBH73u9/hcrnabO90OnE4HE2+hBBCCCFE7xDQntNbb72VSZMmERMTw6pVq7jvvvvYt28fL730Uqu3eeyxx3jooYf8WKUQQgghhPAXTSmluvKAixYtajc8rl69milTpjS7/N133+WCCy6gpKSEuLi4Fm/rdDpxOp2N3zscDtLS0qisrCQyMvLYihdCCCGEEF3O4XAQFRXVobzW5T2nN998M5dcckmbbQYMGNDi5dOnTwcgMzOz1XBqs9mw2WzHVKMQQgghhAhOXR5O4+PjiY+PP6rbrl+/HoCUlJSuLEkIIYQQQvQQARtzunz5clasWMHs2bOJiopi9erV3H777Zx99tmkp6cHqiwhhBBCCBFAAQunNpuNt99+m4ceegin00lGRgbXXXcdd999d6BKEkIIIYQQARawcDpp0iRWrFgRqLsXQgghhBBBKODrnAohhBBCCHGQhFMhhBBCCBE0JJwKIYQQQoigEdAdooQQItBK91ezcfkuSg5UcMbPZhAebQ90SUII0adJOBVC9EmVxbW8/uumkzJfuXcZAOZQuP7pOYEoSwgh+jw5rS+E6HNqKp3NgunhPLXw15u+8WNFQgghDpJwKoToc976y9L2G3m7vw4hhBDNSTgVQvQ59Xkda/f8HdJ7KoQQ/ibhVAjRpyilOtzWW9uNhQghhGiRhFMhRJ+iaVqgSxBCCNEGCadCCNGKmRenBLoEIYTocyScCiH6nGv+MKtD7cbPHtnNlQghhDiShFMhRJ9jD7e0u8rzqbf3808xQgghmpBwKoTok256dg5zrm35tP1Nz89h+PDhfq5ICCEEyA5RQog+bOSUkYycIqfuhRAimEjPqRBCCCGECBoSToUQQgghRNCQcCqEEEIIIYKGhFMhhBBCCBE0JJwKIYQQQoigIeFUCCGEEEIEDQmnQgghhBAiaEg4FUIIIYQQQaPHL8KvlALA4XAEuBIhhBBCCNGSgzntYG5rS48Pp1VVVQCkpaUFuBIhhBBCCNGWqqoqoqKi2myjqY5E2CBmGAYHDhwgIiICTdOO+jgOh4O0tDRyc3OJjIzswgpFsJPffd8kv/e+S373fZf87gNHKUVVVRWpqanoetujSnt8z6mu6/Tv37/LjhcZGSl/sH2U/O77Jvm9913yu++75HcfGO31mB4kE6KEEEIIIUTQkHAqhBBCCCGChoTTBjabjQcffBCbzRboUoSfye++b5Lfe98lv/u+S373PUOPnxAlhBBCCCF6D+k5FUIIIYQQQUPCqRBCCCGECBoSToUQQgghRNCQcCqEEEIIIYKGhFMhhBBCCBE0JJy2YMCAAWia1uTr3nvvDXRZohs899xzDBw4ELvdzuTJk/nxxx8DXZLoZosWLWr2/E5OTg50WaIb/PDDD5x11lmkpqaiaRrvv/9+k+uVUixatIjU1FRCQkI4+eST2bp1a2CKFV2mvd/7lVde2ew1YPr06YEpVrRIwmkrHn74YfLz8xu/fvWrXwW6JNHF3n77bW677TYeeOAB1q9fz6xZs5g3bx45OTmBLk10s9GjRzd5fm/evDnQJYluUFNTw/jx43n22WdbvP6JJ57g6aef5tlnn2X16tUkJydz2mmnUVVV5edKRVdq7/cO8JOf/KTJa8Cnn37qxwpFe8yBLiBYRURESG9KL/f0009zzTXXcO211wLwzDPP8MUXX/C3v/2Nxx57LMDVie5kNpvl+d0HzJs3j3nz5rV4nVKKZ555hgceeIAFCxYA8Morr5CUlMQbb7zB9ddf789SRRdq6/d+kM1mk9eAICY9p614/PHHiYuLY8KECfzud7/D5XIFuiTRhVwuF2vXrmXu3LlNLp87dy7Lli0LUFXCX3bv3k1qaioDBw7kkksuYe/evYEuSfjZvn37KCgoaPIaYLPZOOmkk+Q1oA/47rvvSExMZNiwYVx33XUUFRUFuiRxGOk5bcGtt97KpEmTiImJYdWqVdx3333s27ePl156KdCliS5SUlKC1+slKSmpyeVJSUkUFBQEqCrhD9OmTePVV19l2LBhFBYW8sgjjzBjxgy2bt1KXFxcoMsTfnLwed7Sa0B2dnYgShJ+Mm/ePC688EIyMjLYt28fv/71r5kzZw5r166VbU2DRJ8Jp4sWLeKhhx5qs83q1auZMmUKt99+e+Nl48aNIyYmhgsuuKCxN1X0HpqmNfleKdXsMtG7HH66b+zYsRx//PEMHjyYV155hTvuuCOAlYlAkNeAvufiiy9u/PeYMWOYMmUKGRkZfPLJJ41DPERg9ZlwevPNN3PJJZe02WbAgAEtXn5wFl9mZqaE014iPj4ek8nUrJe0qKioWU+K6N3CwsIYO3Ysu3fvDnQpwo8OjjcsKCggJSWl8XJ5Deh7UlJSyMjIkNeAINJnwml8fDzx8fFHddv169cDNHkBEz2b1Wpl8uTJLF68mPPOO6/x8sWLF3POOecEsDLhb06nk+3btzNr1qxAlyL8aODAgSQnJ7N48WImTpwI+Maif//99zz++OMBrk74U2lpKbm5ufIeH0T6TDjtqOXLl7NixQpmz55NVFQUq1ev5vbbb+fss88mPT090OWJLnTHHXdwxRVXMGXKFI4//nj+/ve/k5OTwy9+8YtAlya60Z133slZZ51Feno6RUVFPPLIIzgcDhYuXBjo0kQXq66uJjMzs/H7ffv2sWHDBmJjY0lPT+e2227j0UcfZejQoQwdOpRHH32U0NBQLr300gBWLY5VW7/32NhYFi1axPnnn09KSgpZWVncf//9xMfHN+moEAGmRBNr165V06ZNU1FRUcput6vhw4erBx98UNXU1AS6NNEN/vrXv6qMjAxltVrVpEmT1Pfffx/okkQ3u/jii1VKSoqyWCwqNTVVLViwQG3dujXQZYlu8O233yqg2dfChQuVUkoZhqEefPBBlZycrGw2mzrxxBPV5s2bA1u0OGZt/d5ra2vV3LlzVUJCgrJYLCo9PV0tXLhQ5eTkBLpscRhNKaUCFYyFEEIIIYQ4nKxzKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKAh4VQIIYQQQgQNCadCCCGEECJoSDgVQgghhBBBQ8KpEEIIIYQIGhJOhRBCCCFE0JBwKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKAh4VQIIYQQQgQNCadCCCGEECJoSDgVQgghhBBBQ8KpEEIIIYQIGhJOhRBCCCFE0JBwKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKAh4VQIIYQQQgQNCadCCCGEECJoSDgVQgghhBBBQ8KpEEIIIYQIGhJOhRBCCCFE0JBwKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKAh4VQIIYQQQgQNCadCCCGEECJoSDgVQgghhBBBQ8KpEEIIIYQIGhJOhRBCCCFE0JBwKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKAh4VQIIYQQQgQNCadCCCGEECJoSDgVQgghhBBBQ8KpEEIIIYQIGhJOhRBCCCFE0JBwKoQQQgghgoaEUyGEEEIIETQknAohhBBCiKBhDnQBx8owDA4cOEBERASapgW6HCGEEEIIcQSlFFVVVaSmpqLrbfeN9vhweuDAAdLS0gJdhhBCCCGEaEdubi79+/dvs02PD6cRERGA78FGRkYGuBohhBBCCHEkh8NBWlpaY25rS48PpwdP5UdGRko4FUIIIYQIYh0ZgikTooQQQgghRNCQcCqEEEIIIYKGhFMhhBBCCBE0JJwKIYQQQoigIeFUCCGEEEIEDQmnQgghhBAiaEg4FUIIIYQQQaPHr3MqhBB91ue/hhV/bnrZLZsgNiMw9QghRBeQcCqEED3RoqiWL//zOIgfCTev8G89QgjRReS0vhBC9DSPpLR9fcl22PW1f2oRQoguJuFUCCF6Gk9t+23eWND9dQghRDeQcCqEED2JYQS6AiGE6FYSToUQoiepdgS6AiGE6FYSToUQoieJjA50BUII0a0knAohRG8UPTDQFQghxFGRcCqEED3NZR+03+a2Dd1ehhBCdAcJp0II0dMMPRkufKP16xdV+q0UIYToarIIvxBC9ESj58PoSqjMg4/v8u0KNe/3ga6q19qy9R5qajLp1+9i+ve7KNDlCNGraUopFegijoXD4SAqKorKykoiIyMDXY4QQohe5LvvJ+H1Nu+JTk7+KaNHPRKAioTomTqT16TnVAjRJ2S/+CLVTz2Ndthl7tFDGf/uhwGrSQS3b74diVKuFq8rKHgTUIwe9Tv/FiVEHyBjToUQvd6GyROoeerphhc8hQZogGXrLraOGInyegNanwg+hYVfthpMDyooeMtP1QjRt0g4FUL0ajvvvRdrjRPwjWDSDus71dDQgR2jx7F9/DR2zj4zMEWKoLNl680dape3XwKqEF1NwqkQolfzvP9BQ0+p1kYrA5wOjPw9bB8/jeqiIn+VJ4JWx3rT9+9/u5vrEKLvkXAqhOjV2oqkLXI6yPvJ+ezbt48ePl9UHJOO/eWEhQ3q5jqE6HtkQpQQQhzBqC3l6VffpCA5haQhSTx90mlYzZZAlyX8KC72ZErLvm233ZjRT/mhGiH6Fuk5FUL0eorO9YBqKMLCh7OwfBhXfeZkzQ1/ZcnPH6V2055uqlAEmwkTXmq3jUmX5QuF6A7ScyqE6NXqI+2EOOo7fbvrNxfg2vsWRtEWQhsuy17yJnpsfwa8/gK2AeldW6gIOpMnvcvadee3eJ2mWTj55PV+rkiIvkEW4RdC9GpKKbaNHIWOrwe17YlRDXQzWCPAWQnKaH69ZgLlBTS0yDgyPn6fkMS4ri5dBIkNG66ltOw7fCs+mBgz+lmSkuYGuCohepbO5DUJp0KIXk8pxZbRozAZHZjmounoUWkYlTnQ1sujJYxKq8biE4/HFRqBxeNlfHI859x+Z1eWLoQQvYKEUyGEaIHb5WLbT2djzlbo1eVNrlOA0jTMkWkYdRXgcrR5LAX8b96ZqDAbhVFx7EjJwGEPJby2hlH5u3jw6mtJSEjotscihBA9SWfymkyIEkL0GRarlfHvLmX0mmXYJs9As0c3Xue02fl87sWEzroLXFXtHksDItx1fD98Iv+dMputKQPIiUtme7+B/Pe4eUxdk8nDN9+OYbQwLEAIIUSrZEKUEKJPGvTvfwDgLizkh6++5rvM3bw/6TTOW+ZFs4WjnO0H1BXDx7Ol/2AAlK43+a/TauO5BT8j4qobuP2VF7rpUQghRO8jPadCiD7NkpTEnEt/ygmnnMywA7v4sJ8ZU8ZM0Np+eXSEhbNi2NhWr1e6DprGq2ecx77fPNjVZQshRK8l4VQI0edpmsZPZp7EXy45jW/js8gcfwqaLbLNgPrFSSdTZ7W3fWClyE9MZvm6TV1csRBC9F4SToUQokFqVD8+uOSnTLhlEHvOvQpvbEazNgpYP3oM+amp7R9Q860NUBoV08WVCiFE7yXhVAghjpCSMJL5i37OmKWfkvTQU9gnnIC5/zCwhKEB30+dRnRdDbrh7dDxkkuKurdgIYToRSScCiFEG2IvPoOBb73E0K8+IPmp34PJxpmLPyOqvIJhBTloLS3SD741UpVicM4+xplkxr4QQnSUzNYXQogOipl7KjFbNzDcMAh/89/Ub1xJUWQsZWENa/Y1nMY/uHi/bnhZ+PG7DHr1tQBVLIQQPY+EUyGE6CRd15l92RXMvgwmvvAMr3tDWDdgLDX2EF9A1TT6FR7guvfe5PyrLsMSL1ubCiFER8kOUUII0QUqtm3nzUefxGELIaWkiBlxkQz6+wvoZukDEEII2b5UCCGEEEIEjaDZvvSHH37grLPOIjU1FU3TeP/995tcr5Ri0aJFpKamEhISwsknn8zWrVu7syQhhBBCCBHEujWc1tTUMH78eJ599tkWr3/iiSd4+umnefbZZ1m9ejXJycmcdtppVFW1v22gEEIIIXqX89dlkvzthsavod9vZENldaDLEn7mt9P6mqbx3nvvce655wK+XtPU1FRuu+027rnnHgCcTidJSUk8/vjjXH/99S0ex+l04nQ6G793OBykpaXJaX0hhBBdKifnLbZmPoCtHMzlvpUYXCEK25RFzBp+RYCr611cLhcZS7fRWiC5KS2BXw/p59eaRNfqzGn9gI3U37dvHwUFBcydO7fxMpvNxkknncSyZctaDaePPfYYDz30kL/KFEII0Qd9/f1sjOocQivAkwLuKF9s0nTwrlnE/9Y9xYKfbuj0ceu9Xtat+IrCl5/D5qmi1hTDyPmXMeLM+Zhsti59DJOWbuGAy9PkstGhNr6eNrJL76crjFy+vdVgCvDX3GLuSU/AarX6rSYROAELpwUFBQAkJSU1uTwpKYns7OxWb3ffffdxxx13NH5/sOdUCCGE6AqZe/6K03WA0DrwJDZceNggOG8ixDiqeO+9izjvvHdwuUrI2/8GB/a/hdNVeNiRNJz1t7BrUy3uqioqNBMn535F2OAihmwwYarRgAOw7H52PnA/XrPGkGUrCemCs4Ap325oMextrXWS9u0GcmdPOOb76Coul4sao/2TuKesz+THaaP8UJEItIDvEKUdXLS6gVKq2WWHs9lsREZGNvkSQgghusqq7NcIy/PgjQFMLTQwgREFsQfWUVOzl5Wr5rNv35+PCKYACqvtT4ya/CI1Fgtz8z4lZGQR0W+YMdVoHPk/swf2HXcc265deEz1T1y6pc1eSDdw6YbMY7qPrvTH3OIOtcusdXVzJSJYBCycJicnA4d6UA8qKipq1psqhBBC+IuOQlmhzYQHqBjFho1X43KVtdnYZIIZk1/HOKuc2H/5TlhqtNwJo6HBkpVsv+uuo6we8o84ld+Sb8qDZ5JRjbft7X21Wg+m7Cr0vVVc8Y+V1Ne3//hEzxawcDpw4ECSk5NZvHhx42Uul4vvv/+eGTNmBKosIYQQfZwGvnDa1jukDsoO9fW5QOvhStN8u9maQhW2lTT2krbH+PhjDKPt0NZb3JTRSoeUx8CyoRTbj4WYdzgw73bw4+4SRiz6grv/u9G/RQq/6tZwWl1dzYYNG9iwYQPgmwS1YcMGcnJy0DSN2267jUcffZT33nuPLVu2cOWVVxIaGsqll17anWUJIYQQraogGr0G8LbRyAt6JdCBoKlpvmaW4pbGCLTQHg1dQeY//tGh9j1dks2K+cgfo1JYNpShF9YDvp/y4U3eWZPHs9/s9leJws+6dULUmjVrmD17duP3BycyLVy4kH/961/cfffd1NXVceONN1JeXs60adP48ssviYiI6M6yhOjR1het56XNL7GjbAd2k53JiZPZUrqF3KpcDGWQHJrMmYPOJMwSRpYjC6tupV9kP1LDUzmx34lYTJZAPwQhgtoPzGYEmS2PNz3IBJ5qK+Ch3fP/DbwxnVu5sXrzlk6178l+mDKcGat3Nn6vVbgwlTrbuAU889Uubp4ztLtLEwEg25cK0QMopfg251vu/fFe6rx1XXLM4THDWTRjEWPix3TJ8YToLf6Vk4dn188YmpONJ53m5xgNMGdrmNNGUG/e3uHjmrdD4l86vhSS+6qrGHfP3R1uf9DsldvZXtt2sLs0OZqnRw7o9LG7U4HTxawV26kyFOat5Zj216K1k1B2//Z0LJaALTwkOqEzeU3CqRBBZnPxZt7c8SYbizeSV5WH0cZ4tq4wIWECT538FImhie03FqIP8CrF5atXcFzF40zJ3II7Q6FCfNdpTvBkhuJKTeIn53zAxo3XUFG5us3jHXyX1b41k/w/Dc1ofULUQYYGQ9eswRoWdlSPIe3bDbhbuS7KpLPzxHFHdVx/GXTfJ3RgdSmW3HMy/WOO7mck/KszeS3gS0kJIXxKakuY9+48Lv30Uj7a+xE5VTndHkwBNhRv4Kz/nUVhzZHL4AjRN5k0jdemTCdk6JPcPuKvvKX9lE1ZU1i9bwbf1sxl4iV/Yf6CLzGbwxgz9llCQ4e0eiylfGNODQN+0C6keG7b405Vw/+qph531MEUIHf2BE6OCW92+U+TooM+mALYLR2LJ6lRId1ciQgE6TkVIsByHDm8seMN3tz+pl/CaFvOH3w+D57wYJtrDQvRlyilqDUMLJqGVW85MHm9TvILPmLnzntauL0vmG5d9jMSKx04IqLIsji59L3/YqnxPc8O70VVgGPsGKa9806ffh7++etdPL247QlP4TYTWx76iZ8qEsdKTusL0UN8vPdjHljyAIYKriVjbhh3AzdOvDHQZQjR4xw48Bnbd9zc8J3O1CkfEhnZ+nahZatXkPvAfRi1TrwZgxj+5BNEpKb6p9ggN+o3n1Pran3JhLd/Pp1pg+L8WJE4FhJOhegBdpbt5MKPLkR1cKavv10+4nLumda8J0h0sYcTwThs8oo1Em7dCmHyeib6No/Hw8wnvqPA0XRyl0mDlxdO5aQRMk6+J5FwKkQP8Julv+H9zPeDNpwCLD5/McnhyYEuo3dalAi0MaP6tEfghF/6rRwhglVVnZsnv9yBo87LxVP7cfzghECXJI6ChFMheoDZ78ympK4k0GW0Kc4ex3cXfxfoMnqfRVEda/dAAVhkwocQoueT2fpC9AD1nvpAl9Cu0vpSzv/gfGrdtYEupfdY82rH2/5lWvfVIYQQQUrCqRABkhTayn7SQWZXxS5u+eaWQJfRe3zciVP1juzuq0MIIYKUhFMhAmR22uz2GwWJlQUr2VLSd7ZSFEIIETiy55cQAXLtuGt5actLgS6jwz7f97lsdSp6lqcngGNf88vPfwfGnu73coQQHSM9p0IESKg5NNAldEq1uzrQJfQSto43vejf3VdGb7copuVgCvDuRb5Jad8+6d+aRFCpcjhYesE5rDx5JjuvvBJnVlagSxINJJwKESDBvIRUS9Ii0gJdQu9wwfMdbzvqzO6rozdb8Q/oyG5r3z/iC6kf3t7tJYng8dz/XcUbZ55N1vTjid2yi8iCUrwrVrL3J/PYdvJJeKtrAl1inyfhVIgA0TWdodFDA11Gh2honDPknECX0TuMWQBpM9pvt6iy+2vprT6/o3Pt173sC6m15d1Tjwg4pRTXP3gzZ/z5bDwFNUzM3I3JOPQBpnGj2IIidv1kLj18lc0eT8KpEAF0+ajLA11Ch9w++XbiQ+IDXUbvcc1ncOafWr5uUaUE00B5YoAvpK5+K9CVtKrS7eHW7dkM/H4j/b7dwODvN3Hvjly8RnBtgRxMLn/vcW781Y2sTV9JreZlzvqtKA4LpIfRAErKqFm1yr9FiiZkEX4hAshQBnd8ewdf534d6FJa9csJv+Tn438e6DKE6LiObnLQnvvywRY8Y8N3V9cxe81OPApQCjQNTRkoTad/3T6eHx3LlIyTAl1mULn0g98Su6SM3QO3kh9awPkrp3Phtz+2GEwPUoB9wgQGvfWmv8rsE2QRfiF6CF3TeXr209w55U5MminQ5TQTY4th/qD5gS5DiMB4LAXqg6cXe9663b5gCqD54pXSfG/jefYBnL3ayvn/fgy32x2gCoNLXXUZuysjiXGVciA0H6UpwupVm8EUfL2nztwcf5QoWiHhVIgA0zWdhaMXsvqy1UTbogNdThPlznLm/W8et35zK5XO4HmT7otK3/gPOyZMY/uosWwfPZ7dp52Jq0YmbrTo0g+67ljPBMcuXZ+XVFLtbfnUfbrK4mr+zsOxv+bUlB945JvrWL71z36uMPjc+/VjDMmpoSJKazyHX2uzdmgqqjU1tVtrE22TcCpEkLCYLDx7yrOEmINnL3UvvlUFvs/7nqu/uLpHbLnaG+04fg5FD/8GVe8AwwNeF57cPeyZPIWiF3vOWrl+M+xkMHXR6fj6fKgq6JpjHYM3DpS2ePl89T6P8X+czFcMZB9D2cVMyxIcBc/y/bob/FxlcMlUYHPVYzYORZ1Vw5wdum2/3/++u8oSHSDhVIggMj5hPO+d8x4XDbso0KUAYMI3/sqrvOwq38Wn+z4NdEl9zp4zL0aV57d6felTT+GqqvJjRT3Er/Nh8Bldc6y81V1znGPgbmF6yDi1nkt5DQBTw9JZGqCj0DUDd/mX7Nj1KC5Xy8G2t0syaimPjCWuWBHiCQEFWfEb+GrK9BZ7Tw9eVhUbhX3wYH+WKo4g4VSIINMvvB+/Pv7X/GzUz9DaHR3V/TQaXrQNeGHjCwGupm9RSuHK3Ay2aELP+CPh57zQ+BU69/cc3OQv+/xLAltosLriTd/KBzesPcYDBf55eGZ8dLPL5vMB3lbexnUUaJCX9w++XzKdr7f3vefub8Zfzs6MUKyOckaVDgMNNOXk5Tl7+XryNBQ0CakKjcKEWKYuXR6okkUDCadCBKlbJt3CccnHBboMoOGtWYcDVQfYeWBToMvpM6qXb4TUqYT/5HFM1jAAtIaJMKbQWMLP+SvY4/Dk5QayzOCXNMQXUu9tvQe6TWmBfx5emhqLCdBUQw+pMhjFlsYe09b4elINVP4T/OubOeys7Du9qAMGH0+qeQc/HjebUVucjCkZiaY0vHoZfz9tPXddN4bPpk1k9fDhbBk0iLAX/8rJPy5tfI6JwJGlpIQIYh7DwxdZX/D69tfZVroNQx16I9LRMTC4bORlXD36ag7UHGDJ/iVsLt5MbnUuBdUFuFXXz9qNL4d/Xf0xGZEZXX5s0VTZO59QszYCoMU3zIMv39Uf3cTIbZv9WptfZO6G16f4/n3+qzC2izaCcNXBnyZATQfGkg48GRZ24QSrY/BlSSULN+1BoaFh8BoXda5PV4EpVyPNei8DF1yObrd3V6lBw+2sY85nv8F6oB/TN27AZHWT2a+W6hAPZo+VMfvMPPzs24Eus0/oTF6TcCpED1HnqeOzfZ/x+b7PqXJVMSR6CBcMv4DxCeNbvU1JXQm//PqXbCnd0nWFGDCbofz5qv913TFFiwpf2Yx7e0WbbZRS1Kx6nhHfvuGfovxhTya8Nrnl68ZeC+c/1TX3k7kUXm9jXKopDO7eCbaIrrm/LrChqpY7vnqTbVGTWMR9DGJPu72nR9IrwPzvWFIffY3Bw0d0T6FBZsOmz7hnzxLqaq1Eerw8OGUeU0cfH+iy+hQJp0KIJsrqyvg652sKawvZVbaLb/O+PabjnbrW4IaH3mNYzLAuqlC0JO+BJeDtwEu0xU3/387p/oL8weOBR+LabnPCfXDavV13n38YC9VHrGs57UY47SEwW7vufrrA2z/+l+lLHuCyQb8mPqGCX/LHzh/EA7bNGtp7MRQNiyD6zOuZveDiri9WiMN0Jq+Z/VSTECKAYkNiuXD4hU0u+9knP2N9yfqjOp7Fq9hZtlPCaXfrYNeBHhI8uxgds/aCKcDSx7o2nN7Zc4ZE1G37gH7OIt7bdg8nHPcK39tP5iTtO7zoHepBte7SiH7FjLlcQ1FFbEk1avkiNv/mtwx6803Cxo71w6MQom0yIUqIPurleS+zcNRCoMMZCADNgMowDaspuHqUeiNz//AOtQs7qX83VxKE6vve8lm11RWcXfwtZgwStGqe3voEb9ZfyVfqVJzY2n0eW7I14v5ixlTh+/7gaiCaApPHQ/aFF1H+zjvd+hiE6AgJp0L0UWbdzJ1T72TFpStYMPg8DNWBkKpg8H4zG0ZamZ4y3R9l9mlJN7Q+nvhwUSf0wXC68a1AV+B3m3O2Eus5FMrPrF3J1xsXUr03ld84/sAbroYPm608kSM+MoECTTWfRnUwqGY+8juyP/u864sXohMknArRx4VZwnh45sNsXriRqwdeDQbNU2rDgoDhtToR9R7OG30xUbaoAFTbt2iahn1KYpttIi8a6qdqgoyp741KG5Y6mHq96RmLdFcpf9n/NOs3XMzLK55ixPZqoHlA1WrAtk1DM1qf36+hEZ0wnve3W3lh+XZ6+JQU0YNJOBVCAKBrOneceDubr9rMCdVjDu5dCoDZA+MyraSUGiSedjr/N/n/AlprXxJ/wXAizxzY/Aod4q8dTeSkZP8XFQxGnRfoCvwuJjqZT+Nm4sHUapt+xfVsL5vWbN8AvYb2N/XQdLwhsZx6QGfOe8Vsu+ZZsh59iCWffcbXX39NcXFxFzwKIdrX9z56CiHa9fzNb6KUYv2OH/l2y8cUhdYRNTaFswefzZj4MYEur8+JnNmfyJl95dR9GFDTfrPQ6O4uJChlp86krmw5IV4n5iMmQHnR+TF6Etef/U+8RhnLl89FqVoAjEhQumq159RpjWLPwLMoTJ6GqjYAgwiVSMS6LPZUfUxpfALf//gjOnDWWWcxeXIrS30J0QVkKSkhhBDBZVE7Q0buzQV73329f+zNh7k4+y0G1e/Hi4aGAjQ+iZtF8k8eYurQSQAoZbDkx5OorCknxFZH9D9NhKzVmwVUpzWKNZPvwmWJROmH98oaKDSqorbjDCnxXRTqRNVasFps3HPPPZjN0sclOkbWORVCCNGzvXol7H3viAutcH8OWEMCUVFQcdY4+MP/fk+UsxSPZsKWOpEb5l3XYtsvvhnB28YlFJel8sDjLxJWV4vZONTrum3EFRQmTj0imPooFErzUpq4wrdUBwZooAwwmczccsstREdHd9OjFL2JhFMhhBBCAODxuFm2fCaOukocy9IZuLSYqNx6NMBjsvPjCU+0GEwPUiiqonbhDClsvASzF9xmoqKjuOKKK4iPj/fLYxE9lyzCL4QQQggAzGYLJ85aidNZyvak+6mYmkvNOx60vYOwjVzYZjD1UZg8h/dWa+Axgwa1tQU8++yzpKWlccYZZ5CSktKdD0X0EdJzKoQQQvQhLlcZObn/YGnuEoZ9eCXratse46tQ1ITvoy48r9l1aenryM0ZDw0rCISFhXHzzTcTEiJDL0RTclpfCCGEEG1SSvHsrbcT7TkLRxvrnyoUZfGrMcz1jZeF1NRgczqpiI09tKiqdugY06dP5/TTT0fT2lm+SvQZnclrss6pEEII0QdpmsbPH/sd5TWfAqrFraUUCqe9qDGYaobBpDVrGZKZSUVMzMEDNQmmACtWrGDFihXd/RBELyXhVAghhOijbGFhLHzqPio8H6NpvoCqGR5oWEPVaS+iKmpXY/sJ6zcwcO9edowc2SSQmjweYsrKiC0txeTxAPDFF1/gcrn8+nhE7yATooQQQog+LCo+ngde+iNrVq1m45vrSCq1oNXspGR6HqV1A8EwAQp7XT1DMjMpTkjAbfVto6p7vYzeupUhuzOxut0AeEwmdg8dypaxY9i5cydjx44N4KMTPZGEUyGEEEIw5bipTDluKsptUL+nnGUr3sVV8i11cdF4XRaGbNiPphRek2/yk8kLpy5ZQ1R+VpONUc1eLyN27CAjK4v/gYRT0WkSToUQQgjRSLPohIyI45QRP6d+ayT67gewRkD4Xh10E1GVlaR54jgxx40nP6vlYwCh9fWc+dHHvDZkCFcsXOjXxyB6NhlzKoQQQogWzR99CafMW4+pSMeTqNAMjQhbEqe5x6GyltJejAitryfh9X+zfft2/xQsegUJp0KILjX33+8y8N/fkPLhKlI+XMXgf3/FgrffCnRZQoijZLVFMuuCbcQWXI2yW7ANm48GGNVFHJw41Za0vDz+88YbGEb7bYUACaciwIp372bFpMmsGzueteMmsGLGzECXJI7ByH9+xKaUQdQlx6AirKgIKzXJcSyLH86kV/4T6PKEEEfJZLGguwcROuF6TMlj0DQdzRbeodvqSpFQXMz777/fvUWKXkPCaR8VDHsvLJ80meKzziaqtha720WIy0lUWSlbRoxk+113NWlb848z8SyKxf1IMt6y5ruUiMCb9ep7lGf0932jHzY9QtdAgwP9h3DBO28EpjghxDELuXoCpqSxaJovOljSpnf4tmaPh02bNnVXaaKXkQlRfciWrQ9SWPg6Cg6bWakxauSfSUk5w6+1rJp2PFG1tYdVcYgOGB99TMlNNxH+4cXYynYQerCNpw7159EYgPbrMjRTe3tCC3/JMcWAomkwPUjTQCk2uBP8XpcQomukjxvB1jf3EKki0NCwpM3AlfkVqq4M1BGn7DUdzR6NFpmCUbgVR0QEAMuWLWPGjBkBqF70JNJz2gfU1dWx+JvBFBS+DjQNgqDYtv2XZOf80681hTgcLdRC42U64PntdGxlO1pspwP8Nrb7ChSd5ooOazmYHqRr1ES2vYe3ECK4jXr0DAzNhVIKzWIndOad6NEZDddqHHy11qPSCZl1F7YZV5Kdlk5VlO+5/+WXXwamcNGjSM+pn6xY+Q5Fa94gyVmMVzNRENqPaWf+hn79Rnbr/VZXl7Ni1ZR2P4VkZj5CRvpV3VrLQRVLlmBSRovB9CAFJPWvA5oHU+2w/9Y8dzJhN37X5TWKo9GBPbRlm20hejRN0/jYbuKsKiea2Y4eGkvYSffhLc/CW+LbScoUPxRTzEDcykNpdRZ5E08A5T14APLz80lJSQngoxDBTsKpH7zz0pWct/9DdKXQMTDQ0Cs3UvqvZXw57hfMPeu+brnf6uoKVq6a0uE8kJn5R4YMub1bajlc9YqV7dYUEttyMD2cAkKL1ndVWeIYWSprcNkjW+89NRShjir/FiWE6HKvam7mu+vRzDa0hldpU8wATDEDAPBisNqcyTZTHu4QXyg1ebzY6+qoiYjg1Vdf5a677kLX5eStaJn8ZXSz9/9zP+fnvY9JeTHh6y00odCAaLeDSZueZ3/eli6/3/UbbmLlqsmdus2B/Le7vI6WxJx3Lu1Nx4oeUnP4ts2iB+jvLm/904RSoMEYvdCvNQkhup7LMDDZoxuD6UFeDLaacnjN9j0bTdm4Ne+h68xmasLDsdfVUVdXx5IlS/xdtuhBAh5OFy1ahKZpTb6Sk5MDXVaXictbhtL0Fn/QZgzi3BWs/vjhLr3PwsIllJV93unbaZqlS+toTdjgwbjM5jYDak2hlSBYUKDT1px6OltHjGLbiJFsGj2WVx7+K7UuT6DL8otlC88lKiffF0SNw355Df9OzM3ig0suDVB1QoiuMsLb/B3Ni8EXlg0sN+/GoxmtTCjQqA8JQfd4WLJkSVCsGiOCU8DDKcDo0aPJz89v/Nq8eXOgS+oaSjGpajtm5W21iYFGau3+Lr3bLVuPbpu4EcMf7dI62mIa49trubWXprLcaNBavx58r31uc1gXV3Z09r7yGttGjCQsLwe9oWfc4vVw3BvPsmPyZL7efCDQJfrFzivPYMj+vViLKtHqPGh1HuxFFYzL38WmhecFujzRSxXVO3lwdx7XbN7HU3sPUObuGx8IA0G5Df7PbUMphTrsFXqTKZsDehtnTw4yDKwuFy6Xi+rq6u4tVvRYQTHm1Gw296re0oOUUlhU2y+SJhTmdtp09j6PVkLCrC6roz1j33qDdWeejXVPJrpSja9nCqi3Wkn/8AO8r07FZLiOWPrqUDsAy325fqu5NfV1ddQ/9mirr8khbhe1C89h68dfMTq1989WX3LF+YEuQfQRD63dzN8qG14/G8YBfVICT2YXcWFiFH8eNQCtF40PctZWsnvBaVDkwAhXKDu40hSWM6Yy4fx/+6UGb5WLZHRKdA/xDRHCQLHNnNexCY+6jtccFNFDBLGg+AvZvXs3qamp2Gw2pk2bxqOPPsqgQYNabOt0OnE6nY3fOxqWJApGmq6zOzSdETVZmFrZ4s2LTpE1vsvuUynXUd3uuKlfsXX143yStYFSaxzR7krOSZvBqGk3dFltR5r08YcArD33fOpzc1CaTsb99zBqwQJfg98U410Ujd4QRY+M3XXz/0poEKxzun3OqdjbaRNbW80LH27gT784yS81CdGb5VbXMXXldl8gbSV8/qeoEp1s/jR6gH+L6ya1pfvZN3MOutJAB73Wt7mFNUfHs2stPxQNZtrVG7F1cNemo6VZfSdc4w+LD3W4qNM6+N6jFLrXdzYxPLx7axU9V8DD6bRp03j11VcZNmwYhYWFPPLII8yYMYOtW7cSFxfXrP1jjz3GQw89FIBKj8626LGMrtnb4nWq4StuwoVddn+aZu1w24Nhb8K493jmq4f5V9TV1MSfjqYMlKbzQk0dl7x/Mw/NewqbzdZlNR5p8vvvtnqdaVEFRu4KjH+c3vih3Bk9mJDb1hHabRV1jq28rN02GhD36Suo60/sVT05QvhTVq2T6Su3+8Y1d2Cm99tFFTw63EuYOfAfYo/V3jmnYlINj/lgX0fDi7ipFKLfMrNk4ARO+Ulmt9ZhCrdiTY/AlVPVeFrf1Mk14pSmYTKZ5LVQtEpTQTYiuaamhsGDB3P33Xdzxx13NLu+pZ7TtLQ0KisriYyM9GepHeJy1rL0b2cxu2INXjRMDU9mDyZ0DD5K+QnnXP9Wl97n198M7lT7VRXH86eYO307fGjNX/Cvrvg7j573XFeV1+tsGzGyQy/NS/sP58ov/ofZFBRDvYXoMdaWO5i/oeUP+e25KyOJ/xvUs9fUrNqfSe4pZ4IGmmr91ab0ejfDr3idhPiObyt6NOp3lVPy8hYM3IAZHY1/2b71TYRqg2YYWFwuXHY7gwcP5oorrujWOnuSqqoqnnrqqWaXz5s3j2nTpgWgoq7ncDiIiorqUF4LunfJsLAwxo4dy+7du1u83mazERkZ2eQrmFltoZxww0f8L/VMdoVm4EHHqVlYGzmSz4Zf3eXBFCAiouN/yIbS+Hf0zxqW+mn5z+GtqMvYs9U/45l6IqODa/WtT5sgwVSIdiil+LrUwfnrdzPg+40kf7vhqIMpwO66+i6sLjDynnwQDa3NYKp0hX27zrZtv+z2euzDYoi5aBi62cr+0c+Ra6pitCe99Rs09IGF1tTgtvhWhbn44ou7vc6eoqCgoMVgCvDZZ5/x4osv+rmiwAv4af0jOZ1Otm/fzqxZ/puc092stlAW/NwX7gy3C7PZwrRuPJ1x3NQ3Otx7mqmGUaInttmmVgvjvW0fc+foy7qivE5zer2ctmoHu+oOH9NkcENKHA+OHBCQmg5njJ+Iaf3aNtsoYPzPAvPzE6JLeVy+syyW9kZaN1Xm9vB8ThHflDkodXmo9hrUeQ1MmkGot5ghNidjYkfyv5JaKr1dd0Iv3d7xoU5Bq7aDAdsDhuFsv10XCJuURMjIOIy1ufwY+hh52y8ntj6UMnMtjbNYlQJNQ/d6sbjc1IRHADBkyBCs1l7we+kizz//fJvX79+/H7fbjcXin+Ueg0HAw+mdd97JWWedRXp6OkVFRTzyyCM4HA4WLjy65ZCCnW7xzxPylDl7+PqbwS3OdD9clSsCQto/nsMc0VWldUq128OQJVsaX+QOMfG3/HJeyi8gd073nsJqz+gXn2fbtOmYvS0vGaaAz8eexE2zfJP8it94k5LHHwePBy01lejTTiX24ouxZmS0eHshAs3j8ZD99Uuw8WUG1+4EICt0ALkTr2XMidcTabVQ7fHiMhTLKqup83iJL9pPVHkJX3gdLHbvIcsFFs9+dG8FhimK+rBZeGyD8RgaTi2R1S5YXVjT5bUPDOlciA5GSXf8hoIlF4NBs4XvGxngTldEhI/xW116iJn0mT/l+H0lbLT9lWUbLsLmVphV03cew2zG2TBDf+TIkdJrepi9ezt2VuDxxx/nV7/6VTdXEzwCHk7z8vL46U9/SklJCQkJCUyfPp0VK1aQIW/Ux+yUOXtY3NCD2lpAja8t61A4jfOUdl1hnTCuxWB6iBsbQ7/6it2nntot968Mg7oqB4bFQlhIaIsD+EvLygn5/RPU3H8vFre7yc9aAcsmnMQ40y52Tx6N7oTD315Ubi7lL/+T8pf/SeJddxF3zdXd8jiE6IiDUxAO/zt3Op2se+4ajq/8CE/DSLAVkWN4IuMq1jOKuiVbfJOTVMMUz8OHB6lY0KOxu3ahKzcecyKYk3BbM0APxeTKxWtJBa37JizdvjOXOXGRJNl6bq9T7IjxFCiN1lZ+VppCWaBuosHxU97wb3HAoIG/JCF+DsMHv07m7l3s3tOf2qoodMNCpD2CiJhIBo4YzAknnIBZlpFq4u23O7Yzo8fTt9buDboJUZ3VmQG2fdXyFRdRU+s77XzwLcdkiuLEWSspLPyBc7ZXkUsaqqU3CGUQQwXfj40lMWGC32oGqHJ7GPrj5laDKQBKYcLDtcZfmTH2ceYmJrYYIL1eJ8UlX1Ll2MLGH9fQb9cOdI8XT6yJ3MipnHrSE8SNTiC7tJRLvtuIppmpCAsl0qPzk/31nLgvnz3aHvLTIvjZpZcyMCaab97/hKy332HS5vXYPG4sg0/FMuR0qvK+o75qP55+06jI8JL23xfRPS0/hiN7tvv95c9Ennbasf3ghOgEpRTP5xbxTFYhlV7fhBabpvGL/vGclxLLo999S5m7jBDDyUmlq3ih//kU2xJ8Nz78udbah8iDlx98qzn4b00D5e3WYHqQXYO9J41H78GzwytXLSfvuqvQGs7aH/yIq3Tf1sBl13qwnziNKZNlfkBP8uijj+JydWwZrkWLFnVvMd2sM3lNwmkfopSBUga6bj7sMsUL757Nb2MfxEBHHdbroSnfG9UdZU9w1wVdP3GrPe8WlHLTtpy2w2mDR9QdlJJITuJj/GX0gCZvQoVFn7J9+33U1NaT9B+d0OUH3yRBMzS84YqKSw2W1d7IS5Om4wixoxsKQ/e9iepAtEvxwqpaCms2sT60mH5pQxj99+eIdVRgNgxsYy7AOmRuk5o8Vgc1H/wfmrPVE3HN2MaMYdB//9PB1kIcG6UUF6zPZGllw+n0FlbsOLi0HMrA96TpmQHv/IQo/jpmYKDLOCbVWzaz9+cXoBkapkpQFqgfb1A72SByzqmMH9f22EURfNauXctHH33Ubjtd1/nNb37jh4q6T2fymvSv9yGapqMd+cajaVx//gdo/z2XV2KvYK82tPG6VJXHFeWvcdsFAQpLnfjYlE8qM1jOR0WreSEyjBvSfZO8Skt/YMuWWwBF0ltWQlepQzNeG46v10Dsizp7Hq6kqmE9V0NvaKNpGEClBe6eGMLbS8aQ61lO2Y5NjcFUD09uFkwBKupew+rs2KYpBzm3bMFbWYkpqvfvJCX8y1CKIpcHDUi0mtE0jSf35bOsrJDQqi+wVX+HrpwYmKmLOI36iFPBFNEQTFtfzaOneLe4kr8GuohjFD5mLOOW+cb8FuZ9RUnlD2QknUZ8fO+ZQNzXTJ48uUPh9Pbbb/dDNcFDwqlA03Suv/BDfq4U77x3HoWGiRjNzQVnvEVIyNkBq2teQhRsVw3nvts+tT+QfXgwMZPveSF3FD9PS8CkaezZ+xSgKNjbn9SVRbQUFTWl4bSY+Cr8VJTe8v14dY194SbWxOiMLU9hSWgddWGhRFRVY8k4AWV40fSmpye1dRtbn7zQBuV2d/o2QrTGqxTPZhfyQm4xZR7fpL00uxW310NBfRXWunXUh0ylNups0Cwtn57vob2lRypzuYm19tyxp4dL6n8qSf27Z6y98K9zzjmHDz74oNXrw8PDiYgIzKTkQJFwKhppmsbFC94PdBmNQs1m0AxQbYxJUwob9aRQgIFGJJUUuDxk17lI0YqpqtoCwIDNFShdoRktv8nuT0ilxh7WZj0mQ7Ep1sKFxb4XibKYWCKqqtFC41t889Y6saLLwbGnelQUptjYjt9Q9Er5jiJyq/JJiYglNTyVKlcVoZZQrKbOrfZR7fFy6uqdZNUfNqZNKXJrKkAPASMET+1UDAUkNrwd9JIg2pJt1XXMjO0d4VT0HhMnTiQiIoLXX3+92XVDhw7lssv63jKEEk5FUMs6cSIDvt9IiyfHG4ZLX9dwsk6hUUp8w78VHk9lY1NzvafN8+taB4dea0phNOwdqBu+/ypXVUNvU9O23gQLlpKO9YIevGnsVVehdXBRf9HzKaWoXbmSLT9+xXfl+9liCmFjylaM0AOHMqICjyUNZ8g4ND2cu8fM47rBk5pN7nF6newq28Weep1yYgk3W3kyq5CcOmfTwKlpgB3N4UZZdIxwC9j6xt9c/96w5qnolYYMGdLjJzx1JQmnIqjZTSZ2TB/BiOVbfKccD3uTNeHlav7G8Sxv+N7ge+YQbzGTYbdheFLwbYJmUBtpJ8Lb+hqKaYX5RFVVUhnR+lhPr64xpczDXms5GAYJxcUAePJWYR14crP2tqlXoLa/DLQ97rRhmglacjLxV1/VRkvRmzj37iP7l7/kw4GpVMenssWaxo6M/6Lph5YjM/QwHHE34w4Z45vZDjyYa+LB7NXYvbWYrJHodcXEF60lvGQj20ZfideWAhQeOj1/ZE+oUmDSUREWaGUYS281ILTnr3kqRF/QNz4uix4tOjSUtRPSiFBFnK4+YLb6gl+qJ3mFizmZ7wDfafHFnM5+LZ1r+8dj1jWs1lgSEuYCOqVTVZsfxUx4OHfnJ4eWuznyekMxssLD6HIn2y0F1Og27E4nCvCWZuIp3IJSTfeVjnBMwzXM3ljfkQ5eVhcaijkjgxGLv0STXVP6BE9ZGdlXXMHXKXFUx6VQoyxsTVyJph/qaVdoVCbcjds+0neBZjq07JJmot4cRY3SqbIlsi9tHpsn3IbZs883q76lv+PDl3KCPhdMr+sXH+gShBAdJOFU9Aj94lL4dsJY9tSnMYH1HMfKxt6lGsL4D5fyCtcyLz6Km9OTGm83dMg9mM2RxMQ7KDrDt9uAOiIqKl1hhMFpcZ8T2TA2z2Q0LEauFChFSp3B4+scfG7ZgCMpjrtu/DkfzDsHt9mMoWk41v4dd97qhuW6FEoZaGiEDllETUZos8ejgPKoKLYNH8a4pUsY9sXnaH1oa7q+rvytt6ipraWwXwZoGjsIxxTadKcYV8gEPLZBLa8DqpmAgx+GvJhd+zC78nDZxx2aVX8whB4ZSvug48Lt/HZY/0CXIURAKaVYWl7F33OLWLB6O6ev2MpDu/JweVre3TCQZJ1T0eM4nU7ezVzCRkcOe72h7GMoA8Mj+VlqPPMTopqNxautzSYz8zGKS75CfRdL4neVWIp8b+BKU9SPV5ScHEGy+hsRc5L56bY96C4vHouNGDfMznMwPP8AO+IqmHr2fE4ZNaJxof+1Py5j2//ex1ZWRlhkBJMXXIJ5jwNvdS2W1HCizpmJyWYjs6iIrJ9dhlbvwREeRm1EJMOHDWPKQ4v8/eMTQWDP6T9hp6axavo0ABZroTgGvNakjSPuBpyh09pepN5wEXfgNnSjCgXURZxBTfSFoMmILYBwDV4YO5BT4mRpNtG3ba6q5adrdlHSyvWj7Ga+Ob57t76VRfiFaIHLVUJd3X4cjiJWv/cc4fWF1EYkctz0P5I4IAVzjIxHE/6xa8YJ7IiNYd3kyaBpfKtiKBv0UpM2FQl34g4Z3/aBlJeE3CsBqI04nZqYy7up4uD32NBU9jvdxJjNnB4fxZAweT4LAZBV52T6iu3ttutn1lk7a1y31SGL8AvRAqs1Hqs1nqgoSLtFtggVgWPNSCd6//7GU+0DDEWJJxzdVN04e87kKcTd1vaeSqF7fP0gSrNRE3WBP0oPStFmE5elxmOVlS6EaOa3ew50qN1+j8GWqhrGRLS9rKI/yDNZCCH8LOaSS4gvKsZSVw1KkaFXohc1XVA9pPr7dvadV4RUfwMKXPbxoPfNnkIduKqfBFMhWqKU4pPiyvYbNrhi0972G/mBPJuFEMLPIufPJ/yEGZz843JQXnQMflIfAqUzoWFTNJM7B7vjU98Njhx9pbyE1hdw5g7F+VnnM658ZqsrTfR2x0eHc2tGUvsNheiDKjyeTrUvcgXH5CgJp0II4Wea2Uz/v/2NoRdeyBk/LMFWvp8w6jnPkcT4fedj94zCSwRhFW8SXvYKurfs0I0NJwMLt3Hx2rVEu3wrUEQ46/vcbPwMu5UnhvXnzfGDsJvkrUyIltR6O/ehta1zNf4kY06FECIAdKuVxNtvI/7GGxiXlYVXKeriI7GGhWGqgnUvruGhQVXkul4n5sAdGJYUFDYGVo/muAPWhqGpvv9PKysixFVPncXWrSE1xmkQ7oFim0a92f9h+KrUOE5PiOLEmIhmq3IIIZqLtnQubp6VEBwrW8hsfSGECEKG08Pu7/fyQk4hbwwMBTyAhUtXfUWEs7bZrmN741P4ctRxvm+6OLhNLvVwfaaLSRW+U34uHT5JMfP8UBulftr6dGKYjc+OG+mX+xKiN5m/eidrq+s61HbV9JGkh9i6pQ6ZrS+EEAFW7nQxb/UO9leux1a3Dk058VjTSImdw29HjOS46HAiLK2/BOs2M8PnDuOT72rBUICV0ft2EemsbbH9oJJ85m1ZwfJBY6gIi+iyxzG70M3vN9Q3ucxqwFkHPMwo8bJweigl9u4PqM4e3Y0iROD8aVQ6M1ftbLfdn4f167Zg2lkSToUQoguUOt1cvTWL1ZU1GIDmKSeq+A9Eu3NQmACFrXYZjor/cHXltTjDZmIGHh6SwtVpLU/oyXe6iHE5sVVVsejvz+CtdrP1tONbrSGjrJB+5UWsTx/O2gEjjvkx2byKBzfXo9F8goJZQZxLceNuJw+PDTnm+2pPjFV2UBPiaAwJC+GrKcNYsG43DqPlT3lfTRnGmIjmuxkGioRTIYQ4Rtura5mzetehjXGVQVTxU5jdeQBoHJoBq/ASUfoChikOt30k92fms6mqnmdGZTS2yalz8sDu/SwuqWTKjm3MX/IlO5IiscRUYapx4A2NaPXUvVkpSsO7ZtzYKYUewtuYvGtWMC/fw1MjFDWWLh4DqlSTx7ggKaZrj98HbHnuVXI+/i91dgs2p5P+heWEjZlMv1uvInTixECXJ/xoTEQou04azyZHLV+XVaIU/Cw1jnibNdCltUjCqRBCHKP5a3dzeH+EpX4rFnd2i201QKET4vgIt903hvKtwnJuzkhkSFgIB+pdnLF2NyVuD5pSZKb1pyTEi91Zj64U1pJ86jJaHq9loOEICSM7LrnpFUcEvY5KrzFwa2Bp45S6RUFyvcGeTk68aNdh9Q6wWzhPwmmHFW7cwZr772H9hDF4pk5EUwqlaaxVipHbtuP++V0k3XY1cZddGuhShZ+NiwxlXGTw9JC2RsKp6H752+GF6c0vv2YppHXvXr5CdLcvSyqpPeJUma1uLQodDaPF22gYWOs3g+EC3YrV4+b+H1fx2ND+/LlOo9TtW5tQaRonr/iyIZj6jmWurcKWn4Uz+VBPq9I0NMBhD+XjcTNQhwdRpbC66nHZOn/qvdYMegfGetZ248z9seF2Xh03iFBZLqpDakrL2Xj3/7H6+KmNH0oO/j0oTWPbmNHoajP6s28SNmki9pF9Z5JZ4ZtvUfLQQ80mE1bZbEzbuCEQJYlWyLNddK/372k5mAL84wRYFN/sYqUUm6tq+aSonGXl1Xh79oISopd7t6Cs2WVu23A85tQ2b6cBuuFk5u6N/GzZZ4xa8S2vvv4K/ysobeyFDaurZkjWjsZgepC1ooSwzE1YS/IxV1VgdpSxKT6Fd6aeQq3V5tva1PCdjx+9az3xpYVH9di+SbS0ue6hF9gRoZMf0vVvJQNsFj6ZNJQvpwwnJUhPPQajLbc8zMaxI9vsLd82ahTO6mxKX3/bz9UFTvYvb6G0IZge+RXpdLJlxEjq6jo2o110P+k5Fd1rw/PtNHDDV7+DUx8A4L8FZdy5I4f6w/KoRYP7BqVwY7rsAiOCj1L4ZtMbCsw6KANn6DScYcdjqdtIZMlzaKoO375PWsN/QWFlQHEpow7sQwfqTBbsqVX8YfeTDKrLo8wSxb+tp6HR8ocz3ePGVnJoz+wZ+/eSsXsTW4dNoDYkjIgaB2N2riO5+ACvLfjFUT22vDCdL5I15hZ40Y7oy1D4Fux+YUgXzO49IkhFmXS+njaCMFOwLAnec3gO7KBm6LQ22xgmEwf6pWLfnOunqgLL43ZTs3gxQLNe04NMwI7jpjFx8ya/1SVaJ+FUdJ+H0jrWbskTcNIdvHyghPv3lPguO+yNym0oHt6TT5XHyz2D2u6NEsKflFLoB2pBU2Bq+JvVDoU4t30slYl3EVX4cEO0OzxouogtfwudEVRFwpSQjfw09wvcmgmL8uJSVrLLzqCqvRo41AOUWphDvc3OzsFjqQyPZtvQ8dTYwylI6HeUD9Bg8+gPOZ54IguOx8DAq+mYlG+t09+PsvNj4lG+jfhSPWimJs/3/lYzn0wZLsH0KLm1loeSNKEULqsV5QmOrSq7296fzGs1lB6kAJvbTV1tLSGhwT8ms7eTcCq6j3J0uKnx9SPcbz0f0Jqfimr4/o/ZhdyckSRvWiJo/Onr3Xx0oBzSw0Bv4e1P0/HYhuAOmYCtbn3Tq4CcsG0MCE8jGcUl+74AwKJ8gWFH7am4XCPQ9FUoo7zVGhQaGoo6Wwj/mb+QwsT+oAxAQ1OKteNO6PwDUwpQDGQvp5k+In+ci9LBH6IVzOZH73zyQnU+T7Yc2wx9TaPJZolKkWCzsHrGaDTZ/emohXo68LPTNMKqawiddRR/Gz2QZ/9+oPVe08Ovy7rpJkb+85/dXpNom4RTERTyN/yPqcelEEk1DhVFKDWYcPMNc309KwBo/C27kDul97TP8Hq91NXVYbVasVqtKKUodHlwGgbJNgs2PXDD5pcUVPDM17vxnpzccjA9SHlxhk5vFk4BlKb4PDqR5VuebfbGubl2HpqmYQ45AXfNx409pE1uD2yKGkPOyGGU9U+m+OAs/YbeW9XZkNd4el2BprOPIdyj/sSZvM+pYV9QNvgz/qSd37ljtnofTYWaTPx73CAJpsdq0DgSCosoSYhHtfT8UApbfT0pBSUkX32J/+sLcu6q6kCXIJBwKoKEW3ezWvt/9s46zo7q/P/vM3P93nW3rGU37u4QCCS4U6G0lLaUClDq/bY0UJdfqVCkAqW0pTjFJRBIkLi7rbvf3et35vz+uJuVrIfdbBLm/Xrta3fnnjnzzFz7zHMeWYwitXZPkI4uTMyQmzkq83CLBAA+aHYDhjg92/H5fKxbt45tW7YQCIUQQOvkWaxLzqZUiyxbmnWdxHo3riYPqXqIy3OjuWTxXGKjXNQGQmxqL4Y/K9pBhm14E2rKPD5ufG13xMFoGkAgCxVd6atjk2BswINND6IjULos+7doaYCCailkk+UcpjSvR5UaOgoCiUCyO2oS6+MWEja5CCd+9FJLcTTQJOO7hSbUk8g/xJfYKWdQSnY/ew8SIdo9s5G/BZF+3t/OTaPAafvo83/Mmfy7/0O78jrWLI5Dh+4Ctf26z9m8Bes112LJHobn8wxATUtFr6oecJwEsr71zZE3yGBADHFqMHJ8uwJ+M7hYtwfSI/X29HYvqWyP0NvBLBaxjvc4B4AoY0X/rOVQTSu3P76d4qpaxosawoqJeOEkWbh5LXYGTbVR2KqqiY8VRIV9WMraaPJZKZM2yjCz70gjRx/8LpkTErl7xaUElcjHmwAuSozhN+OziO+nXehgCXi9fPup5wj6MlAFCL+GtKu9egMBkBpquGe2fNiciTf6Muoc8yhIuoK4UAs3Vr7AV8r+S4zWhln4CUonG6wh3rNPYGN0PgWeI8SE3PhVG4ed+bSZotCSbYQnxp50LdOuNJHQS1hN5L24XczpFJUfkXEOK59OT2RenJMCh90oEzWMOOJjKHzoQfSv3sHusalUp6Z2PKdxjU1M3bWLrCuvY+wdXxllS08d+W+8waEpU4G+l/YlEFYU4ub3UV3G4JQipDyz6/S43W5iYmJoaWkhOrr3wtQGo8jq/jvVSCLlaHKWvEVY6V04KFJjPHvZxxTenVPAuCjX8NtpMKo8t62cbzy5Exs+/DLiPVNExEsIgu5r2gIXPqyEacNGGAXt+DhgeclmljXt5pFPfBKXHiSsmKiNiSc6LZ2X55xcok1I01GFQFEEL977S+4oWIS/DkwH3Wg5LsKF0f0Kw9iqH2EOFXf8H7SOpyX5O4DSJWwFVKmR6yvnxe1fZWfDp3lMO5e3HH0nreg2leCSlPaMqGFYDu9P4A6D+D3ObWOS+UG+sQIy0pS+vZGS+x4i6K7FJDXyfvAtss47b7TNGhWKb/0K3rVrO/7v+ko+LoISfvsbUi655JTa9XFiKHrN8JwajCyrWwYUqBfPeKBPYQqgozCWQxTphYYw87YFlQABAABJREFUPQvxh8J848mdOGjDK52oIoSGGb3rx1PHN4mOnQBt2Gk7oTTTcd7OnoPH6mDOvn047HqHnvLvNnH3oSl88/ILSInpvSC9pmkcPnyYhoYGTBYLr1VYeHZnDS2+EABLMkxM3/g+wUnL0dJUTAfdqGUewukOcJm6i7d2MWdtXYspVNq5GRV34lcBtdvyOYAmVIpsmfw890vc7nuWd8NL+794x3cfrjjN/uYZxlhQm+EpPSWMWT6PMcv7Lyv1cSHngfup/uc/qf/5L1DoXtgtJATpf/ojSeefP7pGGnRgiFODkWd1CwQD8PPk7tvzz+Pe1InsNE3sd3eBRErBC1NyRs5Gg1Hj7hf2kSWqKZOpCKGh0V98qMCHrePv7r872Zg6kaBSzjTRGWdm08NwbDtf/k0NjTmTuXFFPp/ISMRpinguDx8+zPPPP4/H4yEoVZ4NTMZ/gi3ry0MEY2YS29JAXUIKWp4L0RYGZy8fpUJAWCdoHUfQPgOLbxsCSdA+HanG9nmGmqLyZMqFTDm4i7DWWxpUJ4pXg6AOtjMr3mVVYv83rAYGI0HqjTeSeuONAOh+P+GmJkxJSSgmQwqdbhjPiMGpwWKNiNQTmHXoLUS5jhR9e1KkUEgMSqakpPY5xuDMpMQX4MOSw7RqdhASKQYSWYP33u3QM5mk12A6of/mVLWSp48k8rO6Fn62MJ2/Ts5lbFsTjz/+OLoeSbZ6PViIH3MvhxdsjJtLwc6j1C1PJTw2ukuh0V5sUwVSTcOdeDvWgJuMBjcha/yAS+QB1coeUyGmoCQ8wDkLv4Y8DcSpokl0dQBbgeXxUUxwDb2VqsHZTzAQ4J5nn6GoyYMq4KoZk7hi/sIROZZis2FJSxuRuQ0+OoY4NRhVlhWex8zyh9guZ3ckQ3VFkRppVHLX0h+MgnUGI0WlP8idB8p4p6mV880NlIjUoejODiRElrb1E3eP9FV6PTSOiywHuulABbhNdfN2i4OZf7qf35+/hJWmAMfD7926lQbZT/iIlFT7EsioKKIiPQcGKGfl8vtYuF8y86iGWXeydpLgvUkDn5srfD5hBm6nKC2noPTSALGo8a06jVEDL9UvjnXx4KSc4bXN4KzgN/97jie9FspSJ0JK5PW2xqPx4EP/4sErziMnxRCSHyeMwB+DUefOjGziaUCR3RM/FKlhxc9nlP1Gx46ziIZgmEu2HWZ9UyvmgA/bvjamBswMRZ1KQJoVAktTCE2IRUb34uUE6mQUVfqJgfeCKBHk/+EkPn4Ov/z9z7B+8EGHOC3VYvtsGRrZXdBqjua8NS8S31Lffwa7ELTZHcw84sesQ6tNcDDD3H/8ppRkenWuCZp68912DgO0aDM4+hs1TAyQJFVYEexzTLrFxM0Zibw4s4Anp+cTZRp9L6/B6cUjb6/hITWJiqTjdXojryVdUdk5diI3vbyeUDA4ihYanGoMcWow6pw3biV/GWNlhXwdh4wUQDbLAEvkO9xt38cd53xnlC00GE7uL62lKhAis/QwVz27jxlyOuoQ3aYCECEdrCp6uoPggmRC+b3VEpUc1hJ7bLW3x5KujCtEdSYzZ/Nm1HAYAK2fEJNuM+uC1LpKxAAFT4SUtDhVHrogmt9fFktd3ABiUgjiAzqH4kx8ju5966VZIZzrIrAwmcCyVEKze57bsDOA+FbDkpIUc+fY4z/AefFRbF04iZ8VZjInxmkU2DfolWcOVuK12dF7qaQhFYX9uYXc9dSTo2CZwWhhLOsbnBYsHLuMhWOXEQj4KW8qIS2mAIfdyDI929jY3Mb9ZTUkNNZyzUvv40i4DIBWpX+B1xvyeEP5dsGjjY1GaQuh1vi7jBK0ScsJ+0nGahEPjQQsOUvR9z5NZmkZJXm5xAsvsotYjgp6SPC10Gpx0mCP6Tj2waixJNdWsq9wej9GSiTwwEXtCUC9ibMuBemPeyL3xKh8ea6Dc6tM3LrLzaMEaHOYCM5NBIvS91wjwQDH0VSoilNBl4hqH9hUTPFW3pxTyHiXseJh0D+BQIC9OQW9CtPjqFqYnW1ndNVLgyFiiFOD0wqr1UZ+6rjRNsNgBCjxBfjEzmNICRetfZ7WhPOwIVEQuCKt3Ae9si8BPdXeXTjpknBu1AniVOIQoW47FmipxEknAIoQFGXPx37kNaJbWwHIUFpQTZKU5npu2vsyC6v2dnRu2p2Qyz8mrmLXlElsS5yH4g52F5cnMhgB2XVMx3Jm5Pc7qWaKXXF4bIKgKvpOvBrGGqRD4vi5axLL5noUd4jQ9Dj2LJ5MzDA0PDA4+6lqa8Vn6z9BThcKAdPwdnkzOL0xlvUNDAxOCX8vryeo68S4G5mzbw+xxKC0q9EUbfBxiBJAQDjnhGV8RSBjLMhuGeOCsUp95C8pmKhlsiQ8oeNRHUmD2cb3F92Cz2w5Pg0paX7+8O4fmF+9r1tL0YkNxfz6vQeZES5GT7UT5dNZstdLXOD4crbebuTweHmkEBS5FAJmJWJYXwJ0FJfLRb0fy/s1KO4Q4VwXWoqDI97AqNljcGaRFRNLdFtrv2MUqeMI+vsdY3B2YdzaGhgYDAlffSPlH2ykaM82SuqrCGohYpOSWXDJFeROm9lnXOELtU1oQEHRPky63i3paFxQ5W17iGA/3tOOhxQIzUzoMwmq6/4xBLhGT8EazCBLT+iINe06dL3QaLDFUG5PxFLdhDkY5Ms79mELBzEdF5vtqEh0Cd97/C88seJnFLptiL0BFh0IsDlfsHaqK+L1HE6xOJS5SlshyzXyYrVdfIuWIOZ9zchoC8HJLvSESIysT9f729vAoAPVZGJC2RE2F07tc2lfU00sSHGeYssMRhNDnBoYGAyKpromPrzz/8ja8i4mqZMFpAtBSWI0B1MTeG73dtInTuHa79+NydJzCc6nRwSNw9dGq82CFqhEs2ahIrAguNRj4TlnEL2rQD1BrIZT7YSnxEW8iCciJcIbhnAkzjPF3saCcBkTQnNRAXGC6g0jaULyoXSTMk7j94VfACCloY7//vC2Pq+DgiS+tYX5h/fSlDAZALMGDdF2pGIaVS+mpcRLyGFCJtiG346uoQPtv2WsleCy7iV+BJDvsGJwCvjzImguhumfhYt/PtrWnDS3zJvC0ZJmmqJj0U4UqFIy4/AefnDLZ0bHOINRwVjWNzA4i3AH3dR6awnpoYEH94KUkuqKKo7uP0xDfUPH9uamVjZe+QnGbHmnmzdRlZLcuhZmFVeDlFTs282bf7u/17knOG0owO4Jc6iKi2Zs8WvdsvTzwio3tFkZH1I4nh9lN/mINjdjVzxEWVuRk6IQop8l86BOaEosKZNhpb4fd7ydX+W3ESCyhK8hCbd7bBuQ3Kb48M6J50B+QccU6XU1A18nBIq/lgZFJ4jEZ4JduVbkaAlTKSGogT+M+Uhre62tYU4gOZ6wpUsI9+4ZFcAFCdGkWY34wBFDykhL6NUxULcHQm2w+c+R//84d7StOykumjWbH6ZYGVdyFNHF6+7weVl4YDvPfPaaUbTOYDQwPKcGBmcBH1Z+yEO7HmJH5Vayq53kNEQxxpHFvOnnMfP8i7FHxyCEIBgM8eaeCp7eWUNFc4CkKDOT88oINL9HQ2kpeOOJC2aitN+3prmSuPjKS3j3788yo7601xV3ASS3eklq9VIX7WT/+rdZ9unP4YiJ7TbucxmJbGjx0BSbyPZJ89hv8rOi4jWaM1YidA2pqKRoChd7LVyMjidpK9OWPIpJCaG0q9X9TOTX/JCwNHU2bTju0RMCs0swtaWUmSWHUATsz8hlUpHkClpZiYWJqISRbCTMu4RRUlRa42O7dShrcwxm+VCyxmViTXSAcIqN8KTY3r253XaRJLc2EedtpSQ+Bb/F1v/4oSBE5PjRFpTmIObtDYSmxIElkkXfZyLVyRwHiXCHkPE9vaMuVeFnhZkf/TgGfXN3bN+PNR6EP8yB2zefMnOGi08sWswnFsG/173D+4eLsJpUvnbh+eRfNDIdogxOb4SUw317fWpxu93ExMTQ0tJCdPSJxbZHGL8bSj8ELQipUyEu+9Qe/wxjTVUjd+wqwavrxKgq/5g9lmnx/XTiMRgQqes8t+5BflzyAHGtFlZsTMIRNKEjuy1jC11g1iWqsFCeloqlqZHKRDvbJ5fhN9d2eCqlkNjCNhbWLCQuGIeQoAiFua+9Q2ZzVZ9LLTpQG+1gW25kifei277NhEXLuo+Rkq/sK+F/tc0AJL9zgMSaFr69+zU8ibNpjh2LhmBzlJMaZxMz7UdwOhvJL9hATHSnF7cynMHz3k+ywzqNsKoS3+Ymu7GGjOY64j2tqDKMomg0mmM44JrOgYq+vcjqnGg8cd1jNIWu86+77iCtoa7P4gEhofLpVXfRnJFAaEZ8RACq/S9ECSmZd2wv08uPoAvBq5PmURaf0uPYOeVHSGqoYteEOfit9qGJSikRzUHUWj9Sk8hkG3qcZUDbhow7CNE9vaOPTcllRWLM8B7LoJN/XgXH3hp4XC+tog0MRpuh6DXDc3oytNTCvQU9tytWuGMnRBtt1roSCoUoXLMLn1Uh0vJGwSvgwh2HGRsq527zN+CEjjwxMfOZPevfo2HuaYmUkrK9uzi2fQuKojJx6XI2PfxXDh07TDDs48ZwNsfLfgIdWfDtO0eSiBQIESSxpoSg1cn7Sz9JY1wySrgBe+sr2FvfRAABNcD61PWsqFiBXbOjSZ0kb2O/MUAKYA+GO/7Xw+GeY4TgzxOzmRPj5K9ldZROzqEl0MDvJ63g/627D9FeXXS8PYZnxi5jx9g8pkrYsf0inM4m7HY3UjdR1JbK5+f8gbKi6VRXjScijRWOv4ZMpiCt0sYb2ji8JwjTE/OtfFE9xZ9UFB6+7Hp++Mh9vT8XwHNjl+K2OAmNj0YtbkMp9RCanxSpQdqHmJRCkNNQHbkWUrJyzwZenrqIyrgkANKrS7lkzRPEtLWgC0GMu4k3l17exxXvOnH3WFAZZyUcN8Ixnw5Tj/JVE502zk84xQ6CjxuDEaYAT94M1/19ZG0xOKN5bsdm1lQeoTA6gdsXXzDa5vTA8JwOlcZq+OMAdTi/UwSO+JG35Qwh/9WteGw9szBjZCN/4kuofbSKNJliWbZ060ibd9pTc+wIz/z8LnytbgCCqs6+gjBHU+rw2MJk1tk5Z1tix1L8oJASIaEiOY0PZiRRF9uGEq7HEtgTEblSUNg8jvTG2QQx8dlXnySm1d2nJ1EC9S47m/PTAbjxN/eRNCann8NLGoJhbv/XNj48Us/yks3csf1JkO0Z8UBNSgrvnnNOr1ovxlXFhEnv0uaNp6pyHB5vLCY1THRcFW9VzmezZxz6CddDKqClO1ArvQgdtGQboRkJfdp46bo3+erTj2EOhdCEitoea/tc/hIennwJwVQn0qKAVUHLdoGp7+svpE52fTUr923q8dh/Zy9HCfi48ZkHUDWto3SVRPDK8qvZVzgdoetI5TRKEeilruraOeOY4Oq/XqXBR2T1IL3SqhV+VDuythickfxozfO8KzwcFePQRMQ/mS2PMcbbwlOX3DSixx6KXjPE6RDRV8cMLAHS58CX1oy4LWcC2xpauWjnkV69SffJm4mjud/9x+Z/l+zsL42QdacfvtZWHv32V/E0Nfb6uN+s8er8GnShM/lINDlVTixS6ZGJPlg0ixXNEU2tpYK10+vQTF08nsE4Wo9+F4BrD73F5/a92u9rf/uYZMrjY6hKyWTPDbfzjym5ZNj6T4zxhzTufmEvT20tJ761gVUlG1hcsQurFuRIwhhKF0/s0xOpKGGSkoppdobwSiv7GgvZUTsVTfbSAhHQ8qIIF0RDSEe0hpBRZjD1X/bJ6fNy2cuvoHsldTHx7IzOwe2KQYs1o6faEV4NmdxLZnzXj1UhyGiq5cK9m7Bo3T3KuhBsS8knZccOxjcd7FZTNWK34ED+ZLZNnk91SiaiveKBZjq9Fr0yrWa2LJw02mac/QxWnDpS4DuHRtYWgzOO77/xDE+ZkvDi7IzZBxSpATDTt5OXLv78iB3fWNYfIcKv/giVQTSyqRzFYPSq3fDqd8DbCGPPh/N/DKPYWePWbcciAuAEkmQNsQMIU4AjR3/7sRGnW156nncf+1u/Y5qiglz6fiomfXi8aEowgCcrlRhTFiv2HeLDvIOk1dsREhqdKj40wqgEnH78ZhO2ULiHQNWBqjiF12ZrpNebeWX5NbS1+bh6xxHenjMeRz/xjjazyj2XFLLUt5N33tqP7iqgODsdmyWFhNZifLUe6pOdvWbBhzUT+6qm8GJwEj3fkZF3qRQgJOgpNsL57UX7zUqvyTwnIqTEFg7y9OWXETL3/h6SUb1u7hSrUiJ0nQmVxT2EKYCmC46WOVnadKiHMCVyBkw4uptxx/YipM4bSy9n14TZA9p+qvlurhHKdGpQiLzjBuC2XSNuicGZxzpTuIcwBdCFipA6B+xjOVJdydjU9FGysBNDnA4WKQlv/OOAF2wIHRiHj11PwyvfAn9T9+31B2BDl7g5azTMuwWWfueUCdZWXYs0Ij9BXBRyYJDXSRsJs047mmuqBhSmEklaox3ZRxjEySCAg/44xttbSGhSuHJdRsf8AkHY+i/KUiaSodSzYWwG00prSPD4u1lQG+1gY3482wtr2DauDZ+pGI14in1Bnq9p4lPpfS+dH6w7wLN/Ws2Yzfu5sSjY4QEWSBriJ5IRO4d1SYJWfMiuXT4l6JhYF8rn+Dsu3VTFubZ3sdhMbGybQ50/GZeUpJrd0FpN1Bo3HruLfQXTqErJ6t3b2b5N0XVsQR8Nrk5PVaxsIp1yglgpIq9jSaz/CxxpNfDWxNnEbX2HBI+728OlehzhkEAdUHBIfDYHe8fNGNU6qhFTui/pL4l1cU1q3Cga9DHi1g/hgXkDj7MNYyUIg7OCP7z3Osco6FaZpCtSKLQRzW3bXueVi0Z2eX8wGOJ0kGivfpchpRj4msEeOzLGQOQL4vlbYefjg98n4IZ1v4n8ZC+Bq/864slbY6xWGmXPbOkT4wE/7jz7y7sHHNMp3IZXnBwhmellWzAFvD3mNwW85JRuQdpdmIWJyrlWvOP9RDWHQYG2TIWqSgvW3WYcPoHHoRFd/0ea0n6Bbk7juT7E6d6Gvfxsw8/YXb8b8oF8SGxR+dQ7Oov3RaRvvLuYqLSvcHlQsFct44CpAi9BLJgo1NKYEh7DymCIQwf/Tsqqo1gntHZopkVyPe6yWezbWkCD0oQ14CehqQYpFGbu3cjO8bN4Y9kV3URWrMdNrLeNuqgYfFYHJl1DIImliRvl35nNpg7vZgsx/Fj+nDpSBhaLQoAu2Z2RxzmHdnR7qESLIyRM+BUrNr17y8+waiJotmAN+hES3M4YNPU0+MhuP1+HEHxpTBLfzU3rsyuYwTCTMh7GXw0Hnul7jJGpb9ALHzZVIV0p/Y5RpEawl5XO0eA0+KQ7M/AceJHBRLR2PK0PLYHbd42MlyMUgP9XCP7mk5+jZD38bnzkb9UCS74J53xvWMzrypMLCyl8b0/kny7X4gATB+VlVpSPR8u6psryU35MHWgwJxAfaMTcLkz7ojYhhbbMfNrcrdjePYwnu57qcBTBY2bMdo2EwhZSmqwUOXyAJLn1GVriPkdLuGeCzLbavXzh9c8SPqFRQH00/PFylaBJY/kuiTl5PMJkwQrM1PKYqeUhTyiRZbcJtBv2E04MdHsxCSGJytpG8pgmHuRnhIWZ+MZaFm9aw55xMziW0/7a7+IFbHZG0+yMZuqRA9z48tN8644fES2buZvvE0tTt2X3GFqYzG7eIbm9xkD/SEWhJCG1x/ZGqwt8gj1RE5nZsgMFSV1cMh/OOodDeZOQioo5FGDygW14bI4Bj3MqEFqInYunkTxAPLHBCPGJh8H7/+DX+XRbWSq4CD49BGeFwceKGGXg96tE0F+Pk1OJIU4HSTjY/5f3cToEV3MplG2EMfOH0YgA/DIPwm3DNydE6rS+84vIDxb4ynuQPEBFgkESbTEzWTGzRw91EwJNIoFSmU02Jf3uP33aX4fFDoPuHH+dfhg/j6nu3f3eKAggrrGRf15xBav/ei+VJomnIiWyto4g7DXha7Cy0BGmOjGAz6oT7fuQm+OqedF7Iws/DOEwmVmZGE1Jk481u+9ClcGenZ7aOxD9Y4XCwv0aLlPPpckTvcbu9A8IJwd6NV4ROvkcZT7v8x7n0BiXxAsrP9WZrNT1xlFKHAE/40qP8ss//YpNE6cBcBnPEUtTr8vui1jHWrGiY/+BbkT1LstpPrOF7VmFNLfGoJZ72RYznbGeY7QlxPDUpTehKQpSicSFhcxWtk+eB30sxw2aQdjY735S59qqV/llYQZO25yPZovBR8MRB6t7T5o0MOiNe8+9gvc3rKeepD4/SwSSlc7TI37cWFsdDFIi/L4BI/0k4Om64f0/Dp8NIT/8NHn4hWkPgnD/XPj7ymFrf7jmnMnMMVkihcq78Avth2j9eJ3i4pYRFzeI+KqzAOXEftLDjOzyAxBQLLyWtIISRzZ2zTeg78/l95IiXfzgy9+mLsrVLgaP7xWpsGr2mVi+LRJIXxt9LT8VP2V3OBdvdTVJm9bzyqNreOnZ9zFxqO8WpELgtwg2Fwpk28BtRFsy1p1YIrcbGoKlrO1yETq7SZ14XK/NjiUQ5NGLr6YuLh4hNc5hTZ/xoOPZxwy5GXQdpdbf4/XdDSkJKyovTVnI89OX8Ni889mVNRYtw4yQEFBtPJl+Jc+v+BSaonYI0077PsJH9Um+j5P9tdxW8k/2vH8ZpevPp2rdufzJfAjnLKPHuYHBmYbD4SDLV9G3MJU6Bfp+vrn4wlNsWe+cFuL0/vvvJzc3F5vNxqxZs1i/fv1om9SNnfcuJo4A1f1kHR//+O+28OauGB4DKnfAz/qPFRl2yj6Ef1w6bNO9uHQS1efP5GtJ8ZxjtfGD9CQOr1jOonnre1m6F0ye9Fdmznh42I5/urP4U58b0fkFcMBZyAdx83k1+QL+PuZzHHGNRdVDkfqdUoKURHsDTC+uZvHBMqaXVBPX5gMp0aWFy5+/n68+9ivsQX/vB5GCpCaVWP8smqKuAClZdGQvV+x8j7YqOOaPQ5hbB7RV0SQNUaA1HkVrrUbqvYtDqWuEzPX9foqpSFKoIlce6l88trNx0nT+u+IS/viJzxMdqsFOH+dK5Jp+lXtJbS7BdMjdf4yKEGiqSnl8MtUxCeiqBRFuRDUfQs/yAeBNjsXncg1vPVMpEVJiD3m4vGYNZi0Asv/kKwFMsUp2eZ7gB+X/IVH3YEmegLj8z3DNw3CicDYwMDgjePXizzMlsB2TDCGkjipDkTJSUlIg9/OP6eePtokdjPqy/hNPPMEdd9zB/fffz6JFi3jooYdYtWoV+/btY8yYMaNtHriryPCWApCq6dQqCsm63s1Zc/w7qRHomvqhV+1AaaqAuIyTP37Jh/DIypPf/6NQsh5aayBq+ITxDyd3f06dzjTOPccoezL74it4/4nH0ILBPsd81EoQm2Nn0mLpzKqODrZwRc2LxITbBaMQtNot7MhOYXxlAzn1LaQ1e/hgbAYtzlbwRcYNZMO46jSOFGhMrCxhUlUxAamyN5wCCGR44BhiXYHo9iga/7ZHcJ7zXaSmIdpFUQDJWj3I2wSp2/oF0uIrWZb5ATkxZT3m8mDnUb5AlT8T7IMQfYoSSdbTg6gNfyac0msltA7MhImvrqHJl4VpXzPhibGRJ0pp30mXoAjUY61oud3bpEpTPGE1jpgxbrJbSzkSnU7oZJfeofuyvZQIdG6o+B+fqn2dGa0HACgrTuGR1Ct4KvZC6mMTejidVSDarPLA9AJYaHQYMjA423hz5U08s30DD9bsIWwyoeg689QYfn7ep0fbtG6Muuf0d7/7HTfffDNf+MIXmDBhAr///e/JysrigQceGG3TIux6grhwpPyLAJJ0nUMmE/WKQgDwCihRVbx0F6bQ3lDxDxNh59Mnd2xdh+e/fPK2DwfPfGF0j/8xQQjB7f98Bmd8z8x22cffQ0EC85o2o+qRWpuKHubq6ueJ7iJMIdJiEyE4kJFIXbSDqlgnLc6hlaWJ8+tIFKaXHUYCZXoseruklaFENF86UvYtwEwazD4I1Y44Gifn0bjCwTG1GV1K6tD5nGzjp0qAD4XGYV8u71XO5ycbv80TB6/otoIdxMxv+CEC+Nm+u7hYPk+6HGTimWKhJeEW1vmS0fq56CY0KkPpIMFU7sWyqR6l1gdhHcI6ojGAeWs95sPu3j23QtDijCaU6WSWLB2cbX3RVdQKgRQqXy9/okOYAmQFarir5CG2xZWwbeFEbs5IxNm+ImRXFD6Tkcibs8cx1mGUIjIwOFu5esZ83lx5E2vP/wxvXfBZfn7eFaNtUg9G1XMaDAbZunUr3/te9yzxCy64gA8++KDXfQKBAIFAZ8kVt9vd67hhw13ZzVMkgMKufcMlOLX+a3HK525G5C4aetmmkvegqXho+ww3VTtH9/gfI4QQfPmBRwF4/9kn2PDUvyM3KO0E45JQfV5Uv+ekPKjjvEcZW1KEX7Vi0wL919aUkqPJsZGcpyF48yTgi4olyu8lKhBZrg7K7h8zgdqLsI/5e5/TTtw/hq+e82nq20uxxbxdRaFaxT7VjKu1hTqrC4TaUa9Pb+8I9UbJcqQ7mkWpW0lJOcoO81RuE78lnib06YLrKeFTPMZWOZsHuB2f6D/7XTNn8Ji4i3nyDnxEUydSseEjm2IUJLoUbBbzabPFYCISC640B7E09/R+S8B0xE04JwqsJ8aTCvZn5HHZ9nUITuIGpJ/nJ6T0/hFvjneRZrXws8JMflKQgU/TsasKilESyuBspLEU/rKks8KN2QU3vwmpE0fVLIO+GVVxWl9fj6ZppKR0XzZOSUmhurq6131+8YtfcPfdA9eEHDacSbgVBzG696QEQceXzUvfgE/9d2g71x/uOsPooJpH79gfYxZddT2LrroeAK+7hd//312Em2sJ5hQgwiHsFcdQA75BL/UfH6NKDWfY25EZ36foFIJmpx1V0wctTHUEmiuastgMlC5xjVHC381KzTsWX9lnsaU9izC7O8xQNZXUIxN5X/0kqJ3jW8IKm8kiydVCTThSFN9u8jI1cS9Os48abxL7GsYhEXzYPJl0r05tTQ7TZ72BSrunWOlMB5vONu7kl/xM3t3/uQmVoDmN20O/xGfK6RibKGu4Wj6B6tvBXxy3o2WCqbj/REUBqMUe1EofwblJSGf3j16h65QlpDCuuoQDqdnDUoIuJtRKlr/3z1ES8jv+VITAaTLiSA3OUh69Eln0dvfPyVAb8sEFiJTpcOu7o2SYQX+M+rI+0KOAs5Syz6LO3//+92lpaen4KSvrGWc2rEy9lp2ucR8p1k8AHHpt6DtaoxhVYQow67Oje3wDHNExfP+Pv2f6Z28nXFGBNFvw5k3Cm1VA2BmNVNRumfgnogtBQ0wiaxasIre+hcKqRpJaPIOqZycGzPTu7FfVaInDl5bLIX8CrTYnvvaWnxlKC3aC3SzUPOPxHPke3tLP46++gmD9p/jCkwUc0D8dySbt9v4XFDhKSfe3ohDm8vxXuHfZD/nS1Mf45PinuXPWA/x66Y+ZlHCANmmjTVrJyNyPiobay1VR0ZnIXiayZ+ALIGU3YQpQTzIPKbfxz/CnCGMiTQhEjqX9avSNAAjpmHf1XgLIY7Gz5PAu8usiiZRC1weXad/LZ6UiNT5X+TwWeULLVKFA8kRInznwvAYGZzqb/t5TmLYjAFmzA1770Sk2ymAwjKo4TUxMRFXVHl7S2traHt7U41itVqKjo7v9jChxOSwZN5tqczzwUaTiSew59vxIgfyPimoF80kWs19420c/vsFHRgjBZefP5/obPoHwtoGUaK4Y/GMKaRs3g7bC6egWWw+RqiNB6sS31HPOtneQQH5dM8mtXvoJ+wQpsQVDpLZ4BhSowmHicPxEXki/jHV6Id5aEGVe9qTndeQGLTIXH4867bKnQthbiN4yj7tf+pB3U+ei6L2FyEjOd+5DlwpXF7zApXmvYVbbPaLt5xBrdXP7jIfITirjUHoWiSklqKLvsIUwKvN5v9/zipxc72WnADzR5/GNAwHGuyW+wkRC42PA3P9trJCguEOIlp5L/86gD1XqrNi/hWu2vM208iNYQwEswUDfIrW9ykLX/4WUzHHv5Y6yf59wcDXyeXLZfaPfAtXA4BSgv3Jn/0U0ALlhGEs+GgwboypOLRYLs2bN4s033+y2/c0332ThwoWjZFVPlFW/InnuZzlmSevWDaY/b1UPbPFDP7AjHubdOvjxn3ou0rpudQt8pwi+sQ9+WAs/qoXZnx/68QGe+dLJ7WcwIkxcuhx7uJeMftWEN2cCwaQMpMnc8dosS/byzLIK9me7UYJeihJjqIx1kdHUiqrLfj1zOfUt5NY19/lCF1JismlEzTWx0zGBJNVDkZ6AAEwHWihqjsebGqlUkaG2cIH5IEmi+/L37Kgwf1p7L6V5WexKG4veS5miKUkHiXY2cdP8B1mZ+06HrlIawbZTYDko0DWFf4ibOTRjLjsKCzGJvuPAvXU2mvZFEX2wEaenZ8y6RQaYIrczW24kRVb2OY8E7p1go8ilsKoqhJbtIjRl4B7zElBOEKdSURhX3bkKlOhxM6dkP+cc3ManN63B4fd2CtGuP+0Xw9b0PGb/ftKoYKK/lH/NzMc+dnkXESqgYAV8YQ1kzhrQRgODs4FBB8W9uXpkDTEYMqNeSurOO+/kM5/5DLNnz2bBggX85S9/obS0lC9/eZSz1LuiqCgrVpO35Buw70X8r/0QNdiGOXEcofr9mNH6jP3r2L70zpM79vk/hpAXNvfTKWnV72Dezd23OU4Qw8u+DR/+aejHLzbicU4nVJOZpeev4LXN29pfXF1edapKMDGNYGIa6BpCNZGphClrWsPmiU1sGd9EVo2DreNMXPWBg/y6Zg6nxCFPKEEEkNTqJbvOjYpkfI3OwRSlI31KEMnqt4Q1cs4rpTGYRpUpkRXqYYr1RABMiuDKnDTuuew89uzZw5YtW3DU1zPBWk1GQSJjCiaSlxbPH46WcPO834CiYHm/BtEW7ngfSVUQTrdzRf5r5FiOddfROujxYH5fIepVFa/TSuxFEnmuIIQFL3Yc+LpdO3+zhZK30vHV2wGJGS9fFr9hb8F01iy5FM1kYhHv4sfOMcZiIsxMNpMjn+JZrqdWnNB+tP2alToUPCZBTFDH3U8t5G4oXZ43KZlYVUysr6twl+g6jN2/lWPZ4/FZrP3GCftjLyO28jt8Jq6cMvtF/Fd8ny9+8j/gbQRPHTgSwdmzEoSBwVlLMPL+H9Qawfv3worVI2mNwRAZdXF6/fXX09DQwD333ENVVRWTJ0/mlVdeITs7e7RN64ktBmbegG3mDR2bzFISvDsRM91ju46LUgEQlXXynktFhYt/Cwu/BrufhoOvQu0+MFlh6idh5c8Ht0Rni4HPPA+PXXFydhicNsy/5ArqmprZeqSoR23L4wLGbLUxc+ZMlixZwm3iuzz66++xx3OYJGcOBaFsZs6YSfjIGur13dRbHSjhSHtZS1gju76FrAY3Qgg0BLm1xWQ2KJTHRdHssCIkJLZ5SIhpozE9zJEDacwzldIqre0WSlShcNOiXJA6Vk8LuUqYvJQ4siZPI2/mbIRQuPNAGY83+aC96LyW5sB02I00CYKTYpEpdmaxiRyOASe8zNs1YOulGrbdAkd5gK8/9U8cfh/rV83ATvdksaDHxOH/ZaMFjntmI48oUjLp8A6cvjaOrJrEe8q5KDKMLiIfjW/Ii1DQuYU/8bj8LI2ip8DTFEGdFWY1amyJtSBVgeiv/hSgJUSulTUQ4Lq3XubS99/i0PjxlI/JxObzoYUlu7MK+WDxpcgu3cNS6iqZtm8TyQ3VBM1WDuVPYm/BdEIWK+6kO/lPzff4fMYefldczWczErA44nveqBoYfBz419VDShY1OL0QUg5Tj8pRwu12ExMTQ0tLy8jHn/aDvvFf6K9+la6LkgKg8BK46v6IODwd8NTD4zdA+YeDG593Ltz4/IiadDZS/8gjtDz7HMJqJfXu1TgmTRr2Y5QVF/HWq69SUd+ABDIzM5kzdy7Z2dnY7XbUE1qittRWU7R5M/JIkFh/AhbVjDuwn4q2R9jXNgZ/AEwBDbtdI66ggfEv12KplvQVutnw5RCBqZKG9d9nt17B/0KTaNHt2Mzw8GfnkS+aeP7X9+Bpbupoz6prGmGbg7LCGTy9YGV3xRnUsGyuJzgnESyR8d+Xq5nA3r7LXmlg/1AQ959IVYmwovC/e2cx1/xBt2Soig+TqdsdT3+Btv+99POUZeT1fEDqmAlxFU/yhOijdaeUZPgkFQ4F0xE36tHWPr70dMZ7K7ikcRPWYJBZB/dgDwTQiehtt8tFVFtbx741cQn845JreG3BMhZvWsOC7e+iCQVVdjYCaXNE8d/LbqY5KoG4mu9yidPLYzH38fT0fBbHRfV5vgYGZzWr46C/cnkncldTx42ywcgwFL026p7TswVl3g0o826AcACqd4MWguTxYB84Bu2U4kyEL7RXDlg9CMG86tcja89ZRuO//0PNT37SbVvJ1deA2czY99Zjjhm+m5SsnFw+d+tXBj0+JjmV6Rd3b0mbwSKCb6Yj//EAYyao1AYc2PP8eIJp7LvSyYSnS7DVaEhFdgvecl+jEZgCMeVLORby8Ub8ZBrN8SxKbeLhyy5F97Twjzv/j1Ag0v5T71ILWPV7yT60gStnujliHccepkZqllpUgguTuy1fZ1Pcfz1WFcJZnf8qUjJD39YjS7/xYGy/wlQXgkmHtvcuToVCWJoJY0KRGrpQI4lHut7p1RQCnxo5ppZjwtJwAL15PKBFjGz/HUsJP3v7bzjCnbWaFVcqpths0MPE1B/qZnlSUwPffewh0qqLSaw9Ejnl9jJdx8/G6fNwzSv/5O+Xfw3NkkNzYxFKlEZbeAhfzAYGZxM1+2hPBx3QM9oxxhCmpxWGOB1uTFbInD3aVgyOL38AD/aTeDbtBkgqPHX2nOE0v/ZaD2HaQSjEkXnzGb9/X59l0kaLaSsuwt/WxntPPAbSTVDzk3vOPoQqafgB2PYK7DsVRFAQTpV4F2losQqxpSso3zmWDfHVJExP5FeFUZyTeS4A7z33CqGAH6n3FEgCEP4wSw6v4ZrJT1JDCn+Q36JE5HWPq5SSMAPU35RAqPNfTVFQ6J4MJSVdlvN7R5ESu8/bz2EERxiHDS8Bzc4V77yBqmk8eUFE7Ku6JNj+3Wb3vIk99RlkTBah5jnooViEqQ1zzHa+91INVi2SDCXs8dhmfg5T0vjO4+gaoZL3Cex+AvRQpMsckFOyF7fd2msGqyJ14tyN5BcfpDY5DLUTyHVWkW83CowbfEx58kZgCDWg+2hWYTB6GM/Ix5nUSXDnIXhwEXjrOrcLM6y4GxYM3itnAFXf/s6AY8q+9nXG/Pm+U2DN0Jh35XVMPncFL/7+l1Ts38ueskJiJ/twJPhQYhy4xk9ENTlxOoNYKyx4N8Szs+YQTcG1XOG8iXPjFlHhaeHpp5/G4/HQvO61XoVpV9xHokhPbyR7bz2/Cf+IH4/7P/anTwAhiJe1uInDQd+CEQAJ9u2dkk3RdRpaUklJLGsvvB/RuSZHiLC374YSulBodQ3g1ZaSr/znXyzctYOYVjf1sfE8ueISEAJNEbS1JznZ2t5GERIcpaiO7i1J86rNqFIiLC4cS7+DsHY/plBUzDmLUexx+DZEEhhDqkJbH8L0OJpQyK46SlP0fvKqvoHJdZgxrfngmtD/ORkYnG3sfxEaDg9tn8+dRB1ygxHFEKcfd6JT4DtHINAGjccint+EAmOJY4hIXYdQaMBxnrVrT4E1J4czNo5PrP4VxTu2suG5J6nYtpdGjtfHLe51nzHOiUw2J/PE1pcpKy9DCIGUEpfPN4DXQkCNSvKPzEhFEiwMISZGaormyQO4aMPJQaxEvIy9Ls9poHjBsaH7a/Vpx7V8Xfl/3bYlTGimZltin0v7itTZO356P9ZKcmuPYG0qoc6hEuURJDc3YvP78dvtKGEdmoIIXxjdnYbiciOUcI95AhYLUT4f5rzlCGssopf3mRAKptQpqInj0eoPIAfpaTeJGqYVxxMViGdZ03PovvmD2s/A4KziiRsGHtOVTz0LY+aMjC0GJ40hTg0iWF2QNnW0rThjCTc3D27gAN7E04Gc6bPImT4Lv6eNcDCIp7qRV3/9Wxq85R1jFFTGRs9gWsI5rE8vorwi8tjx/ErNakf19pUUFKmR6mjV+O/NF3J0SjomcwgPNj4vH2S83EsCDewRU7tVvZAy0iJV1SWooLRCwn0mFF9nef/Xll3EJsdcKjclkT63riNCIGlKI02HYwi2mnsRqJJAvp2q5DF92KpjIUDe+n0EzSaOpMRRG+1k7tEK0P3M3V7JriY7hCLdsvx8BhQf1uTXsMRt7DbXummFXPbeVpzZi3oVph0W6RrmMQvQ6g9gCWvYgiF8FnOf11OVOglNOyjw3YY3qp552i5sKUZIjsHHjINvDjzmOHkr4ManR84Wg4+EIU4NDIYBdbCVIk6zeNP+sDld4ARXXDyf+f0fKHrqQ6p3HUCVKim2HFxjk9HmxXD4+Xd67BuKS8bkbe1zbikE9336K5Sl56Ggs4JX+DnfQpMKuhAoSDIo77aPp9qOLSWAVCTCJ3BsEKgt7ddTtWAtWMl1MRcxe0OAnQdy8dbYyV1ZhmqWmKw6BZcXU/5eKi3FUR0CVTFrWMaFua/ty5gONBMeHwu67KhDqkgNEyGuW/sP1Ib2WFYhcNstvJ83Fvmel13YQOogRKd41O0Eqq8E6CZQX5sZ5KIPTQhr/1n0QlERttjI30BuXQv7MhJ7HasDJl1j5Z4CDk1Iwul6C1dyLsKoa2rwcePJTw1+7NUPjpwdBh8ZQ5waGAwDiskEqgpa352JAOyzz8zuPGqMlbFfOIe8wGI0dxDFZkKNsrB58+Zex4ejYglFx2NyR/rId++rJtgyZQGl6XkgFCbL7XyGRyPHETqCSFmlZLq3NXam+BDHnY12SdsF4F9oJfWJpSgNPvTWSkL7/0de9iKCrhnsrlyPDCtgjjwnZodG7gUVhDwmfA1WhCpxpvgo96YhNyiYSjwojUHCY5zIWAsqYRY3vsv4d3cS5TlBaAuB26lEWrv21uK0nUDtSswxWzuW+Jut+7j7c1fx+9JWTP1U8pC6hvRFrp2OYN/YaRxMi2X8sb3dQxykxKxLxjY4ODLuevS4jVxtfZr4T6zpc+4znVCdl7b91bQ2N2DPjidxat5pl2RoMEpovXTP6w2hRCrXGJy2GOLUwGCYSPrud6j7+S/6HZP597+fImtGBsVqQknq/NjQNK0jzrQrZouflIWNiNpWWg44CHsj2fLW2CCbc5ayYc4yLuA1lsq1jKGom+BSOn5LtPaiUCa0TmHaYYwk7Gyjbu6rJPzF2pHlHzz0KjmFKymLSSTYdhSTvfsNg9kZxuyMiEVNV6j0pHVO2RrCsrcZAIFOUlxZT2HaToMlfmBPuG5Hby3AFL0fKSCzzsacnZt5O28s54diUfpYqBeKSrD0QzQhWD91Bi9PnkORO42a5EQWNG/FHGzFpIMrbMUXN4H141xE59/H5zUr8VevQY0/DZuYfARCAY2yHXU0vnmALUfW45cKQtiRsg1BOcs/cR1TVp0/2mYanAYMpnwUzpRTYInBR8EQpwYGw0TijTcSqqig+dF/9nxQCHJefAGTxXLqDRtBMjIyThCmkqwxu8jO3hWpBjUGMmZB2KfSqMTjtPn4k1jMT/geqVQBPb9Ijs8miIjSflEhMEWixWqoTaKj/ap26DWmr8yh2tR/jK+q6Kwr772cmgS2eGaQQ0mvj/tUe/+2tTNrv5OpbRpjK8zoWAiqbVjr/03D9G8RJ8yYTrgCUuo0Ne3jgL2Jmglj8OEm58AhqpITSXRs478z9qIrIBBIoWMRh7g8NsSVuReTNuV3g7LpTEFKydbXStj2ajEJIS/l/qOo1oWYTpAg7zxTz6FjD3P1V4feiU/3+XC//DKeDRtBSuwzZxBz+eWoLtcwnonBqUC3xaL4m/sdIwHaqozOUKc5RocoA4NhRtd1Ku78Jr6NG8FsJunrXyPu2mtH26wRQUrJgw8+SG1tLVJK0tP3kz92S+9jgTIykahkUtZrcf1BeT16If4BE7bdna5VCWjxktqfhPqcUEpYV7GAf+77RJ9HjRZuPnvs373ufMyey8tpqwa07Z4P/sac2gM9tv/1sm8xX8llgTR1LEtrepgjrdvZ1fgOepfrE/DF0xBrJi3QQNg5ltI8jaiJrxNrDjPNLolxZDBn9jNYLGd2nKk/7Odo81EA8mPz2fZiOc+8VUScKohuK0UxZfe5hC+lDs4DTJoew8yVFxCTHPGO6brO4cOH2b17Nz6fj7i4OGbOnEl6ejq+3Xso+9IX0ZqaOyuUSInidJL55z/jnDf3VJy2wTDxk/fe4odrrhrwMySEwLy6+VSYZNAFo0OUgcEooigKWb+/d7TNOCUIIbj22mt5+OGHkVSTl9+7MD1OBhU9ujd1m+9kDTmhapMATI0C4Qdp633id8sX8p/9V/d5VIFOVKCPpC4hOK9oO6+OmYUeSoTeqpBKSWygjZl1h3qdoiG2jTtmRrFw616uObILXWrU+8sIye5xc7aAhp54KblmF8JlJj73MDOn3I9qCaCqTtLTrycn+1YslvjebT0NCeuStxrdHPMGCOsSpwobK95m88EX8DZbQOgkWluJOXgL+5w632y2giljgNhSAd5C9r4v2P3OC5hsTlRzOuFACF33omu1BC1uimKOsWXLFsanZpD21IcEHNOwKU0kNO5FkRFPvebxUHzzF/F++14KL5pOTNLgr23QH+bw5hpam/xEJ9jIn5mC1W581Y40Jb4A16//+qA+Q5R+PoMMTg+Md4yBgcFHIjExkVtu+Tybt6zoNwRTQL/C9GQRAbAc6/3Arfvm4pq1qdfHoq2taPRdmF+iMKdmV+QYUnYLN5hQUU9Og5vJ+rPs4otEcua7CNT2Bamv7Hquo93oiXitNq7Y8AFXHgvgdiRT3PRe14ODAHMYnJljuOK280AKEjJd2Jzno2mfJax5MZtiUJS+z+F0o6EtwN3vHeQF3Yff3hknHGECZI1HMfkw72umLqSTpAuu8pjRhReV/pfZI7HPKlLoCEsOUlcJB3QidcecKCIPW7gVc9URhBJHfVUuDQX53TqSISUi5MPVWkrAmUzwA52NH2xvn1/S603IAKx97CBzL8tl9qocI3FrBHm6uomvBmpG2wyDYcIQpwYGBh+Jcn+Qv5Tsxi3O4VJeOLUH18H5joIS6PmlH1RUXi2+mkvzK7BGVyGU7iJxevwepsbvYXfDROQJ2VYCydS6I3x+21rcDgtVsS40RcEZCJLZ2IotrBFWYEHFUQ7P/RuBmsvQA52JVVHSzY1H3mFh9Z4edkkgaLKw8EgcFpnAtjg4mB7CnxuPrbqY2IY6kgJ11KWkkaE6uDA/l+iGgzjmzeuojaqqDlTVMQwXcORodu/hvaInWV+5kQ+bGtGDWQTLr6N8QQH68ZuCE8WaEOhpNpQohU+sbcammzmYupWC5ilobYOIARUSpZeWtwoKCAtSjcdkm9tdJB7/u73qgrQ6abV2dtYSvfw1VDa9UITJrDJjRe+1dA0+OjXBEAFhxiZ7Nr84kRDmgRojG4wyhjg1MDAYOuEg+q7/8sCRIn6aeCkK0SRzXndxqtNZQX8QDCreVAPUzt/2LYKoF3t+zWhC4a2s2VRGuWjadCcps+5HJByN7BdJ/8fkkdy19lGetK/kxdxF+Mw2ACwyyIrAB3zxw9cwS50Ej58Ej793mwWYnEWouX8gsXkaY5qmEC0VEoQHz9R0/jfuMqbt3EX+sWPdznFPViKtibt4K38WB7Ny2rsMpIAyF6e3jTv+8zeOJuZT4XBx0QP30axpmMeMIfOPf8A2fvzgLugo4W7czd4nv4QorifjoODGYwo3BgRfPXclyhwTig6qhJCQPcUpgFDwRaUSFu+SV1fNBeI6mrBxcFBe94H6komPojE/Eh88c4Sp52Simo3ueyNBisXMU6kr+ULVc/2Ok4D1xlN8E20wZIyEKAMDgyHhad6HfOwK3lImcsvE1Z0PSMmP+CGTSw4S9bJKy6fC6LHd97UcFDjfVrEejiiEQKHEs1wjWDiIj6EwODYpaFEStVng+FDBVBxRv12/7jUEta4k1KXfId8SjSYlIAnGFtHqWEuoZivmYyFsuwRCj9jhV80URaejCwglWMitqKQuLgGXz0tqY32fJv30eoVdeQrpnnQW1C5AIhG9qJ85mzaRd6wIn9XKnrG5FI8tYOPEBWzNyukp0No/kq9+61X2jC3kwV/9KLJdUVAcDnKffx5LZsbA1+sU4vOVs3/78xx5zYPWEsKZvxNzbAtmGUd09TxMdXmsadlHS0w62XUm7rtiPLUxap+luBRNY2JRMVdtAGmOI6rlGGGzE589+YxqZHEiq748mbzpyaNtxllJiS/Awg/3UL5uOdD3PYgGqKtbTpldBp0YCVEGBgbDTr3bz4ZXV5Puf5Z4q5tnMxbhlG5W8DrLeZN4GuCghaT7TCChJaIJO74lnG8qxDxninR4aheFtj1g32Wm5aownvP7KfskwVQBsf8ydd0EwObk8cyoP4xZ12i2OHkrdyGXjr2IGHNk2VsVAl0JoYTsxDZchtJyEb5dPwM91DGXTQsxoamE6rhEfnr5TRzIyUdTI8caW1rE5198igV7tneM1wRUxcPuXAESpjZO7VOYSgkb5s7lbxdcxeZJ08mtr2RlRYDtmdlMa9YY79YJKfB+ookau9IR//jMeavIrK3qvIS6ju7z0fjoo6T+3w+G+OyNHDU1L7PuL29TW3ERSVOfJPmcNUhdQSg6Ulfw2rZg3hDPJfs96IqJXZO/RJtN6RCZmXUh5h/0k18dQkioSDCxqdBGbfwYdFMLLk8lM3f+ka0zvjHKZ/rRcTf07oE3+Ohk2618ISuVT0z6Jf/d+z2g8+On62/1O6WjZ6TBoDHEqYGBQb/sbvVy27aDrPL/mlmJG2kCmnByo3iQT/FXFLTI6r0GKY9I0EFIAQE6hKm5WBDzXOTj5rgw7fp3zLMmggUhQtl9eFAFON9VO9KONEUBKbn3ghtY45iGouuYdY2gYuKzwkosVlQEmslLff5ztGSsQ5oCAFhaM4hSc7C+cbjbIepi4rj5R7/Ca7N3884dzczmB1/9Dt/7x/1csHEdAM0uwa+uUZFCEO+Pxxl29nn9hIhEImQ21zHppadxO128OWkOj3/gJd8jO6IfJAFeTzXxs0k2/KbI8WsT03jm3FVcs/bVyGSaRsv//nfaiNOW8s3svPNxauM/T2z+WhLGRzpTHY/vNTXqJP3ajPB6EEgOjb2WprjxRPl0vFbBjGMBLt7iRReRpX6AMfVhcuraOJBuQgiF7JLX8NhTaYs68xsLxCSd3nHCZzo/HpvO781XMitmAo9tv4MJviIg0mWtLXMBMTe/ckZ73j9OGOLUwMCgB82hMAc8fv5bWc9/q5v4iryXWaZNPT7Y1XZhCmDdK1DdnY/rXVZtnO8q3TymJyIVifNdheYbexbdlxJ0j0pdOBktw4HHZmdP/nheWrycGj0ay45GpFAIqpHF/QsxRwSs6qN0zs8JOiuhSzJU0FVJwxUVRIdVXG9H4lUDZjO//ewtPYRpxLZ2Ifypm5nXvBF9ipdf5Zmpaw91tWrWwVxSVmx6j/yiYgQS+dx/CBUsR064FkUo+AiyXy3H11DHrR+YWZOXwcHUMXz7gMZfLvkU15YFkUfeBiR6ax/lrU4xUtOouOU2KuO/AoRJmPBq9+R7IPp5FeETCCkJml1Up84HoTDjWIBNBVYu3uKNVHHock+itP89vjIMukZy3XYqMpaB1OnZJuzMImfKmV2H9nRHEYI7c1K5JSuJ92e+y2FNp9BpY6LLTsxoG2cwJAxxamBg0IE7rLH6cDlPVDdFejPpkixRzCLxfrdxSjPYNgvUZoGMAt9cHXO16BCgoTQdujiJLEeVPoUpRDyolqMKnNgRSgfnBwoxTyoQbkDQQNBkYl9uITXxiehCITaqhfkJm4m2tNIciMFZtQwRjKMp51WCrkoQOl5vFHV1uYRDFmy2NpJTimi5OsB+ZuANx1IfF8eWcVP69qoIQcBs4eXb53Eub3GTFuDv9VZKgyoBk3dQ19bh9bI9bTKtky9lZrCNBGsKx13LNszM1PLI0ONZK/ay8OgeZhcfoGDbYX7/Qgu1yZPJmHQVwb3PoDidBIqKsObmDuq4I0Xbu+sIlYbwZGVgiarC7Gjq9rjwgm2Hgmi/L2iOLUAqEUU/rSiAJSSRAkQfzvLIUqxEkfpZUZUycYzDKCV1inCqKhckGnL0TMYQp2cTUoIeBvXMqXtocPrgCWss37if8mB7KRYpQcBi1qNJBVXoIMG2TUGL1fEujwSVWg4KYv6lokXTEXfpn6zjXKsgFQiO05HqwLn4Uu0uQdRaSPq1qd3z1rmvJRzmujUvYQ94qf6kjYvn/w8AXSooQqeu4AX0Y5fRnPUWuoTDhxZSW5MP6AghkVKhqGgmuXnbyLxkC/obGdS5F6Mr/XvlVMLUECkXFaPCN5IDFAUVDnhDaA0tqIHo3s9RSmx+P2k1NaTLatbGthGVfytWJbpDrByPVU2SMVwanMWz1k2IcJAtE7O49H/bMJUfwmuyImKzUO1JHFt1EUm330birbf2a/NI4n71VfR2sSmUnuV71GbR7Yaka7kuiwaTS4MdXtLeEABCJaxaiW05dsZ7Ta//wfzRNsHA4IzBEKdnOlLC2z+D9b+Frv6F2Fy49X2w9h0LZ2BwnBeq6vjb/qf4DK+TRiUeoniPpazlfNID5ShmHQSYSsE/S+8s6QQEx0kaJ2pEP6XgWSRxbhFEvWlCtrvEhDQRjpcDLusHJndXKtHPmxD+7sL0OAqw3PUmbql1ODsV0e51FZLGsc8DcPTQXGpr8jr2Ol6bREqVY0fnYDYFSL6siLnPvsWfua7fayRRsEtvRDVpIFTItejkWXWaCzexe/d57e6+LvZKiUkqLDzagnPhnYTiM7lYtWHqpcqiREcADqyk2Key2XyUZHcTH5y7kgXvvI4pHCDoq8U894uIhkPU/eGPmDMyiLnssn7tHim01lYsgVasgSaCrUnoYQuKqbO7le7o/nxGuUu6/a8Oxh0qBJVpi8gof4codzGtrixQzqwKlSn5Tq759rzRNsPA4IzCEKdnMlLCn+dDfc++3TQXwS/S4bulYDeWNwx6p8Rdzh92PkVWaB23swsNgYoknkY+yWNcLp/CYfFH9JaE8PGclK76oP3v1lU6qd83d9wjdRWValNk/94y2qWQoIBnaeeSvvCDbWfvwhRAt0paL9D6zW0I+O1UVxfSt8dWUlIyjaTkItTLG5hYdIgD2fkd3sAexxQqYxtKaFJSUUwholyNKO0CPDaumumJb3Hs6FzcMZH3m1NamecbQ67IRIxVkEhU6HH+bfE7acx/CV9sJEHL1pLPvJILWVg/hzorFEcfpPyiqYRK11KwYwMfiDUsistFq91D/UMPEX3ppaOyXGzNzsajCjLL3+Fo3uU0H1tC3Ni3Ee3uUD0WAnk6lqLI8+jw1xPfsJfGuPGDEpjHqxyWjLmApLodTNz3CDum307AGguIzq5Op9FSeeIYE9OWFxCdYCch02W0LTUwOEmMd86ZzOa/9y5Mu/KrMWDUdDNox69pbGrxENR17j+8gz0+yQqqmEykTefx9qLHy644RZfSN11rsvSC810l4lHsZcBxkSlVidRlp5NfACZo/FIYLbFzvOKlT2EKEJggYYA8pIbGrP4HIPD7o/B6Y3E6m7kg7gX2cyfoOpy4xC8lccFmnG6NUi2X5LSjxJwQLBmdXc2FD7xKc3Q84dh0cibcjGJ2INqXo3stM4WOEAq+2CMd19UfXUT1tPuJL7qI7MPXkc14yix+2ibdyGGTlZlvvYd/TApmKQkePUa4qgpzevoA5zr8xF57DY2PPkpW+du0xORRt+cK7AlHsMWXAhIhoPUyjYQ/mDpeNhMO/putM+7Eb4unX4HZ3vJV6q2ELDFsnfktCo48zewtv6QmbT5VKfMJWKPwW+yYpKm/l+WwkzMlnpkXZpOaH2vEkBoYjBCGOD2Tef37gxu3OgY+/yaMmTuy9hiMKno4yDMH93LYFyY1LpUNJZtR9d0EFTjIeI5QQIcgACAWK14u4/leO4b3+rXbz3exY1P/3jApJIF8SXCcjuVQ5IjBQh3vQh39BOe+7ooIWaH1EQZgHXhNWNNMDKbvlBaOxGjPifmQL3/wTx6deR1emx0hZSRTH0AIrrI8zpjsnZFL2EuKjnRGQh7itjTiGHcDisneIUz7QqDgbJiC2ZtMyNneF7y9skBj7is466fiaBpPZsjKG4mCgtxLCe3ZiL24ovO4wWBvU4841rFjSbjlFhoeeogpe/5Kdd0cKlo+gWnGEWLz12F2NuDJtbH7ixOZ9Z+jRLd5sARbmL31l1SkL6UiYykhkzOSJNVxsyKQREJIMO9Ac5cS0i0EVRfbx83Drl2Gy9eCkGGCqgNdQFhKTCd649s99Cd66iV6ZH6O3yy03zR1GSFQetxIJOW4WPG5ScSlGmFSBganAkOcnqmEg6AN4Uvp4RWR31c/AlOuGhYTPMVFkfqT2aObNfxxp7itjc+sfZOjjix0oRKNl6+5v8b17EFXIl+yCpIicvkD36KO1I59b+JvmE7MkD9JFE+nd1AKiW+WjudcnVCmRITBtktg3aPQtkqHVf0U3AekBXyzdeybe8/yN9UM7LFyONzQq+zudiRs9khpJl2HyVlbePa7b/POjHk8d+5KDubkg9Rw4mUx61G6ZPD05vBzX6NhrUxATZk8JK+avXlspzg9jq7QlPUWjqbxqAgurArzVI6dyQWzyNr9HgBKVBSmUfCaHifpjtsxZ2bQ8NBfSCvfRFrNJrQtgvcXLqMhsQAhVKaaatnxqXE01KjE1tSTV1pMesU7JNesxW82gTTjTphNbdIUfNEOkhzl5IjDVAfH4o8ah1NpZLrzf2xumkDirnoa4idTmzIbsxbApIFusnU8EVJqSOEjRAgzLhQ6k0PDwoPfWYuuBFF0C3ZfKkrYhhCCvGmJLPvUOErCRylrLcPqdZErCnG4bCRmugwPqYHBKcYQp2cqJ/th+cxNkSXLSVec1O7BYJDdn51J27lBwvlaxIv0roq+NY5p3/gbSTlTTs4ugyGxtcnNl3btp0JTARVckRsEswzyf9xFGpVARJQeZwwl3MUPuSf8Oy4ss3JlVQv+ee8PrN8GiRYvEV5AQPNnwvjmRwryo4A0g2+2xDen9zqmvb2cWy/RsO5RwNszecZcLDBVQTiF3u2XEB9fgdnsIxSy9jFIJyGxDIvFD5GwV+w2N9ZQiAs3vceWiVM5nJ2DiRDf5JdY6H4z2FvX0aZwModWzibo3oxVmpiqZZOpD6K2pehFrCs6/phjnf9iIk2+gsWV3lF+Kfaaq1EsloHnHyGEEMRdey2x11xDqLSUYFUV3l17mL5zP/v0OpriXBTZEhnjiWJpbTOm2kpCViv+r30L//nL8doUXK1ulmak4nLa4KXbYcd/ItlmQgEZyTwrGf8l9hfFYDeXM3PrB4wtfqnDBl9cJkcKrqE5poAstZK89BC2rAwOe9I4urORcEjHGWdhzMQ0UsfOonRXA9XHWhAxgtypiUxfMYboBDsAE5nIxISJo3U5DQwM2jHE6ZnKRykX9dRnYdLQ41DD4TDbvjsFzxfDkWzt9i9nma4hMuvZ9vTn8AXiufybzyFsrpO3z6BXnj92gF8W70VBR0fQTDKI7v2J5/M+mZT3ur+KTqxs4g9VT5JdtpxAVAlVvZQAOik08M7ViS5X8c3TI8IUumtCFU5cDe8vn0VLgLpvhQj/y0zm0Z6DYh8zUX9HODJv14gCeTxpXjJu/Pvs3bMcqZ9YwF3HbA6Ql7cl8m97PK3N7kGazYQ1E7sKJ3IBr3Ahr5BMba82yi7nc/jwfGqqCxDoSKUVJNSLVj4dXIzaS3Z+p7k63viDvT4mtO7v8wm7d9MWLuj4P+6GG/qc91QihMCSnY0lOxvX/PkkA4PPT+/05HPFA7D4m7DnGfA1QVwOTL2ObEc83wyHKS4uxu/342xtJS4cxhQfj23iRGb28iLKBs4nkljV1fM5ccHoeZoNDAwGhyFOz2QuuRdeOsl+0xXbIWPGkHbZf+1CPF9vFzNdv2vbv/NNM5vR1iRw7P4Z5N26FWGP7jGHwdAo9vq5Z+eLHPSFKSWfEHmAbPcq9Yx7XMQ6dEQ3j2lXBCAzX6U481VE+CN63CQdIZ0iDP6JOvZtCm3LtQ6Paa8GdP13gAWAYDJsuEXSdEBwjS2EVEH4wNQs0G0Q9bJCML+9DFV7DX+lBbS4yP5xcVVMnfY6ZYen0uhJBwRCaCQnF5GdsxOrtUsBfQWkC7wzdZwbdX6y8QCuC//Rr326FPh90dTW5FFTPbb9shyPU4WgCHNQqWSCntlHQpRGa8pmwrbGnpNLhaja2Z3/hnxYNpXgTIos/wuHA3Nycv8X8EwkcSyc890em00mE2PHjh3ydMaSvIHBmYchTs9kZn/+5MVp8fohi1P3zKZu9S17oEF0dhWHy9JR/n4euV/bfHK2fczZXn+MraVPU9ZSQo2M4TWuRD/+VhWdSRy9Kbto3H0K0xN3kaaPmEgjgVDEHGkFLR3qbwuDbQhTDFAJSABtGsQfEkQXqfhm6Oh2UOsEDdnx+PQEbG+C861W5Gwr+/UMZm7ZhfebnSsD0dH1TJr1NtoxK6E0M2aLD1XtI842DKFcidyo4y95FTNmrIT6tk9AbU0u5eWTO5oWnMhG8xGigw4yZUKPBB1/dDE1Ex/t5cIIhG4ituzc9uskCR57C+EPYXaHQDURe83VCLPRcMPAwODswxCnZzqrWyLZ+EPFlTLkXULZsm9hCqCCmuqjrjaKBPeB3kvyGPSgPhjizn3FbGvysFT+hyy9jPXaJVQqM6k2JQ48ASBkmGWswUXjqSuro9CznNMQhCmA0M1oSgi1D4NVAVvbVH63QWIKC6IqTPjtVt5Zdg7uYCzWzDYy5+/FEdeIdPgYzzHc88zIY7GYc5u7XQg1L4BKYBA2RRK7puw4QttzOt7FoCX1MVZKqqvz2//p/SQ0ofO6dRsz4z2M807A5s5F0Y97rdtjTSV0GitRNBsZ2+/AFIjEq+qtlQQOvkg4CdQ6BXNqColf/vKA52JgYGBwJmKI07OBkxGoEy4d8mFESPTpHeogLMCkEx3wQ3MJxBuZ/F3xtXn42e5jPO0J0ixEZHm+y/V8jk8iBOjHHWL9uBbjZAX3clvHm/iMWrwMqyQevQpHw2SK592DrmgovSQYfehRmb1FxayGCKdIPEs02uaFKdDeRQgdm60tUioTOB44arKFIK+ZYEsSZkcDwnxCslF/6t0ElgOddUldaxSi3lRpO1fDfbXWEapw/GmJfkEl0ddEdYaj//MVUOsqwjH5eZBgdedg9iWhm9twPmkjOGEFlrRqpAB7UyExlYtAsxFwlqI2WvCv/zXoOrpdErfyIlK/9x0CBw5Q/fh/8R86iOJwEr1qFbHXXoMpLm4oz4SBgYHBaYchTs8WEgqh4dDgxjpTwTLAl2kvWHcphLP1vr/YNfAVJ2CRgcj3v+XjnRRVc7SRTe+t4824PdQ4bQgh8WNlK/MIqb1XkJdC0E/t+Q7+KG8iHveZJUhpF3VSASGoL3wak38troZJNMbtx2YOdYi+sIR1rSYOFU9mVloO1fc+3zGHAjhw95g7LeFKaptfQ9MicaRWUx11+3NJnFrUfeAJF01xg+N9BcthBeEDS0nngOONAJxrFXSnpO2iiND1+12Ulk5l3O5y5jRu4qXLL++sidrreStER9d1HD8QU0wgphhdF9yV8n/I+hQer7cRMgcRqp+2xJ1I4cO+RcW/8zlk2Is3y8W7s1Zx50/vofqen9D8+OOgqqBFQhTqDh6k8eGHGfPoP7CNGzeYp8PAwMDgtMQQp2cLX90I9wzSY/LN/Sd1iGTzCor9ryJt9Ex20QEN6n2pLNd30mK1E+vqYy30LGTjuito8+4miJk3A1fyluVK6qwqMmsMUuR0jLNIP0tZy9tyBVKcXI/wn8vbSehFnI00w9EpMhIyq5O87wbqC54mbKsnbG3EhkRKqPBZOdKYRF39GJLduUxCQVrbBrRLtsH4Zb9gHHfj8RyhcucuQv/3cxrGudDHKShmvftrNgS27Qq2XQL7DqVjdb17wXZoiI3F53KSUVGJ603wnK9zuGQOVVXjAEHjgkzmvvca4/cfYP/ECX1cIB2bzUNcXGX3rVKwoWo2deFEfr7jSUJBH8IRT9jhw+QOoFcdIhjyIh0WqifMZmN2Gok5Y2h+6qmIMIUOYRqZUEdrbaXsS7cwds2bRjyqgYHBGYshTs8WFAW+shXun9X3mOQZ8JV3TvoQeb+9j8Zr5uC+sRHpJPKFfjw/Jwi1GyYSbWshK9xIZdYlxJ70kc4c9u36EVV1/4l4wywWfsFqjlgK20MIewqVoLDxFisRsv8i9H1hk17G9FEqakRpz7EKhcyYTKGPJlKlAKGTv+5e3Kkb8MccARTsDRMJNSRTZDrWpbiQTnRMTd9ztWOti0dRTYCJ6OipRC+Zypov1JAQfgTd0iWuU0Q8pfH3m7CURvrdQ++tRQESm5vx+ny8ctEqFny4AcuhGppiYnhr3CyaHVHYQgEen9LCvN0fUOiOwx+T1i3WWug6JjXExEnvRN4vKmi6gqroHGocy851M/nNnvsY11KCpgsCeTrHzp+Es+QaXG47btzsjq7Er7ahm8zMmD6dxh/d1dn280Q0jXBNDa1vvU30ygsH/5wYGBgYnEYY4vRsInlsJP70g/thzV2ghyOJT59fA/ED9RkfHLOf3szW36ymteJ59NwwuiLw10fjt1qItrpZFdxBSeJ4sm/497Ac73SmrOzZiDBt5xmu5ygFyEEoNzlAW8u+uJ5/n9qlfAlCs9BSMY0DVVmYLX6mTX+V473TT3ZSoZtRNCuxFcugYlnHIwctG04Yq5CRfhBN0iNp6rg2a60VLL7kFyc8JlFmb0fz+XvEsupOaLg9TNIvzJjq+z6J4484AgGm7djBO+eewwL/i2zLnsARVyZSURC6jlS+xOsJF7Ox+pfMKStjek0eXmcU5lCI7JISco4cxrLNR+35Ltoy7fiDdoKqJKupmu/qf8OUIvDlgW9umIqUDA4cmIg0HYYEHcTxGG8z8fHxTBozhuLi4v4vr8mEd9MmQ5waGBicsRji9Gxk4VciPyPErG+vBlazb/e7bFz7ANlR5UwUFSiKQsu835K98IsjduzTiUN7vt2RrR7EzNtcgH6SonOwJFM9PBMNJqVfClw1s0nY/yn+rWxDCggEnWzaeBVjCzYSH1/eMYmiyCEs+wuc9ZO7mBIpr7TLVEyz4uk2Mi9vK86oBurCglhVoohOs2uCAm+dwpw5t5CUen63/ZpbtiD9H/YQpgCokfaobSs0Yh8f3EdgRkUlQtcp8U5k2oYq9ixspdEV0xFnqplSaUn6OlvlTzgWU8qK7Trz90lsQWiMi6EsaTYV9enQcPz1odOaUI7vgmNYLD78ARfRUauYmncxDY1rqa2tRbS/lqSUZGRkcN1112HWBttqtu9yYgYGBganO4Y4NThpJk5ZxsQpywYeeBai6zp0qWFfSyo+MYQks6EGcLaPL2MM09kx+P2guxDVFUTYglLrR0tRQdH6LA+WseVbiKaxvGDZ2i1JKxRysH/fuVhtbjLSDyClSjBkJS9v++BOo3YiarCzukTI7KYp7xg1Eqw1VoQQ5ObmkpfXhLs1Eh+dYpa4NdjuMdGmR4TqDEeYjCyV6YVf63GcqqLH+6/Jq4Jvnk7M47LPJf2uKECM201NdDZhs5Urt73Lv+dfiN/SfnciVMK2QkKWXJpcRTy5VOX5RRamN0wny5OFQEcI2WUlXqGhYQwNDWOwWCxcfvnlTJo0CYDx48dTWlpKaWkpALm5uWRmZrZfP4k5O5tQaWnvy/oA4TCOuXMHPCcDAwOD0xVDnBr0Tms1PHYl1O7rvn3KjXD1n0bHptOIcNjdzfNoYpjagPaCokukgOuCz7DevIRL5AuD1rVSEuk0VDmPhKJLsXhTEUEfba98A31iAQ0XHySU28X2LkJWkWbWWHbRKvy9zh3wR3PsWEQECRkmJ3U3ii3ca2eo41rc0xaHqSaO58ybUDGhIxm3cAoXrryNE6OlDx5aTWubipQR+6JVWBZ1wnWWQUKhBlS1e0tKz9HdDBT0LC1EPgEH+dRJIdCFilQUTLrGhOoSto8p7Hhc0XXmHplEemMb7sRcEkMZKEQ6ecXGVREI2vH5EsjPzyc1NRVFUUhISGDixImYuyQvCSHIzs4mOzu7hw1CCBJu+hzVq+/u3UhVxRQfT9R55w3upAwMDAxOQwxxatCT+qNw38zeH9v9z8jP6pbeH/+YYDJFdxNyyVSTKGupJ2mQHlHZrti6KLmu3tQuf092h0hQj/KC82IuKxGosanoMYNY3tchuuRi/mm+nJuOWrEGZCQByOJATZkM+/eTXJpOMKqSULpOYAIEJurosZHdy6J3U+uPHcSpyIgA/q8Fz03hHk7hiEAWVO6ZRs0HfkJp0QRifdhsNhYvXsyiRYt6ndakRjGY5WlVdfY89b3VsLD//ZRWEOHBqXxNUWiOiSG2pYWGxEQEkF9b0U2cCiDDn8CNr1ahKTXU5CXgmS5Q5zYTEx9PTs5jxMXF4XT2tHcoxF53Hb69e2l56ulupaRQFBSXi6y/PGRk6hsYGJzRGOLUoCcPLh54zOqYj7VAVRQFAnR0RFKQXMpzPCJu6X/HduV2Cc/zOhcTOrHFkpRMrw+worwVnyrZn2imJNnLNcE87qp10kwbldF/IFa9A7SqXuYHdBjz/s+w+zOQUrIyVuXTC+189liQT5T4qRMtFE+eyKS1+1B8zZjbFMxVCo6tIIVES4R3ly6hUY2NJIUPQr/N3ryF+PBsanekIQvewOVq6njM15zGwWMz0fdUoyK44LrriUtNJysrq5vH8ESSUy6muOT+fo6qEh+3ALO5ZwMK+weCtiX97KpFapsOBgkcHjsWzWwmqa4GZUIrQtHRgxndp1QUZsXMx3xtClWzfwKuCpzt7WYnTPgjCQmZgzreQAhFIe2ee4i+4AKa/vM4/oMHURwOoi9aRdx112FKHFxXMQMDA4PTFUOcGnSnZh+EvYMb21g2bFUAzkTGT/sDBw7c3uE9PY83qJWpvCwuR5US7Xi5ny5uxBiamSJ38I48Fw0FhI4JhQUxDv4+OZdoS6dY06VE6dML+x7hsI8PN1xEMBiJTYyOPoeZM/4Cfo1AuhtNFWxfv4lpRxxcWBniD+NtlJs9JJVthyRB3TnLmLthA64uT7eQAlMdxBT7qM/X6XWN/gTmHWsheczFPJXSSKhVg22XYLc3YzYHCAScBPxOlIAPZ9BP9tQZzFo4iJsfIMo1nqSkldTVvUFHIdJOSwFJbu7Xe93X5SzA+9YuPOf1UrJLA7UBXGt6D0g9MVdMACGLmfTyctIX7SRpQsRTOQ5Ilbt4gNtolCmk+3TmNOrsL3wDc1RkjNqoMGHKL0hIWEZFRQVHjhxB13UyMzPJz8+P3OScBEIIXEuW4FrSnwI3MDAwODMRUvYVVX9m4Ha7iYmJoaWlhejo6NE258zn9R/Ch4OMKVWt8KPakbXnNOfYkfsoKr63m4YrljmsFedTHh6H2RdDsr8VlTKkC26dsoQFWdMQH7Wa/RDwHWik8dlDPBsNj2arXL9jE95wXcQjKiVZJaVM2b2bKI+nYxG9JSaG11deOGCIgkkqjNGSKJYt6CZv9zAFaF/ylzhKD5IQHc31d/8KV1z8oG3XND/79n+H2tqXAQUhFKQMYzJFM3Hib0lK7D22svnZ56j8wffxLNdpu1BDjzo+Idi2CWKeMqG0ddY3HajeKYD7HI2267pny0sJIWnm3/otfGHjbPI8OkdM5exLfRO1CZb+dzP2OXNZu2QxZWVlCCEQQqDrOrGxsVx//fWkpaUN+noYGBgYnKkMRa8Z4tSgO2tWw3v3Dn78x3hpvyt7tnyL2pr/AZIo+0xSLV8nKiOD2Ny80TYNAKlLAsdaCDf5WF98kN17NuAV/o72nBJJbFMTY2pbsAgz1qwkyh1mSiSDripgLT9GID2nowA9UmL2e0jUAsxadi5TzrsQq+Pk4i293iJq695A0zw4HWNJSroQtY8WsAAyFKL48zfj37yZYLqGd5nEtktgLlFQ20Q3MRqOkWACtbGzXWmP+RRJ2zKdlqt1FKX7R6bUofVYGgnWLNIOfJ6g1HjKFqnXuvKVV4lxu3nlsktpdXSv5iCEwGq1cuuttxIT0zM0wcDAwOBswhCnBiePuxJ+N2FwY1U7/GiY6m4anFKklBwpLuZ/72/ikMdLlc3MkZRsxlkszCk9RKj46FAn5NJlixk7ay6aphEIBHC5XERFRQ287wihB4PU/ek+ihofxHOOBhpYSgSEwXJM4FyvIjSo/UGIlLvMCK1/Ee4fr9N4WxhPWwyqKYTN1hkPIQOC/e+soMGe0r4BEHDOW2+TUlfH+sWLqczM6DGnEIIFCxZwwQUXDOepGxgYGJx2DEWvGTGnBt2JTh94zHE+9/LI2WEwogghKMjN5Vu5uQCEdIlJ0B5uMA9d11mzZg0ffPDBwJNJSVZaKrOWrxhZo4eIYrGQ8s07qdl5CE/DGlAlwYLIvXhwgqRtpY7wgXSCNIPop769FBJpj/ztcLZQWVlIfHwVdntrZKNFUrh8Lbt3r6CtLaE9JFayZc5slr/1Nrrae2yplJJdu3YZ4tTAwMCgCyPbzsbgzOR7ZYMbl3ViZUqDMxWzIrrFwSqKwooVK/qPh2xfdImJjeUzn795pE08aczW+I5uS91QQboAAb5ZOlLpexFJSIF/eiS5SghITz9EKNS1NimophCTJr+NOK5yhaAtOpoXL7+Mhrg47OUN6NVe/IHucwcCJ2wwMDAw+JhjeE4NemKLhh81wE8S+h7zw/pTZ4/BiHP48GGeffZZfD4fQgjS0tJYtWoV1113HQ8//DCtra09dxKCefPmccEFF6CqfbViGn1SUy6jsvKJfsd4ztNwbFSQUvaIO5WKJJwo8c3ozPwXAqKimroVYxACLBY/iUkl1NVGYo0lEFJMPC+m0JTYHnMqIS3QwlxTGXGKD5fLNWznamBgYHA2YMScGvRPxUH4a3srRMUCN78FGVNH1yaDYeWnP/0p4XDvbZKWLFnCwoUL2bZtG1u3bsXj8WC325kyZQrLli3DZDr972+llOzY8Tkamz7gxJJUUraXjRJgOSSI/4sJxSuQqgQJQheE0nUavhpGj+ttbkFbWyxa2EpMbCT+uroynyNHFnRLJHvUPwvZZaFKIFHRudi8nzjVx2WXXs7MWTNG4OwNDAwMTg+MhCgDA4NB0Z8wPc5NN93UayvNMwlN87J///epqe0aJy0Jh1VUVevUkUGwb1MwlwgwgX+STnDccQULwaCVutpc/AEXZlOApORibLZWNn54NeMr91Bw4BjmSoEuBFVpqRwYP4HapCT+FZiJTnfvskCSIlpZaTkIQvCtb34TV5ThRTUwMDg7McSpgYHBgBw+fJh///vfA45LS0vjllsG6Hx1huDzldPQ8C5hzce77+6kvMzK3Hn/Q5E6DBCZUF4+geKimUgpEEJHSgEotKQo7Dfnk1zXwHmb3mP2gT0oUqILgZCSTXPnsje3kDXBQpqko8e8V1t2EiWCpCfm8MWvffaU1sA1MDAwOFUMRa8ZCVEGBh9TnnzyyUGNq6rqpU3qGYrdnklm5qfJyf4Cn/zE/6OgYAzbt63Csk9AH9n6UkJNdR5Fx2YjpQIIpFQ5/vEZXaPj1MOsmbOI7972A755+//hs1pR2u/752zeTIK3hYss+7AR7DF/m4zUa62tbGTHjh0jcNYGBgYGZxaGODUw+JgSCoVG24RRxWKxcN11t/G1r/0cz/65JH/fjP3dnl5LKaGkZBrQ+yKTACZVFWPVItdzV8F4fnPDlzoeA8g/dgyzkFxt2UWM8CHQsRNEJUxICqQEW8DPzqefRjOy9w0+boQDcOB12PsStH28uw4aRBhVcZqTk9PRzu/4z/e+973RNMnAwOAELBbLaJswojgcLpbd8wdMQRfqS1HoekeVLACq948nEGivOdUHQkpyGiIJUbqisnbWAqrjEzsei2tqAsCsSC637OEz1q1cb9vJDdbtZKktICCtajfznnmWw4uXUPfnPyO1fgqvGhgMA2E9zKhG9uk6rI6BnybDf6+Dpz4Nvy2IbGsxGrx8nBn1VNt77rmHL37xix3/G2VVDAxODRMmTGD//v0Djrv00ktPgTWjTKOKZcm3WGffSszRYvLzt3X4SeWmGMjvf3cJmMNhkBLRHESt8vKzeTcyu3gfK0o2dSvCr3TRuELQUY7qaN40MktbSW44Sv19fyZYUkL6r35lxKAaDCuekIc/7X6KZ0s24PZX49IquSh3JTdNvoncmNxTZ4iUcE8vJTCOc+84+NYxcPVT0tDgrGXUl/WjoqJITU3t+DHEqYHBqeHaa68dcIyqqkyZMuUUWDO6hKo8lMQpeFxOKisnEPWMQltbHM3NyRRl53V3pfaCAjRbnZi3NmDdVI9a7qXEksT/CpbwhRXf41+FK5ASdAQei5WA2ukXOC4+dbOftcvnsH7R5wkrFtwvvIhvy5aRPG2DM4zmpmOUFK+lyV1+Uvtva6pj8jvr+X3LdEpjv0xz6mrK0x/k760zueLlr7CzbucwW9wH3ia4O3bgcb/NG3FTDE5PRjVbPycnh0AgQDAYJCsri2uvvZZvf/vb/S4jBgKBbh1V3G43WVlZRra+gcFJUFJSwiOPPNLrY4qicNddd51ii0aH1vUVPPnGs5QpDYDkmqeepvpKO+9bViF1pVvN0hORgMdi40nbbERtgFThZqqpigzVDYBfmjigJVOXEE/ZpDEEzZHPt/SmOmaVHiSjub77ZAJSK5ws++BRoi+5hIxf/XLkTtzgjKB03zNsfu8R1rsWst+VhyPsZbJvNwWpC0hIXMzMnDgsdjO727yoCGZEO3CZupSfqN3P/m3PcZFpOX7FjBRdHjvuupeSZPfL/EMWkdlaT6IzCaVwJUy6EpRhbLIRaIPfjIWwb3DjZ90EF/0W1FFf6DX4iAwlW39Un+3bb7+dmTNnEhcXx6ZNm/j+979PUVERf/vb3/rc5xe/+AV33333KbTSwODsJTs7mx//+Mc8+eSTHUv8JpOJ6667jsLCwlG27tRhGx9H6I1wR0X+iowMUl6oQl41uMWl9VmTUfYGyFUaWGo+1i11yibCTFUraWxpoUR01outikngxamLOG//FgrqKiIbBSChOs1HkysDe2npcJ2iwRlK0bZH+Ofu/TxQ8FMUPcylNWu5q+hBUkKNiMOPEMDEI6lX8Ov8LxIwRSo/2BTBrf6dfP7w36kL+FC0AF8Z/0PGBoux6SGOOrJoNMdGDtDlxitoX4hl631YQ35aAevup7A9czMo5kh8qMUG+efDnJvhwMtQfwis0TDpCphwKajmHvb34N1fD16YAmz9B1hccOFPB7+PwRnPsHtOV69ePaB43Lx5M7Nnz+6x/ZlnnuGaa66hvr6ehITe40wMz6mBgcFI8PTvHmOv+wgSQVxjI9N27OCd5csHte+m2Hw8tZIl5mOo9O5olRIa7S7qY+IojU+hKDEdXQhUXefGD1/FqnVphiAh51iAxY27GfvyS8NzgganJ1JCyAeKCUwWgrrOlhYvPl0nq6WVisduJi7YALrOfzIvZkPmNDKCdVxa9w4z3PvI95ZhFjqIiOM9gEpQsRCt+zpS+NyKjTZTFOnBOgDCQuV/Sefy4/yvUm+J72bO/fvu5qq6t0/uXOLHwfiLYPJVkDal9zfCzzMg2Da0eVULfPMgOOIHHmtw2jKqRfjr6+upr++/73pOTg42m63H9oqKCjIzM9mwYQPz5s0b1PGMIvwGBgbDQWVpOX95uHPVJqG2jobkpCHNcXyFtM/H238UoNVq56WpC2mxu1h8ZBeTK4u6DUyr1GmWDXzlk1cRdd55Q7LD4Ayg4Sj6/75B67ubaSm1EQrG4Iudgjn7QmqjsmgNr2cZf0Bvhdr6OG65/B5K0jN5eO8PWdK8HZ2Io32w6XLyhLFhVCptSayc+RCN5liiwm384vC9XFn7FmofZdNOClscTL0WFnwNYscMLta0N658CKZ9YvjsGg2qdsOu/4LZDjlLIj/KqKf+nDJGdVk/MTGRxMTEk9p3+/btQKQjjYGBgcGpJH1MJgsWTOfDD3cAMiJMB1KbJzDQ0K5iwhnwc+nO93li9nIaHVE9xobQ+OMnbmLuM49yriFOzy4qthK6bxUlb8YQaosFJM60FpLS3iCQ9hbhJDO2VpWDm+Kw7Vb45Y23sjejgCf3fIsFzTuAoWczn/jSNKGR7q/l66X/4Tc5N/Hm1i+S7a8ctNgdNP4m2PSXyI/ZeZKTiKF7W08XfnIxaO/13L7uN2CPh0/8B7IXnHq7TnNGLeb0ww8/ZMOGDZx77rnExMSwefNmvvGNb3DZZZcxZsyY0TLLwMDgY8wFF1xOMPg++/aF8PliO9XmEEXqYFCQOIN+8usqMesn1DQV8OTSeUih8HxsMucEg4izvN7sxwZdR/7nU5S9E0XIo4KQpM9rxpXnY8+4KOqTrKCBqUyQtEehKSqaNXMXM91ziCXN24bVFBM6n656iaBQR0aYnkjIc5I7SkgcN6ymjAhaGLb8A9b+Avz9ryAD4GuEf1wMX1oLadNG3LwziVETp1arlSeeeIK7776bQCBAdnY2X/ziF/nOd74zWiYZGBh8zBFCsGrV3QQ9K3DEtNDaGsu+fe1ey+MRUMMsUrMbq3EEe3aFqouLRQK1cQlIXR954WBwajj2Nt6iRgJNkRXG+PFtRGf72Fvooj6x/QZEBdc6BQTsyy1EV1Uurn+XEApm9GE1J1rz8NWy/w7rnMOLgOh0yFk82oZ0R9egaB3sfR6K3oWmogF36RWpwVv3wA3PDKt5ZzqjJk5nzpzJhg0bRuvwBgYGBr1iMjkwvZjN/pkxJKcUERVVS2tLJPZU1TQ0VR22ODEBOAMBktqaum33KyotdieKlMSrCkovMfoGZyjVu/FUW0FEbnbix7XhtSnUJFm73fhY9ygIXXRsc2pDyHAfIiqn882PBHcF/H4qXHE/jJkf2ayYTu5GcbCrIN4maC4FVzLUH4M3fgDNxaAFQQuBPoztn4+sAV8z2GOHb84zHKNwmIGBgcEJzExNp+pQK0fckcTM1Ooq6hMTCZstg89AYeDvQR1IcvsRXbSuBPZkjUVvry15fV7G0E/A4PRFtXLc+WlxaZjtOlWJPW8+RPuYiUWHEbrOIUcOpmH2mnYca0RmHWZaSuHRS3p5QIBqgzHzYP6tkD4THHGReqpaAByJkTfh9n/Bpoegdh8IE+QuhVmfg6TxsPkfsOnPp/iETsDXZIjTLhji1MDAwOAEEj9zA0s++SmO5eVxuKCA2OZmJu3ew1sXXjCkeQaTIGUNOAjafR3p1CXxKWwbMw6h65xbV8Hi6y4+6fMwOA0pvBBbwt0gO18cmioQstsmgrkS636Id7ewfMsH/G/aMn5+5Pen3t7THgmaD4reifwMapcQHH0r8nM6IAQ4h1YZ5Gzn41PDwMDAwGCQ2KdPJ+0HP2Ds0aOsevNNpu3aTXxTE2poGJfyAKEraCZ/hzB9u3AGr0+ejwCulQEevvYilI9RqZmPBQn5RJ2zFJNNI+hRCPsVnB4NqXS/k/Gcq0WW9YE7Hn+YjLraM8PDaTB0xq4Aq9G6vSuj2r50ODDqnBoYGIwUvt27afzXv6hb8xYWj4ddU6dwYMKEj54U1f6pa/dk4nOVA5K49EziLr4Sq6JwbnwUydZBdNsxGH5ayuGBxRDyQvoMuPn14T9GoBXfL1dR+lQdcYUeEqa28v78eIJmpdtLK+p/KlGvq0hFEjaZmXhlOSYxMkv7BqPI7TshLme0rRhxRrUI/6nGEKcGBgYjzebNm6n4yU/JO3qUVy6+CL/DcfKTSTD54zFrdnzOyo7EmBtvvJG8vLxhsthgyGga/KSPDkTx4+C2TcN7PCkJvv8kTQ/8BoejlNAknR2To9GEgiI6v5atuwSuNSqWIwqp85uJHeNDUc7or22Drnz5PUidMtpWnBKGoteM9SIDAwODAZg6dSpFy5ZSlJ/Hqpdfwd7W1llaaihIQDehWVvwuSpASIQQXHHFFYYwHW36EqYAjQfh/kXDezwhsCy+npR/byHqoWriZ36f2Ts9xDWGOl5aWlilRY/hydgV3HDBD/l6zG2EUU7qpWdwGrK65WMjTIeK4Tk1MDAwGARNTU385z//oa2khKyycsrS0/FFuYZcoF8iEe3Rg+eddx4zZ87E6TzZzjkGw8JL34AtDw88bnXLyNsCaGEPu7c8yfNHy8hsO8onq1/BFgzhqbYihMSZGkAx0pnPXE7R6+h0w1jWNzAwMBgBpJQcO3aMoqIidF1n586deDxD73qTnJzMTTfdhN1uHwErDYbM6pjBjVv0LVjxo5G1pTfW3Qtv3wMjVErKYCRQISoVJlwCK34CZutoGzTqGOLUwMDA4BSgaRo/+clPhrSPzWbje9/73ghZZHBSDFacxuXD7cPbQnTQSAkNR6H+CBx+Hff2x4nWR64wv8FACIjJhDGLIH0ajL8Y4rJH26jTmqHoNWNhwMDAwOAkUVWVpUuXsm7dukHvY8SWnsFkzhm9YwsBiWMjP+NX0nT+L/n1Uz/hp8f+dLwSmcFIYokGWxRkL4JL7jVKP40whjg1MDgdCHjgwEuR8jXjLwGXUZD5TGH58uVDEqeapo2gNQYnRfocqNw88LirHxp5WwZJtt3KjZfcxt2vmri86mWmtx0COqqUGWJ1uBh3MVx+Hzj6SZgzGHaMZX0Dg9EkHIQHF0P9wZ6PXfhLWHDrqbfJYMjU1tZy//33D2rshRdeyIIFC0bYIoMhM9DSvjUGvl96amwZClKy//CHlBxYS0JrKdO8R7EEWqGtBoJtw9sD/mxFOGDqVbD8hxBshcptYHZC5myIThtt684ajGV9A4MzAV2D3+RDwN37469/D9yVcOHQYhoNTj3JycnExcXR1NQ04Ng5c0Zxadigb27dAg/M7v0xxXp6ClMAIZhQuJAJhQt7fzzkg+Yy0IJQuQPe+z00Hj6VFo489uSIiGw4HPlcNVnAHAWeyj52EDD1Orjw5+BMPOGxNEgqHGmLDQbA8JwajD4NR+HZL0LF1s5tqh2+uAZSJ4+eXSPNO7+Cd34+8LgfNYKqjrw9Bh+Z1atX9/v4tGnTuPLKK0+NMQYnx/N3wI5HIn8rJvjKNkg8yxJdAq3gbYS/ng/e2tG2ZuiYHTDnZii4EHIW91/K7dAbsOkvkZCp2DEw/YbI94o99pSZaxDByNY3OHOo2A5/Paf/Md8pBkfcqbDm1PKzdAgNogzRlOvg6r+OvD0GHxkpJffeey9ud09v+KRJk7j22mtHwSoDg35wV8Er34bi98HfONrW9I8tHq56EAou+OgthM8mgh7Y8ghs/UfEewyAAj9uPK2ukyFODc4c7kkCPTjwuJyL4YZHwHQW1YobbPkaZzJ8+yxbhjvLaW5u5u2338btdpOUlMQ555xjFNo3OP2REiq3Q92ByP/554OigFDA3u4g2Pkf2PkUVO8E3zCK2dSpcO0/4eBL8MF90FYd2W6yQsZsWPUbSJ00fMc7W2g4Cn85p+/wMIAfN58WItUQpwZnBkfehn8NcYlzzpfh4l+NjD2nmtVxDKqodnQG3LlvxM0xMDAw+MiUb4G/nTfEnQSc9yNY8s3Iv7oGjUUgdYjPBdU87GaeFWhh+H+F4G0YeOxp0JVqKHpNOUU2GRj0ZPNJLFVvfjDicdTOggzUnMWDG7f4GyNrh4GBgcFwoZ9MqTQJ4y7q/FdRI/VckwoNYdofB14enDCFwa/UnSYY2foGo4f8CK34fpIYyaDVA102Cpj5OVj6TYjN+qjWjTzXPhLJ1h+IuV8ceVsMDAzOflpr4b3fQVMRRGdGkopSJg7vMZIngMkGYf/gxgslEkOaPGF47fg4sOuJ0bZgxDA8pwajx8zPfrT9uwlTAAnbHoHfT4aNf/loc58KnInwyaf6H/OlwRd3NzAwMOhBw1F49pZIAub/K4CND8Ch12DL3+CBBfDIxZHs/eHCFg0zbgAxQIWR44/nLIGr/zZ8x/84MdgbgDMQw3NqMHqMWzVyc7/67Uhdvzk3g9k+csf5qIy7AP6vHv62FGq6xJVmzv//7N13fFvl+ffxzzlaljzkvZLYzt6bJCRhJAECYYZRoNACbeGBFigtbWkpUELLKLP8WigUaAstu2WWPZMAITvO3rFjJ97bsq157ucPecY7sS0lud59qUFH5xxdchzpq/vcA656G6xhXLsQYaLsn89T/vTTKL8f24gRDP7XC1hsx9DgyZ6qr4CCjbDtbSjZDhX7oL6062P2fw0vXQI/+KjvBs2cfk9wYNXB9Y0bWq1bZXXAsPnBvvQTLoIhs8JisM5RKWsu7P081FX0CxkQJUIr+1V4+/r+fx7nEJhwGaz9W3CpUICEkXDNexCdHLxvGMFRqqU7YP8K2PUxVB8y8bbJDt9/B7Jm9X/NQoguufftI+fsczp8LHLePDKefmqAKxpAfg9sfRs2vAi5fXCF5drPgysi9RWfG7JfDE5xVJUXHO0/5QqYcW0HE9+Lw+JxwQODer5/iAdFyWh9cXR58xbY9HwIC9CD05X4G3p+yNgL4bLn+60iIUTXlFLsGNt1f8nYK68g7a67BqiiAVS2G57owyAJMPMGOPsYmQnleLLhZXinB8tcX/hvmHx+/9fTBRmtL44uF/0f/LSDteUHjNG7YAqw/S3Yv6Z/yhFCdOvAjTd1u0/VSy8PQCUDyOcNTkHX18EUoKGHo75FeJl6BVz4Qvf7hTiY9pb0ORXhIT41eMnhaJru4sXz4Y7CUFchRNjZmV/AR/97HavLB5pGQ0osP/7OldjtfdeH2rVsWY/285WVYUk8Bi4jF26Cv53cf+dPGtN/5xb9a/JimNzJ5+f3voYREwe8pCMl4VSElyXVULoHnpwe6kq656sPdQVChJ3H/v40nrwyPJofXWkoQNW5eO6hP5N++hwunttHAcvo2VR0Ddu3Yzm5H0PdQKgphGcX9OMTaDD1+/14fjEgwmCi/b4il/VF+EkaAXeVQdToUFcihOiFv7z+Mq68Yjz4ATA0hdKCwxoqjAYOfPoNpdVVffNk5p61rdgnT+6b5wul1c+C0Y8Lj8y7HaJT+u/8QvSShFMRnkwW+OVq+F0lYd3A//BoeHwKPDET9n0d6mqECCnz7gPBSYM6mBlIaVCJm3+99u8+ea74H/yg+51MJizHwkDZTa/2z3ktdjjrQZj36/45vxCHKYw/9YUAdB2WlEN9NTyUEepq2qsravnvfzVOaXPFf2DUwtDUI44Z5ZtWULtnN0mz5xGZlhnqcrrldrsp9TY0t5R2RFMakWW9HHzYiZRbf07FP/4Bfn+n+6Te+4c+ea6Q89b13bksUTB8Pkz/AYxYIHOMirAk4VQcHRzOYH+a56+E3PdCXU3XXv5OcOWn0RJQRe9tuv1m1HvfYPE1oAH7+SOeqFiSH/g1g85YHOryOlVT58XoIpgCKFRPu4r2yIgN69k7Zy6qtv0KR8l33UnchRf23ZOFUtJoyF91+MdHp8OCO4LLhEYl911dQvQTCafi6HLNS8E/HzsJajaHtpauvH4F3FEMejdL+IkBcaBwF+4Pbsfsr8c2/RrSTrgs1CV1aP0PryRiRXBVnab2LA2wuaqouvm3GI96GHJOeNaenBCDAwv1ytfhZX0IbtZsfddSZ7FYGLNmNb6ycgruuAOjthbnhRcS/51L+uw5+lvNhg3UrlpN7NlnE5kxpOOdZlx7eOE0Kj04uX5s+pEVKcQAk0n4xdGtwQUP9mKFjIF05Rsw8vRQV3Fcq3DVYH58HNH+2ua81PSGV+YYARc8S9LoaX36nHX1dXy6dRkNrkpSBo3nlOETMZu6/5LiKtpP3rxFgOow2ynAZ4tk8sa1fVpvX3rysUcorXZ1Gk5RkDR9HDeef+mA1hWONl6wGH33LkxG8O9bAT6zGef3vkfWbw7pA2oE4JXvwu6Pe3j2VPjdNvlyLMJKb/KatJyKo5s9qmX6jF2fwuvf7/2E+v2lfI+E0xCq9weIeiQLK4E22/fYM/h32nmsdk5gS14dgQOrUVrwrVADbBrEWCwMjrCSbLXgMJs4x1RJZN5yXnTHsiEigxpzJJrJSprNSozZxBZXAw0BgysK3+Pm/JdZ7C4AoMYUydNp57NpxEU8fcrp6HrnY1C33/wzouiivyZg8dRRtmopibPmHemPp1/MPn8xX730X6oMN6p1QFWABknOSAmmwIZ587EVBfurt24ht/j91D//PDl1Lob+oVV/Wd0El78EX/8JVvwFPDXtTxqZDqf+AiZfDraofn8NQvQnaTkVx6bSPfDGD6FoY+hquOCvMPXK0D3/cW7VSzcwa/crzfcV8FDWD/lT5tWgVPuBIB1tA04vX0GMz8WbqQtb9mnetzF1Abfve4Zb8l/CoO00KAF01sWM487Jv+eT007rtN51c07FXlHSaaNjE+Oycxh/zyPd7BU63+7cRvY771NR58anBb8YxGBDT7bxs5/cGuLqQq/u4EH2nxb80tpZC3lA05i4fVvHJwj4oWp/MLA6M4KDRoU4CkjLqRBJI+CG5cH//uZJ+PS3A1/DqLMG/jlFs8l73mgVHeGV1LODwRQ6HqHc0Tal+MY5lQZTRNt9tNbtXTDGtZdb8oP9oQ+NCiYMTqjZysyCL3k7dyiLs4Z1WK+y9uzt2JoU3qsdzR49jtm3jWNHfh5frPsWW4SNy08+g8jIyFCXFhZ2XHwxji4e1wCTUux/6CEyb7ut/Q4mMyQM76/yhAgL8pVLHPvm3hi89H/LJph6FTAA/bCmXQORCf3/PKJTFuVr08/0zxnfC7Z49oamBYNpN9PtXFn0Pv5ufq9+UPAWj+QUdPp4zHe7/jKjAAOdrOt/0eV+4WLMkAx+svgyfnTWYgmmrZjqG7rovBGkARUffDgQ5QgRlqTlVBw/4jLhgr8Eb028deCugX3L4ZMlUN95eOixEQvh3MeO/DziiAQ0E7ryowG5EYPItR/mwLkezAM5vD4P8yF9W1vTUWS6Cyk0rJ3uM+r6X5H919exelwdXu7VAPfYYVgslh4ULcKV6uG8oiaHvZ8rESJ8STgVxzdrZPA25bLgrSuGAUVb4L8/gJoCSBgJvnqoyg0+PngGXPQ3iA3DxQKOQzvSTmFSwRcAePX+faurMUfjR8dM55N41ul2IrTOAyzA0Lf+Te4FV2L11bdrXWtIS2P6W//rg2pFKEXMnAFfdb6aXNPf+4jnnhuYgoQIQxJOhegpXYf0SfDTdaGuRPRA5lWvYvwxGQ3IcBcS6a+nztxVb79OdDJQqrV3k+azuPSLTh/3aybeTDmdS2I7bzkFcA4bw+TN69h67+14/vcVms+HEeUg7Y6fMu7MY2RC+ePc2GefZcvYceiq4ynDNMAdYcORLnOTiuOX9DkVQhyTnBE2DvzwG/zoRBhevl/4Lro6jOWJNA2tm+M+TpzD1sjhHfY79aPj0Sw8m34Rl7p39ugpx9/5ANNWfc3U9auYvvxL0iWYHlOS/+/x5hZS1eoG4DWbGbfqCFaDEuIYIOFUCHHMysiYgGVJJTtP/xPXHHibjPp9wZbQXgyMmlG1iTlV2cE77Y4L3g9g4rJJj7I+ZiwQbCn1acGgWmaN4zsTH+HvW+9i0LKfH+lLEseA5IULGblpI55Bg/CbTBi6js9shpNPZvKWzdhstlCXKERIyTynQojjxtI92dywcytVEcNBj2i/QweX8DXgZt8mUqr38R/bWHY7hhDQLdhNZoZFRjIhOoKvd6+jxJqAS4tgSt0eTqtYiUX5yY4aTaZrP0vy/w6A26wTcWflALxSIYQILzLPqRBCdGDeiCnsGDEFgNoGN//Or6DY4+HkpFgSlYski5kam5NIs4khEVYCCnQNdC14zI86Oe+aTy9jRlknk6a34tdkOUkhhOiOhFMhxHEp2h7BT0a1HnQSB0DrCafMPZv1h+TL30Q9MQbocll5Do69mtG9LVQIIY4zEk6FEOIIZSamUeBwkl5f3WZVqiYK8Okaoy96NATVdaJwKzx7Khi+lm1jFsPlL4SsJCGEABkQJYQQfSL9tjxK7VHttivAa9Lw3rxl4IvqzKvfg7/NaRtMAXa8DUtiQ1GREEI0k3AqhBB9JOnXB9n/w68osUdTZzFTbbOxc+6d2O6qIipucKjLC6o4CDu6msxfwX0yx6YQInTksr4QQvShrIxJ8OsDzfedIaylQ3+d3v0+vrr+r0MIIToh4VSIPuByu1m+Yg4majBbx3DaSe/16Lgvtz7E1uJviKIaA516LZZ5I65iwpDF/VuwOH75G3q237b3YNy5/VuLEEJ0QMKpEEdg+66nOJD3CJoGtsZRMMqznc8+H46mOThtweZOj31q6aWMMNYzCg0TRnCVGJVH7u472FH0OZfM+MvAvAghOlKZE+oKhBDHKelzKsRhWrp8DgfzH0E/5F+RpgVvStXz+RcTOjz2jTW3MNJYh47CRHBpTA3QUdjwEFH7BbsKPu7nVyCOTz2cH2vatf1bhhBCdELCqRCHobhkGX5fcfNiQloHn/fBgNrxJdSS2t0Ynfzzawqon+58pq/KFaLFwt/3bD+7vX/rEEKITvRrOL3vvvuYM2cODoeD2NjYDvfJy8vjvPPOIzIyksTERH7605/i9Xr7sywhjtiWLT/sMJAeStPgy+Xz220fTF5zi2mHx6GwqpojKVH0Rv46uDcFljhbbg+NgPqqUFfW9+b8FEzWrve5dtnA1CKEEB3o13Dq9Xr5zne+w49//OMOHw8EApxzzjnU1dXx9ddf8+qrr/LGG2/wi1/8oj/LEmJA+fx57bbpXQRTaLrE3/U+oo8s/xP8fQH43W2315fCQ5lQuis0dfWnu0ohZkgHD2hw3VcweMpAVySEEM36dUDUPffcA8Dzzz/f4eOffPIJ27ZtIz8/n/T04Lx6jz76KNdccw333XcfMTEx/VmeEAPChK3dtgIGkUlup62nAXQaiO7v0gTAF0u6fvzJGbCkekBKGVC3Ni4K0FAH7nKIywhtPYejIBveugFKt7faaIMlJaGqSAjRB0La5/Tbb79lwoQJzcEU4Mwzz8Tj8bBu3boOj/F4PNTU1LS5CRGulIJZM1e0226zDe40mCpAoXFi5uL+LU7A8z2cKinnq/6tI5TskUdnMF36R3jm1EOCKYCnpWuGEOKoFNJwWlRUREpKSpttcXFxWK1WioqKOjzmgQcewOl0Nt+GDOno0pQQ/Ssl5bIe7ac0iIqKbbf9qrn/ZDsTgWAraRM/Jgx0DlhmcsLwa/qiVNGV/e2/OHTo/V/2bx2idwo3wdIHut9viRN+n9n/9Qgh+lSvw+mSJUvQNK3L29q1a3t8Pq2DUSVKqQ63A9x+++1UV1c33/Lz83v7EoQ4YhPG39/l40qBYcAZC/Z2us9NC96mKGIBuQyljkhqiGYPIzHir+BHJ7/Y1yUPiC1f5/Py77/lnT+vp6Ghh5O9Hw1UINQViNb+d0vP9zWqgiH127/2WzlCiL7V6z6nN910E5dffnmX+2RlZfXoXKmpqaxatarNtsrKSnw+X7sW1SY2mw2brX0fPiEG2mkL9vL5F1OBlq4lSgX/1LQUTj+t+1a5K+c820/VDazl/9nB5s8Lmu9XFjTwj59/i27W+PET7WcrCBuJozq4LNyB0+7u/1pEzxVt6v0xH98ORgDm3tz39Qgh+lSvw2liYiKJiYl98uSzZ8/mvvvuo7CwkLS0NCA4SMpmszF9eg/WfxYixE5bsAGAQKAepQKYTFGdtvofq755c1ebYNqa4Vc8ecMX3Pj0ggGuqoeuXw73JnW/37jz+r8W0XPqMGey+PROCadCHAX6tc9pXl4e2dnZ5OXlEQgEyM7OJjs7G5fLBcDChQsZN24c3//+99mwYQOff/45v/zlL7nuuutkpL44qphMDszm6OMumAJkf3Kg231WvLl7ACo5DGYrTLik632+/87A1CJ6Ljrt8I9d+VTf1SGE6Bf9Gk5/97vfMXXqVO6++25cLhdTp05l6tSpzX1STSYT77//PhEREcydO5dLL72UxYsX88gjj/RnWUKIPlKwt6JH+234JIz7hl/ydzjzQdq9HZqscP0KGD4vFFWJrpz/l8M/dvt7fVeHEKJfaEo19ZI7OtXU1OB0OqmurpbWViEG2EfPbWHv2p7NKRm2l/bF0enxGVB1GAskjD4Hvvty39cjhOhSb/JaSKeSEkIc3QYNly+EIkR+tgY4jN+/M3swBZUQIqQknAohDtvE+T2bvD06KaKfKxHHpSX5vVu9y5EI8TLvqRDhTsKpEOKI2KO7n/Tjqj/MGYBKxHFrSTXcWd71PhY7/HzrwNQjhDgivZ5KSgghWvvhw6fw9E1fEvB33H39jGvHDXBFItwsXruTlbUtizIkmU1sOmlC385uYTa3tKK+czNsehUMP1ijYN5vYfaP++65hBD9SgZECSH6xP4dZbz/f5uaFyJIyozi0ttnhrYoEVIlDV4mrdzW6eNPj0xj8eCOF1zBMILLxhZtgqGnwOm/66cqhRADoTd5TcKpEEKIfpH6ZXa3+xTNn9J+4+NToWpfxwf0po+pECJsyGh9IYQQIfVJSVWP9jtj9SHLxz40qvNgCrDECf+98fALE0KEPQmnQggh+txPtuX2aL/NdZ6WO/UVUF/c/UFbXoSCjYdXmBAi7MmAKCGEOEb5374Dsp/A1Hi/efhR3FD44ScQndxvz+05nA5jfz2p5/s+c4pc4hfiGCUtp0IIcazx+TCWODFlP4GZYChtMy6+MgceHQmV+/uthClRth7t1+ZDyFXQL7UIIY4uEk6FEOIYY9yXiM4hgbQjT83ttxremjqyR/v9a0LrSfFNne4nhDh+SDgVQohjSN0SZ/ehtIm3FqoP9EsdZrOZSZFdt55agNOT4lo2XPRMv9QihDi6SDgVQohjiJ0etJi2tvH1fqoEPpk5lrkxjg4fi9F18g+dRmrSxT0/uWY9/MKEEGFNBkQJIcQxpNdrLtk6Do995Y3powD4rLiCZw+WcUpcFDcOTe/8gFv3wmPDuz/xzzuf3F8IcXSTcCqEEMezKd8fkKc5PSWe01Piu98xJhFuL4EHuphJ4NovICap74oTQoQVCadCCHEM8QI9GycPODPAFtmP1Rwmmy04TZRS8NzpcHAtYILFT8GUy0JdnRCin0k4FUKIY4htSTWqJ4OidAvcvH4gSjp8mgbXfR7qKoQQA0wGRAkhxDFGnf4ICjh0HvzmbSPPgbtKwWwZ8NqEEKI7Ek6FEOIYo590HdqSauowYwAGEAC8s36GtqQarnw52CophBBhSC7rCyHEMSpqSXmb+zLFvRDiaCAtp0IIIYQQImxIOBVCCCGEEGFDwqkQQgghhAgbEk6FEEIIIUTYkHAqhBBCCCHChoRTIYQQQggRNiScCiGEEEKIsCHhVAghhBBChI2jfhJ+pYIL9NXU1IS4EiGEEEII0ZGmnNaU27py1IfT2tpaAIYMGRLiSoQQQgghRFdqa2txOp1d7qOpnkTYMGYYBgUFBURHR6PJWtEdqqmpYciQIeTn5xMTExPqckQIyO+AAPk9EPI7IIJC8XuglKK2tpb09HR0vetepUd9y6mu6wwePDjUZRwVYmJi5M3oOCe/AwLk90DI74AIGujfg+5aTJvIgCghhBBCCBE2JJwKIYQQQoiwIeH0OGCz2bj77rux2WyhLkWEiPwOCJDfAyG/AyIo3H8PjvoBUUIIIYQQ4tghLadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwepzJyspC07Q2t9/85jehLkv0s7/+9a8MHTqUiIgIpk+fzldffRXqksQAWbJkSbt/86mpqaEuS/Sz5cuXc95555Geno6mabz99tttHldKsWTJEtLT07Hb7cybN4+tW7eGpljRL7r7HbjmmmvavTeceOKJoSn2EBJOj0O///3vKSwsbL7deeedoS5J9KPXXnuNn/3sZ9xxxx1s2LCBk08+mUWLFpGXlxfq0sQAGT9+fJt/85s3bw51SaKf1dXVMXnyZJ544okOH3/ooYd47LHHeOKJJ1izZg2pqamcccYZ1NbWDnClor909zsAcNZZZ7V5b/jggw8GsMLOHfXLl4rei46OlpaT48hjjz3Gj370I6699loAHn/8cT7++GOeeuopHnjggRBXJwaC2WyWf/PHmUWLFrFo0aIOH1NK8fjjj3PHHXdw0UUXAfDCCy+QkpLCyy+/zPXXXz+QpYp+0tXvQBObzRaW7w3ScnocevDBB0lISGDKlCncd999eL3eUJck+onX62XdunUsXLiwzfaFCxeyYsWKEFUlBtru3btJT09n6NChXH755ezbty/UJYkQysnJoaioqM37gs1m49RTT5X3hePM0qVLSU5OZtSoUVx33XWUlJSEuiRAWk6PO7fccgvTpk0jLi6O1atXc/vtt5OTk8Nzzz0X6tJEPygrKyMQCJCSktJme0pKCkVFRSGqSgykWbNm8a9//YtRo0ZRXFzMvffey5w5c9i6dSsJCQmhLk+EQNO//Y7eF/bv3x+KkkQILFq0iO985ztkZmaSk5PDXXfdxYIFC1i3bl3IV46ScHoMWLJkCffcc0+X+6xZs4YTTjiBn//8583bJk2aRFxcHJdccklza6o4Nmma1ua+UqrdNnFsan1Zb+LEicyePZvhw4fzwgsvcOutt4awMhFq8r5wfLvsssua/3vChAmccMIJZGZm8v777zd39wgVCafHgJtuuonLL7+8y32ysrI63N40Mm/Pnj0STo9BiYmJmEymdq2kJSUl7VpNxPEhMjKSiRMnsnv37lCXIkKkqY9hUVERaWlpzdvlfeH4lpaWRmZmZli8N0g4PQYkJiaSmJh4WMdu2LABoM0blDh2WK1Wpk+fzqeffsqFF17YvP3TTz/lggsuCGFlIlQ8Hg/bt2/n5JNPDnUpIkSGDh1Kamoqn376KVOnTgWC/dOXLVvGgw8+GOLqRKiUl5eTn58fFnlAwulx5Ntvv2XlypXMnz8fp9PJmjVr+PnPf875559PRkZGqMsT/eTWW2/l+9//PieccAKzZ8/mmWeeIS8vjxtuuCHUpYkB8Mtf/pLzzjuPjIwMSkpKuPfee6mpqeHqq68OdWmiH7lcLvbs2dN8Pycnh+zsbOLj48nIyOBnP/sZ999/PyNHjmTkyJHcf//9OBwOrrjiihBWLfpSV78D8fHxLFmyhIsvvpi0tDRyc3P57W9/S2JiYpuGjJBR4rixbt06NWvWLOV0OlVERIQaPXq0uvvuu1VdXV2oSxP97Mknn1SZmZnKarWqadOmqWXLloW6JDFALrvsMpWWlqYsFotKT09XF110kdq6dWuoyxL97Msvv1RAu9vVV1+tlFLKMAx19913q9TUVGWz2dQpp5yiNm/eHNqiRZ/q6negvr5eLVy4UCUlJSmLxaIyMjLU1VdfrfLy8kJdtlJKKU0ppUIVjIUQQgghhGhN5jkVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2OjXcPrAAw8wY8YMoqOjSU5OZvHixezcubPNPkoplixZQnp6Ona7nXnz5rF169b+LEsIIYQQQoQpTSml+uvkZ511FpdffjkzZszA7/dzxx13sHnzZrZt20ZkZCQADz74IPfddx/PP/88o0aN4t5772X58uXs3LmT6Ojobp/DMAwKCgqIjo5G07T+eilCCCGEEOIwKaWora0lPT0dXe+mbVQNoJKSEgWoZcuWKaWUMgxDpaamqj/+8Y/N+7jdbuV0OtXTTz/do3Pm5+crQG5yk5vc5CY3uclNbmF+y8/P7zbbmRlA1dXVAMTHxwOQk5NDUVERCxcubN7HZrNx6qmnsmLFCq6//vp25/B4PHg8nub7qrHhNz8/n5iYmP4sXwghhBBCHIaamhqGDBnSo6viAxZOlVLceuutnHTSSUyYMAGAoqIiAFJSUtrsm5KSwv79+zs8zwMPPMA999zTbntMTIyEUyGEEEKIMNaTLpgDNlr/pptuYtOmTbzyyivtHju0UKVUp8XffvvtVFdXN9/y8/P7pV4hhBBCCDHwBqTl9Oabb+bdd99l+fLlDB48uHl7amoqEGxBTUtLa95eUlLSrjW1ic1mw2az9W/BQgghhBAiJPq15VQpxU033cSbb77JF198wdChQ9s8PnToUFJTU/n000+bt3m9XpYtW8acOXP6szQhhBBCCBGG+rXl9MYbb+Tll1/mnXfeITo6urmPqdPpxG63o2kaP/vZz7j//vsZOXIkI0eO5P7778fhcHDFFVf0Z2lCCCGEECIM9Ws4feqppwCYN29em+3//Oc/ueaaawC47bbbaGho4Cc/+QmVlZXMmjWLTz75pEejuYQQQgghxLGlXyfhHwg1NTU4nU6qq6tltL4QQgghRBjqTV4bsNH6QgghhBBCdGdAJ+EXQghxiPJ98PRZ4Ctuu/2M92HuSaGpSQghQkhaToUQIlR2fQx/mdo+mAJ8eg4sccLmNQNflxBChJCEUyGECAVfA7x8aff7vXF6MKSW7ev/moQQIgzIZX0hhAiFFX/p3f5PTA3+OfEyuPiZvq9HCCHChLScCiFEKGx9+/CO2/waLImFf18EG18Dv6cvqxJCiJCTcCqEEKFg+I/gYAV7P4e3/h/87RRwlfRZWUIIEWoSToUQIhTGnNs35ynbDf+5um/OJYQQYUD6nAohRCiceht8/eiRn0cFYP8KKNwIaZPbPla0GVb9DfZ+AcqA2EyoKoe6gzDlWjj/D0f+/EII0ccknAohRChYIiBtLhR+c+Tn0nTYt7RtOM1+Gd65MfhYUxeC2sKWx9f/OXgDWFJ95DUIIUQfkcv6QggRKtd/ADFj+uBEWts+rKW7gsFUGT3r27rECUf3StZCiGOIhFMhhAilW1cdeculCsDgmS331zwHmta7c7xx45HVIIQQfUTCqRBChIMl1cHb4Hm9O04zQeIoyGq11GnuV2AEeneeLS9B4EhmEBBCiL4hfU6FECKcXPtO8M+GBngkCwLuzvfVdLDHwmUvHtJS2stW0yYlW9sPqhJCiAEm4VQIIcKR3Q53FQf/uyAbDq6H4i2Qvwqq88EWA5O/CzOuheiUtseOWAClO4KX+3vD7+2T0oUQ4khIOBVCiHCXPiV466kTfgQrn+59OE0c2bv9hRCiH0ifUyGEONbED4XvPA+6pefHTPlesIuAEEKEmIRTIYQ4Fo09F25eB3NvASK62dkBZ943EFUJIUS3NKWO7sntampqcDqdVFdXExMTE+pyhBAiPAX88IeE9ttn3wrzfgG2qIGvSQhx3OhNXpM+p0IIcTwwmdvOp6pU7+dCFUKIASCX9YUQ4ngkwVQIEaYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETbMoS5ACHHs2FW5i0JXIU6bk0lJk9A1+f4rhBCidyScCiE65Tf8VLoriTBH4DA7eDL7Sd7a9RZlnrLmfeKscUxJnsL+2v3sq97XvD3aEs2ZWWdyeubpDHUOJT0qPRQvQQghxFFGU0qpUBdxJGpqanA6nVRXVxMTExPqcoQ4Juwo38GSb5ewrXwbir55i7DpNmakzuDRUx/FYXX0yTmFEEIcHXqT1yScCiGaVbmruP6T69lWua1fn8em2/jVjF9xyahLMOmmfn0uIYQQoSfhVAjRY3ur9vLwmofJLs2mzlc3oM8da4vlzQveJMmeNKDPK4QQYmD1Jq9Jn1MhjlPVnmp++sVPWV+yPmQ1VHmquPy9y/n8O5+HrAYhhBDhRYbSCnEc8gV8XPvxtSENpk1K6kt4Z887oS5DCCFEmJBwKsRx6LO8z9hRuSPUZTS785s7+dHHP6KkviTUpQghhAgxCadCHIf+vvnvoS6hndVFqzntP6fx5u43Q12KEEKIEJJwKsRxxhvwsrNyZ6jL6NSSFUtYWbgy1GUIIYQIEQmnol/tddXzs625LNl1AI/HE+pyBHDvyntDXUKXFCosW3aFEEIMDBmtL/pMnT/A3bsP8FJRZYfTtj99sGVVoQ2zx5EWYR244kSzj3M/DnUJ3VpZuBJvwIvVJL8jQghxvJGWU9EnNtfWM+KrzbzYSTA91NRvt/FsXlG/1yXaMpRBvb8+1GX0iM/whboEIYQQISDhVByxap+fRWt39XqRy7v2FrGyytUvNYmOldaXhrqEHrHqVhxmWeJUCCGOR/0aTpcvX855551Heno6mqbx9ttvt3n8mmuuQdO0NrcTTzyxP0sS/eC1wgr8h3nsL7bm9Gktomt7qvaEuoQeibJGoWlaqMsQQggRAv0aTuvq6pg8eTJPPPFEp/ucddZZFBYWNt8++OCD/ixJ9IN3S6oO+9i93gBH+Qq6RxWLbgl1CT0yMXFiqEsQQggRIv06IGrRokUsWrSoy31sNhupqan9WYboZ27jyMJlQIFZGskGxLDYYaEuoUcuHX1pqEsQQggRIiHvc7p06VKSk5MZNWoU1113HSUlXa8Q4/F4qKmpaXMToTUrNvKIjjfrkkwHSqI9kTlpc0JdRpdGx43mpEEnhboMIYQQIRLScLpo0SJeeuklvvjiCx599FHWrFnDggULupwP84EHHsDpdDbfhgwZMoAVi478cHDiYR97VVp8H1YieuL3c3+PVQvfKZrunXsvuhby781CCCFCRFMD1OFP0zTeeustFi9e3Ok+hYWFZGZm8uqrr3LRRRd1uI/H42kTXmtqahgyZAjV1dXExMT0ddmih57YX8S9+3o/NdSukycSYzb1Q0WiKwddBznnjXMIEAh1KW1MS57GC4teCHUZQggh+lhNTQ1Op7NHeS2smifS0tLIzMxk9+7dne5js9mIiYlpcxOhd1NmKs+Pz6Q3MXP7SRMkmIbIoKhB/GLGL0JdRhtOq5PH5j0W6jKEEEKEWFitEFVeXk5+fj5paWmhLkUchrOS4ziYHIdSivw6NwYaGQ4rryzbROsYtH3ueOKsR8eo8WPZSYNO4qE1D4W6DACmJ0/nqTOewm62h7oUIcQxyuv1cu7GfWyvc6MBp8ZG8+8pw0NdluhAv4ZTl8vFnj0t8yrm5OSQnZ1NfHw88fHxLFmyhIsvvpi0tDRyc3P57W9/S2JiIhdeeGF/liX6maZpZES1hIwr50/hyhDWIzo21DmUmakzWV20OmQ1DIkewr1z72VayrSQ1SCEOPbdun0/LxdVttn2aWUtqV9m84fhaVyXkRKiykRH+rXP6dKlS5k/f3677VdffTVPPfUUixcvZsOGDVRVVZGWlsb8+fP5wx/+0KtBTr3pwyCEaKuoroirPryKwrrCdo9FmCJ49NRHqXBXUNpQyrL8ZWws23hYz2PRLfy/Sf+P7475LuuL1+NXfsYljGNQ1KAjfQlCCNGlFw6U8uvdB7vcZ+kJIxgTHTVAFR2fepPXBmxAVH+RcCrEkalyV/HKzld4c/ebVDRUkORI4uKRF3PZmMuIsbb/N2UoA13T8Rt+VhSsIL82H5NmwmFxUO+rJzYilvHx46n2VFPnryM+Ip7hscNlBL4QIiQGLc0m0E3ScZp0dp4yaWAKOk5JOBVCCCGEAFK/zO7RfkXzp/RrHce7o3a0vhBCCCGEOL5JOBVCCCGEEGFDwqkQQgghjlmRPVgie7g9fFfNOx5JOBVCCCHEMeuj6SO63efLad3vIwaOhFMhhBBCHLNGRkXy7pQRdNR+atJg05xxWK3SchpOwmqFKCGEEEKIvjYzLorC+VP4uryGB3IKseg6D41KY1SUzG0ajiScCiGEEOK4cFJCDO8nyLST4U4u6wshhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETYknAohhBBCiLAh4VQIIYQQQoQNCadCCCGEECJsSDgVQgghhBBhQ8KpEEIIIYQIGxJOhRBCCCFE2JBwKoQQQgghwoaEUyGEEEIIETbMoS5AhEBNIeR+BYYfBk2HpNGhrkgIIYQQApBweuwL+GHb27Du31BTAJ5aqCtsu0/WSXDh38A5OCQlCiGEEEI0kXB6NCvIhq1vQkMVBLxQUwQlO6CuBAj0/Dy5X8Ofxrfd5kiC034HU68E3dSHRQshhBBCdE5TSqlQF3EkampqcDqdVFdXExMTE+py+p8RgK8ehy9/P3DPef0KSBvf/X5CCCGEEB3oTV6TltOjRV0Z/GUmuMsH/rn/NgfihsEtGwb+uYUQ4iiRm5tLbW0tgwYNIj4+PtTlCHHUknAarqoOwKqnYdu7UL0/1NVA5T7461z4yTehrkQIIcLKkiVLOtz+gx/8gMzMzIEtRohjgITTcBDwQ+FG8DdAwSb45PZQV9Sxki1QuAnSJoW6EiGECDmXy8UjDz8Mmtbh4//85z/54Q9/SEZGxgBXJsTRTfqchpJS8O0TsOwh8NSEupqe++VuiEoOdRVCiAHk9/l4/d47KdyxFQBbZBQ//L9ncEQfZe+7h6mhoYF9+/bh8/lITk4mJjqKRx55BLSupws3mUzcddddA1SlEOFL+pweLd77Oaz7Z6ir6L1HRsL0/wfnPtRpi4EQ4tix9v23Wfav59ps89S5eOraK4iMi+OGp/8dosr6XyAQ4LPPPmPVqlUYhoFCESCACRNaN8G06fiKigrpgypEL8gKUaFycNPRGUybrHsG/n5OsEuCEOKYVXEgv10wBVCN/3NVVvDo9xYPfGH9yO/309DQQOHBg/zzz39i5WcfEfD7QCk0BWbMaPT8i3lhYWH3OwkhmknLaSiU58CzJ4e6iiN34Bv46jGYd1uoKxFC9JMX7/pFJ4+0xDPl8/HAZWdx/k23Mf7kBQNVWp9yu90sXbqU1atXYxhGywPKQNkjKbWXsy9mH5W2SszKzKC6QQyrHUZEIKLbc0dHR/dj5UIce6TP6UDb+i785/uhrqIP6XBnMZitoS5ECNEPHr3s3Db3FbRrM1St/ktDY+o5iznpO1dgtTv6v8Be8vl8rF+/nrVr1+JyuTCbzcQ4Yyg4WEBHH4dKGZTYS8mNzqXAUYChNwZXBWZl5uTCk4n3dn3J/u6770aTLlDiOCd9TsPVnuXHWDAFMGD5I7Dgt6EuRAgxADqKWNoh/7X+/bdY8fEbGGaNjNQRnHjG2STszqX6zTcJlJdjTkkm9pLvEHvZZZiiIgeo8uCH41//+lfcbnfzNqUU+dVeKo1oEvUGojRf2670mkaSO4kUdwoe3cPq5NWU2EtAAz9+vkn9hrPzz8akOlhJTykSk5IkmArRS9JyOlD8Prg3MdRV9J+fZkP80FBXIYToY4e2nPaGarzpaX4megpxlWVQa4/D7PMz5MAB0qOiyHrpRcz9PFgop2Ivf/v8T5i3OjEd0l+06ROwKT8q1fk4z6Z+tl+mf0mVrap5+/TS6WS5sg7ZOXiizuZAFeJ4Iy2n4ei9n4e6gv715ymwpDrUVfSpJ2/4osPtNz59dPapE+JwJAzJoDw/r8PL+d1p7pNaaGZd9HjSTiyg1pJIeflQdo8eRWRtLWfdfTcT//KXPq66xb82Ps8/vn2eMRWjScXSvkat6/ttHkNDoRhdNZpVKauC25RGWUTZIeG0JeFWVVURGxt7ZC9CiOOMjNYfCEpBdhhPtWLqvkN/j9w/qG/OEwY6C6bdPSbEseaqh54AwOh1NA3SGm+W2hpK1sdRUZLenFrroqJ4Iz6e+2+5kf8+8iC1B0pRgb67mPfJ1k9Y/14284rmkeJN7dlB3VxM1NEZVD8IXXX18dnys1qzZk3PnlcI0UzC6UD49Hehff6mufhaz8mnW+DUX8Nd5XBXMdxdBRMvB1sMaIc5uMnrghcvPeJyQ60n4VMCqjhe6LrODc+8RJ12ZF9iNUD3+7Dv3wmGgebzNl/69sYlsWfHFl6481fsvfszqj/KwfAc3jR1Hn+Af3y9j3MefI/PX19FjDe28fm7D9dKKZSm0V081tAwGcE+pkpTJLrbd9mKNGzYlJna2trevgQhjntyWb+/5a2EFX8OzXNHpcKV/4H4YbD1TSjbDbZoGHcBJI1uu6+mwcV/a7m/7CH48j6CHym9aMnY8zF4vWCV0ftCHCsinU4u+tEPee/vzxKhvId5luBIfpPXTeTODeiA0jR8zgS8CWkY8an49m3l0/yXOHfpD3HvqiTp+knotp5/TLl9AW5+8h3sFbuZoTf0rh+CUhi6jssagdPT0OWuXt2LT/eBAqthZUjdkHb7DA7EM8nI4sPtGykrKyMx8RgecyBEH5OW0/6iFKz8G/zjzNA8/6m3wy3ZkDYJbFEw7SpY+Ac49bb2wbTD42+DG9fAiT+h1z3NXrnkcCoWQoSxkSPTOGBNpVZ39ObragtNETu8Onisbg72YVUKS1UZjtzt+MxmZuaVE1OUS0lDHr7COmqXHejVUzz+73cYVLWJOK3rcNkRpWloShHdTTBVKIojipunkppbNPeQkfoKTRkMK6oiWtkZ3zCI9957r9f1CHE869eW0+XLl/Pwww+zbt06CgsLeeutt1i8eHHz40op7rnnHp555hkqKyuZNWsWTz75JOPHj+/Psvrfro/hvVuhpndvrH2qfDdY7Ed2jqRRMP+3kPsNFGX3/LjCjUf2vEKIsOPY8w4TtINscAxjq2M0i6w7sJUWYvbU9eBoBUqjam8MEXEe3JUKn1nD4g+2phLwE1G0H2UyMXV/Mftil5My9PsULc3lR44qLsxMY1hRPlVlpfj9fmJjY0lMTCQrKwu7Pfg+V1BQiDtvE3B4qyo39Y3tiSH1Q3AUOnD4HdiNQ99nNSa4txFfNRI9SWO0P53VOctlCVPR7NsPd7L+nYNttpltOguvHUvWhGSZeox+Dqd1dXVMnjyZH/zgB1x88cXtHn/ooYd47LHHeP755xk1ahT33nsvZ5xxBjt37jx6V9TY+hb855pQVwE+d/f7dMdTC/84C4q39O44k1zSF+JYs21/MeXJwxlxYAdDfUV4skaCyYx5/44eHN3yYeuptKLbRmInGn9gK0p5UWYL/sgYPj9tPpqmE+mqJ1YvIdNIYvyXn3H3CXNIrK3izG1raN0j1GQyMXHiRCZOnMj/Xnul63mg+khT39UEb8IhjwTnMzhBZVNeHY1JD74PWjFjw0xpaamE0+OEz+Njzcd72fBBQY+P8XsMPnhyK1bHTn7w4FzMlg7mzT2O9Gs4XbRoEYsWLerwMaUUjz/+OHfccQcXXXQRAC+88AIpKSm8/PLLXH/99f1ZWv/we+Ddn4a6iqCRC4/s+Ioc+Osc8Nf3/tjJ3zuy5xZChBWlFEtLEzBsBmZDx00FJsOP4YgiYLVh8np6cTYN5d2DFnkFNtsJ1KtP0DzF+KPjUCYzStOodUbzGZsZ6U8lwl/DybuySairQaHatG4GAgGys7PJzs5uPHWoWpwU6RRwAlv5VptGVXwMZsvExkcUfgJYpR/+Maeh1kvB3ko+enprn53TW+/nP/ev5rt3z+6zcx6NQjYgKicnh6KiIhYubAlRNpuNU089lRUrVnQaTj0eDx5PyxthTU1Nv9faY7s+Bk8Y1KPpMOXywz++ZBf8dcbhHz/1u4d/bBi48ekF3Y7Gl7lOxfFky7dfU+I2gdmELy6JqMpS3DWV+OOSqc8cQ9TujY2hsYezoSrwu14GPRabbSJVWQlofk+7cLnbXMR0NuOu1FBo3Q+SGICW045pKHTe5QxAw4YfPTIZA4N8vRxrZARDhrQfNCVCx13nY8OKveTtKQWfzvCR6Yw8IQVnUnDJXZ8ngLfBR2WJiw2f5pO3uXLAaqsobMDt8hER1X5e3uNFyMJpUVERACkpKW22p6SksH///k6Pe+CBB7jnnnv6tbbDVtl53QPqomfBbDv84/8688ie39+bVpTw1FVAlWAqjifbln/Bh8/9FYZNAMCTNBhzTSXm6nL8zgSUyUzd8Ik48nZiUg2YbQa+uu4+VBtDrFFFoOErHAcHUz8kpcM9sxnXs/6gIQumQYWkAaAZigwtHaOx+0G2OZdTTjkFs1kmxwkXn/93E9s/KyHYSSO4sELptn2seicHdFBG8O+uJ9OP9Zf9W8sYPSstZM8faiH/13Jox1+lVJedgW+//XZuvfXW5vs1NTXh84102zv9e37dDAmjIGEE1JfDwTUQaDWtS8wgWPwUDDu116feWXyA9794ljpvAyNSzuL80i+JNA6z32rVfkibeHjHhhEJoeJ4565z8ckzf0EPBMAwQNfBZKI+bSiOgn3Y9++iLmMUymrDNWwC5rpqxk9aRs4Hg7s5c9v3eFPdAXSPEyPikMFFShHQeth6pGnt1yLtRHR0KbW1ie3qOOTJu3m8s0M0JhhZePGzzLKVcfOnMmvWrN6dRxw2ZSj8PgOzVW+TJfZW7uWrr7Op+zwa3OY27fBtQqgR2lDapK7mcKdsOzaELJympgZX6ygqKiItreXbQUlJSbvW1NZsNhs22xG0CvaXgD8YFvvD0Pmw+EmISgHTIX9l3npwFUOEExyddLb31sGGl+DbJ4PBEQW6FaZdTd2pv+HmNav5QEvHlHIeulL4NDN3jbiZP+18kPPKlvW+3tiM3h8jhAg7279eSsDvR1Mq2FIam4imwUbrUKaQj8NTT/TubFYOWoCyOxjkcBBVPJWo9FxchQ5QHX3IdxT6NCxVpXhSGhsaWi907/eBpYf9NTsLpa1Ca0rqbhyO6sZw2pneB1NF8BBLhMZGI5dII4LzLryA5GnyftgvKvZB9stQfQAcCVQPuZj16+3sXFVMwGdgsoCh1aC8dhQmgn+fsWERPHsiY9yhA+6OLyELp0OHDiU1NZVPP/2UqVOnAuD1elm2bBkPPvhgqMo6fM8d4QCkTpng6rc7f9jqgPihnT9eXwH/XIQqDY6obf5naXhh7bPcWJ/JJ4lzAAhoZgJNywqa7Fw/bgnxG3/O3Ors3pWcMqF3+wshwlLFwQPouo4RCGAtPYgt2opm0plk0wiMmkBDXTWW8iJmFixjWcLJrInJIKHejUrS0MuKMHwcElA7C30K3esGTcNeWwOaTkNUFOg6EQX5eBPTMCIch/9CGkOrpgUYOnR9h62mmhZAKVMXNXb9Gryah88Hf45X9/LSzj/iJJL4rOTDr1l0TCn4bAnq6/+jwDeBHM8J5DVkUmFUAlXNfzN+rwKi0bSjJY62lTgoKtQlhFS/hlOXy8WePXua7+fk5JCdnU18fDwZGRn87Gc/4/7772fkyJGMHDmS+++/H4fDwRVXXNGfZfW9Lx+EwnV9floFaHcUwsF1EPBB0hiwx7bfselym1KQsxwKs4PLk9pjMb64F63mYIf/OLdFDuOjpJM7fm5NR1MBHsu8mrmbsnte9KCZwVqEEEc9a0QESgXfi/ypg/GaYpof0zTwRzoJRDmxFeZyWtlSXJV2GjJGo9QQ9EGJRFbvR6usa2xW7Dz0KUBvcKHX1eC1WBi1Zy97RozAbzZhrq0CZeAeMvKIX098/EEsFi8OR/vBLQkJeShlorx8cKd1Nr7yDl6Aotxejtvk5tTqE4jGjjHIhjn+yJZ8FS0Mw8Dn81H58b/Z/IXBPvdL+LE3zuCgoekeMKw0/f0czXOFnnTZiFCXEHL9Gk7Xrl3L/Pnzm+839RW9+uqref7557nttttoaGjgJz/5SfMk/J988snRNcdpVR4su79fTq0lT4U/jQ32L4Xg/KGTLoOF9wbD6rdPwPp/QUNFcFlSTQd3NWgmUIHgOej8bfZ/SfMwGX4Cese/BoZm4pu4aVSao4nz92B9aFss/OjjXr9OIUR4GnXiSax+57/4nQl4oxPaXTZvuutOzcTsqiHK34A1bxvlQ8YTZXfgMg1Hj/ZgLS/F7Kro9L1IAzAMHHm78MUmsb1xIRZzZSkaCrOrOth16tBuTb1ksbpRCqxWN7ruxTBaugtUVAwhLv5gF0d3QiksXi85KTloSmN89Rh8eoAhlx/li8mEiYqKCj5ctpy9W7fgC3iosFYwyn0uhbqZMrOPkXiJ8jraBNOj2awLhzJ5vnQF6ddwOm/ePFRTX58OaJrGkiVLWLJkSX+W0b/++//65bQK0Eo2tN0Y8Ab72OStBG8tuEqbQyieVuGxaRtd/1OtMUWhowh0sQ+Ay+ToOpxqJlh4H5x4Q0hHywoh+lbKsBFkTZnO1uoGum751PDFJVJeHeDLxFOp0BKI9rgZolcRGVHPGFMNTrTGc3Ss6czWqlICjqhgII5LpsxnxWjwYPWbiWqzSmjvR+d7PRFoGmiaIikpl+Likc3PbBhmvB5Hp6+x6ZU2t8wZBkrXSSsoYPsgRaW1kpOKT6Ik0IDlyiysSZG9qk209/bOvax5/RVMAT/FEYWUWutZuP9y1jnqSHE7meI1o3H0T7ekm2H2hcOZclpmqEsJGyEfrX+0Uwe+7Zfvap2eUwWCS5O2Hpl6mIY35OHXul6Fwh5oIMnbxfxuyRPghq/kUr4Qx6jzfvZrNj/4UJf7aIDf5iDdu4crCl6n2JZMrTmKsQv2MDZ1FwVfp1BeHUtPW7ZM9QdZf+pY0ivKmTZyDzFxB1lZNIMV+dMYF6hkUv5OyhITqY9q7JenFGa/H7+lk6CiDExmH1VVafh8VsxmLyaTv91utbVJjX1PNehwVtVg/VHV1SRWVJCZm4vXYqF20Hwe37uIpdat+DUDj7W7r/yiO//8dg27P/2I8qgYSiMTOaH8JEZV7GV3/CZSyk8g1dCPmsFNTTImx3L6VeOwR0p3j+5IOD0ShhG65z7CYApwcfFn3DPsJ3h0a4ctECbDz3eLPiRCdTGlRckW+H1ccIqr8l0t25MmwJWvQmyYTPMlhDgsVrsDs9mE39954FJAnSkSO8FIl+opIdVTQuQWF3qaIm1WCVV7o2mwJWGt7WYyc10xOKuAmTGPQgx4lBXNMDgz63PmDf6ah1f9lHO27ONE1yqqYmPxm81EuVz4LBY+OXMhAZOpzfuZZhhoJoOU1L0UHBzL3r0zGDPmGyorB9FRWA4Oimp6VRyyT7DldNi+HEbv2oXfbObTM87ApXzsNhcxyzeKb6w7CAT6NpwePHiQXbt24ff7SU1NZezYscf0vKkffvIpGzdk8+nUkymPimVBkQ/n/tWU2kuxVE45KoLpWTeNZdj41KO672soHbu/3QOg9vdxHEW9Y9txBlw8uPsxfjbmdnQVwGjVimoy/Az2FPOL3Od7drLWwRSgdAs8PgEy58FV/wXT0X/pRYjj1Zg4xbaStu8Rreka2K0amC0ov685NlTnxJDzKaTPKCbgNaHrPVigQ4FubvnybdW80DiI3m7x8ItZT/CPPd/ld6tfJK6qqnk/u9vNWR99xCdnnIGvabpBpUipPUj6/GystnoKC0ZTWjIUlEYg0N3HX+ehIrK+ntKkJNZNn44rJvgpsN9UykR/BjZlJjU1Fa/bz65VRexZX4LPHSBhUBTjTxlESlZMp+c9VH19Pa+//jq5ubnouo4ClGFgiojg/IsuYfKoY2/gTE5ODl+uWcs7J8zHbbaiKcXVO0v41lqKyRfJEG/Pf34DJTLWis1hIX1kLNPPyiQqTlpGj5SE0yNwLPQourz4IxJ8VTyaeQ3ZMWMBiAh4uLT4I27L/TsJ/uoje4L9S+GN6+DS54+4ViFEaMxx7GWrlgnKCA68bEUpCKBRqCWQnDkRZ+l+zDUVaI0tjzU5MZTnx2PBj8ldj8diw+brIqQqjZgMV/NdrWUzAJGWBlJOzqdmg4MYX32bQ6NcdaQVFZE3ZAinffY5MbW1GKM9VEQFL+GPHLWSXTvnUFqa1XTWxmfoxbymSrFx8qSWLgXN2yHHVMKU1LHgsfLyH1dRV9XyOkvzXWxfUci0MzM5cfGwblvUDMPgpZdeoqCgoPl+E5/bzX9efZlXz7yAJTMmYjuGulWtXr2aLYOG4bZYUZrO+KoANf5CMGlENKRgoNBD0GraNCtAXLqdiacOZtxJgzCZjp2fe7iRcHoEevfPQ4PvvgZfPwr5q/qposNzRsVKzqhYSaE1kTqTnTRP6eGvDtWRbW9B9b3g7G7VGCFEfzGMALVlpYBGTGISWi8CTXokfIcPeEM7i4DSmoOn0nTqlJVPfKOpURHoGIxIGsrMlBysfjeWsgIstVWY/cFw6DdbWDbrTBZ+/W7HT6QpotLqcSS1f/9per+NecXEuSkr2Dx8MLN35qAf0sNp6L4c8jIzsfj9WHw+jHwNDECHlJR9WK31bNl8Om3fwXsSUI1gV3/09sG0kUtzM3/GTP73xEbqa9oG8KYlMdd/vJ/4NAejT+x6acq9e/dy8GDHswfoAEqxb91abnBE848JQ4+Zy8cHDx5k19gTUY1fguK9igbNByhMgYiQXcyfed5QZp4zLETPfvyRcHq4Xr6yd/sPmg6jz4SsufDOTcHA1hndCjFpwZUv1CF9lzRTcGhfwEtXI1974tC34jRv2RGdr0vb3oHZN/bf+YU4xr28aj9//zoHj99gZlY8D18yEZOp6wGNEAyl695/h3Xvv01dZQUAUfGJnHDuhUxbdF7PQuqosxi37W0yySdbG89GYyRr1RhyAgnsN+IwGgcPGejsNpKoVTbOsO7EZLXTemL0koRUNk6YSXpxHhN2b2ibCZWGI8lN1hkHungxoKJh0H99pNpy2Dc6imE7XegK6m0RrBk3CVeEA5dbJycri8mbNmGq1ojI1nBPVmCCuLgidN2PYbR0NVKASQ9gGK0/Elu/QxrouoFhdP2zKtarqPabqClt6HwnDdZ/nMeoWV33R9y2bVtwAYROxjboSjG89CDPllazprqOmbHHxqTtZrMZd6sVwYojNCKVDdAw9GBI7bcpow6ZAUI3w4yzhzL+5EHYo3u4SpnoExJOD9eu93r8z8MA9GHzgndsUcFL3FW/hz2fB0NmVFpwBL6vITiAaPzi4L5v3QA7PwC0xtH5BiSMgIufC85xuum14L8ew9/yZ+vpWsz24PlbBdzWXfwH9Buou2Ygn02IY8bWg1Vc8OQ3+JsyioIDlQd5c/1B0qItfPjzecRGdvzB6W5o4KW7f03V/n1ttrsqylj6r2cp2b+XjEvP5Mv8L6murybDnsE5I88hPrrtUsjuMYuoMplIDLiZyzru8V3KLtXxZPUKjULl5KCKZXTD9g7r+vC0Sxg1KpfBB/bgqbVishjEDq8henBd17NDaaC04LuY7oHhO1zkpiWyfOopvLLwfDyNfU11w6BgSxKjdu8mwu3G+aoZ3yAfgaTgORIT8ygtHYpSwbAZ0HU0w0xsbCGpabvw+yxUVyfjciWh6wGiY0rx7I2m0p7W+RunBm58bNi0Cd1kwwh00nigoKKwDrfL12XgcbvdnQbTJiZlYEHxelHlMRNOx4wZQ7S7nkpHNGgau6J1bLZBEMjDE1GCvaHrFueeaLpErxo/ETW04ABn5QfNhN0ZwbQzMxl3UjrWCIlJoaCpriYiPQrU1NTgdDqprq4mJmaAOkpX5MGfJ/ZoVwXkWZLJ/FU2WA+jl2r5XtjzWTBkpk+DzDkt3+wOrgvOe1pTCNEpMPmKYHgt3x0cgJQyIfinzw3fPgnb3g6GREccTLgY7Anw/s/B34eX8Dtz4d9g8uX9/zxCHENcbh8Tl3zSzTUSRTASgkmDJEs9s/1W0pQfr38nhqpG99VhqSrD5G7po+kxB1g6rYzCRDdaY4dOpSksAQvfcXyHH5/1Y2JjYwEoqivi2lfm8WxhCYl+GOt5Hj86nSU1DYMhehWLi19HuVqq95qtPPvdn2M2/FxXvYdpg/7Y659Jwv+Zse3UG1+5Qlk1Nj8Qyyr7bD7jTEq1lGANKkBG8QH++LeHSS0qx2+H+pMDNJwUoNocR/ams4NTRjW+n9ZaI9g0eATFidHM1b8igxxSSivI/KKMlFW1vH/O2TQ4Yrr5Vq+IwEpMyWxUN5O5WGw6camRjD9lEKNnpaIw2LVrFxUVFURERFBaWsrq1as7nStcAXXWCF6cfRYLE2L416Rj45JzVVUV173xHl8NHd/8dzO1ws/VG7LZoR8gpmoCVm/cEY/WNzDYmvQNhTHbufk9H8nl+7D43Qz5x9+JmjOnL16KOERv8pqE08Px+X3wVdfz/jUxgC9PfZTT5l/bvzUdrqYlTzf/N/hGEBEXDLFVuX37PL8tBOsRrI0txHHoxpfW8f7mok4fb7nAGXwbN+EjoIKXq0dphWSaq0hWNZgCPur9Jjz1XtIq9mBVXj48sZjSuGC/yKxCB6P3RxPrsuAzG+Sk15MeM4Nf3/A7YmNjqffVM/uV2ZiMABfk+3m55gE8pq4vcyZoLi6tew292IfeKl431Twj6Ry001/FG1UAeg+m5VOg10LKbyxtgolCUXVVgPqZEMDEU95fsdI+HQBdBZis1jFzXza1e5OZnruTkqQ4UvN3kFQD386ZQ8BkQmv8GFS6TkR9PQu++IJoV11zrbtPGsz6wXO7rxHQAhYSS2d3UL5C6T4UCt2wNr8GQ/NhDDpILQX4/X40TUMp1c2SBcHHtgwZw8rhY7gyLYGHRh870/Zt37uPy7blURoZ09z3dGq5j0u37aTQn4etZig2dzLQvCRCj8/t1dx8m/k2O1JXNrfC3/Q/P6dsAcvQoQz/4P1jpv9uuOlNXpP26sORNLbbXZreVB7JuJpfzPtR/9ZzJDQNhp0avDVZeE/7/Srz4PmzoTq/988x8UoJpkIchk+3l3S4vSk0NX2EOnxuLIafGmskaJBmLuMEUyEWDMCEZjHhUOCItPK58wKsngMUx/0XLWDhlI2JDCu2No+CjvCZmLA3hoB5J8+/9CI/u/EmHBYHC4YsYPPmLzjrzQCfzK3iYFQSnbecKiI1L+5kG1HFXkw2P4njK4kfXY05IoDXZcaa7SJp/S0cnPkQPkdp1ws+Nb6hxj9lbt9ipoG5SEPTA5gNg5tNDzDp48t4ce4i3HUmNnnGMjf6c2pPj2fNlsk4q9xUJyRzwOVixO7d1EVGURMTQ73DTsb+/UzJ3oilcZ5Sd5yFvNnJZMf0LJgagK77MDQvmrI0Xzp22wupjzyAYQ5epdICVhyuDJQWoD46B3wtr6WpvUg1/p+mzJh8DtAN/GZXsJeXggQVzX17U7k92s9lU+LYtWsX27ZtIxAIMGTIECZOnIjdbu9R3eFm7PBhfJaczC837OALP/g1nQ0JFradOIpzt6QzvbYKr60anycSDQt+goPEuuoRrFDsi9vEp6P/0W7q2nqHjh5pZ/Bjj0owDRPScno4DCM48Xw3KjU7RbfuZWz0sTDpVCtKgdcFtcXw3CJwd/wB2mzJEU5HJcRxatjt72Mc8g7dejiI3ecmIuBlTMV+zs1ZQWZNEe+NPAl9fBxmAuiHfM4qFTz+Pe84KlTTlPmQ7ClhavVGRtbtQW/8SAjogMnG8Hv/zEVDB7OrchdfXn8RczcHeGv4PP4x/hxUFx/kC8y7mZC5gr2bkjj3jM+wOPzNs1ApBZFlExiy4Zfsn3Efbuce0FVHM1UFCw5A3N9N2De2HwCmNEXtuQFcixpbXw0oXJ7J/XU/od5ib/55RVpcnJu+FHtxSscFK4WmKYalryaixosHB3meMXh9LX0560312AP2Li8pK8DijSa2chJKadTF7MHtKGr7F9eYxB3UU4+jzcEpysloXzoxgRj2NZgp9bV0n9BNHjz2IuItfiZqSUQZDmzKxrv2dZSpVv36NdB1nTPOOIPZs9u34h5Nqn1+dtS5MWsaY606+xZfwarU7+KOiKdlPEbjPxJlgN7B7wiKBrOL/0x+kAZr+6W47z84hzOv/C3WTFk+tD9Jy2l/87df9q4jcaqBuO2vwMwwvaR/uDQNbNHB2292w5cPwrL72+93wk1w7n0DX58Qx4gIi069Nxi6jAgTurvV7B1K0WCJoMESwerUcXybPpFz9n3DaZ5tbGJyh82QTZ/j48zFfO1r6aNYYkmgzpfMxJy1ZNSUA1DpsJGTFMt/3niP82/9f4yIGIJ/m4amYFHuSj7MmkVRZALGIWlSQ5Gs1TLYVImrcBRz5rcNpk111CdupTrlW9xxu1u261C6xYklMoAj0Y2lwSBqA0R+ZcJc0UkrrWocid/0Y9GgfIKd+nURjfUE1fkieW3/uVyQvIy4GgfN80sBmjJQaIwx7cDrgK0FJ3Noq3CRvYiVSSs5qfgk4j3x6K3a6ZoG2BQ4ykitT8BvraU8cRVWdwIeR3HTD6btDwCox8GZLOU94xQ2BDLxBRKZSASzAzY21Bk0HNLbIUJZwZvBFnsB3ySsJyUuh1NtdZyx/0wclScA0ICXlebd7DMV8/HHH6PKvcw591SOVk6LmVmtBnuN+vtfMF93I/v9QyhIm4PXEo3NU8ng8jVM/9V32FScwtblB1vyKop85w6WDX+lfTBVGkn2JM65/Sn0dt+KRChJy+nh+H0yGD1Y6QQgbijckt2v5Qghjk2PfLyDv3y5F/9oJ8phwrqhItgA18U18Gvdy/E5I7q8POlWJl71TGu+/4Ot73Pp7i8JoGFqvIbeFN22DxrDZ/dcwP8NW8ieBac1H1Nhi+aPJ1zJ5qSWVYo0FMP0Mk605OGsq2VS0WosP+x8aijNb0OZvMHr1I2UgvLtsZRsSMCoNjN3Vz6RXn+HEwgpFO5Jisob/G2O31I+hsfX/6SDZ1TEWGq5LuVDysuy0AEzfjLceaQV7YXvlRBQZtatPQ+v29Hc3zGgBXh/yPv4dB8mZWJs1RgmG7E4LH48HgfFHgs7Y3eRG5XL7JLZpNelddFHoUWEtZbUpN1sMyVT43ESUzCHn/iS2NUQYI+naSw5JJo0pth1Is06BgZezUepXseLAQufaX5+MPp1zquegLNwbnNQrqCWt21rsGLmR+MvIunS7rujHS1UIIBr+XJcy5ejfD7sEyfhPPcc9MjgVcqAz6Aop5qAz6DKUco1X12N13Cjaa3SvtIw6Sb+dsbTzEqbFaJXcnyRltP+1tNgClCZ227uNCGE6IlbzxjFE7nFBLKi0Kq9QGNA6+z9RCmKIuNJ1LqYZxPaDFCaWLaXS3d/CdAcTIP7BI09uINX3xnF9pvGYtH1YLcmYFPicLYmDGO4Vkq6qQZdU6TotTg0P5EuF6d/+hn+GQ1Ud/H2p8yedqN+NA0Sx1WRMLYKT5WVYg8kfxggck1L1UaEwjcUPMMM6k5r27yo0NhZMRK7uYGx8buw6F4OuAZx0JUOaNT4YthVOYorzP8hY00lLpeVylkadVcaoIMJP5MmfcK27PnU+eKCU3dFHsBnCnYMHWP3cEH6WpIsLYUXeDX2VlnBbWJ3zG7S69M7/dlrhgmbO5lYa4BImxmHKYozBq1AN3tJdaegFyWS6w0GU5sGUxwmUsxa85cNDQ2bsjIkYONmvR5rVDZ/23EZMVkfc47FhamxG0IcUczzjecL6xZysncRNTkF++j4Tus6mmgmE9Hz5xM9f36Hj5ssOoNGBbveZZDAm/Gv8ejax1l24EsUwd+XE9NncdPUm5icNHnA6hY9J+G0v5msEkyFEIfFDzjGxeP2B1AxlsbWwy4mIdc0CjUn8aqhXX/TJoaCUqPlMunZ+77Br+mYO5n7yEDjwrW5fLj2Za5YMB/Xl0vZ70jk4elXYGga6eYahuoVbZ5vyoZsNKUoTUjCphV2/SI7fylExHkJ+E2smTmTWYHVmA+A6zwD91TV8egXA3zKTJytij+degcWU0uL6t6qLP6+5UrK3fFg8rPMOI2ZWUtR51XTepkpw9CpqUnGUFZQYHM3oMz5mAIwLsrPDxO87UbRp1oUP07y8HSpjb2qonGrapzs39z8Ii2eWJxV49GUTgCoLdOo2T+HcrOHzFn/wB27F80Xja96JDZNZ0G0GYtGm1bw1v1dowwH/881jRXJ7/Jh/mmcnLyeuMJTmvcbaiRjVia8+Kl6aw/238zs+u/iGJXlzOIvpz1OtaeasoYynDYnifbEUJcluiDhtL+NXhTqCoQQR6mNtQ1U+Bv7mfp8aJoXlKXLY3YFkhhvKur0go2uwfZAy6CgEdUFnQZTCLayjq4uYPjHJ1I1YhA1iTt4N3UWUZqbWJOHeK2+Tb60NTTgN5v53/nnYXY0MEO93eX3c2UE+4l2FKaVgsKiUZSUj8B1MBftqiJ8mZ0EUxVcb6TcHceCjK+CNQUAA7QGGGbJ5Z7Zf0ShYW0MrQ11DmKKk3FuH0fA5qFiTD7rc6bSUB8LCmJqqjn9009pmKPYOAguifM2/wwP/ZkaCi6K8/JIgwWTycuE8Z9TVziZPaXBVlSTPwJn5YTGcNl6AjDw+23krbgB62kPUJX5GSMn2xiy8i6sDd0v+RxlODhJD/CWpYyKwim0HqqroZERSCRGOQhU9eKK3zHKaXPitDlDXYboAQmn/UnTg1M0PTkLSne0bLc44dZtYD82VvQQQvQPT9MKQUph37QKpbLobk7HWhXBCn8Wc825GKolSDX99xZ/CgeMlg9oj979x4DDZMMRNxWtXMM0+5eMUN+S4thAWtpeUlL3YrU24PE4KCoaSVHhMFadGOzDF/BGs2vXiQwbth6LxdvuvErBjoIIUlPdxDYOsm4atKVpUFOTSG7OFAAOLowlZVj7VlhlaNSVjMNbk4pu8pA8aGNj1wfAFLwpS/CuRQXa/Phsjnq8kfVQdRqJeQvxrykh1pKD21yH0mDixk2YAgazdim2LdBwdrFarK5BmkUxxYhl8ugvSPYMIT7/O+TbVuHFR0T9oDbBtM1rALxKw1h7I5zxSyzKTFTDoG7/XoIvU+OM6lm8F/st3vxRcMh3l1jDQbySzxpxdJFwejhO/jV89WD3+035Hrz38/bbfdXwYOMbzy07IO7Il2MTQhx7kq0WQGFxbUdVZND1TI6NlGKPP5Fqw844cxGD9Wo0FKVGFNsCKeQbsbQOSH866yr++L8/E+XueKU4hYY1fSoFAQ9fVO1hrfJSkJTFT6f9jWRHKRAMkhaLm9SknRQfHIbSGxOmMigpGkFlcRbn2T7AOriEgjQbATR0HYo8GumpbpyNn0SGArcBlX5IxMqmjWc2v+aIseXtppqqKxlF4aof4m9IIDiES4P1BnEjviR58n/QDp3c/9ApUhvvl455BZsrg5TK0ZwVSOIDfR3Fphp2nDKMlP8VMKwIxlcGILn7H/8koomMLyB1+Z2YsHK2dxqfWDcQ4e58XtgmpbWxDKkZiq06q1crINkMG2ZrKfGHNFErFJlGUvC1RnXd4i5EOJG5Ew7Hab+FuOGdP65b4NovYcO/uj/X/42Bh8fCG9fBni9a5msTQhz31lfVggJr+RZQLW0JXb5LaMG5H0tVFMt8I3jJM50XPSfwsW8M+UYchwak7RPGcONtf6AiMrrdqRQamslKuaca24e3ceHXT3DfN8/w3P8eZuQ7leieloDnrolg4/ozUVqrJlBNB03Dh4l3POcSt9fGuOwaNtdpbKnXSbUpYlq1RupacBBQAI1AwErrjyibra5NMG2oyOTA8p/jb2i6kN04H6gyUbl7AUXrr+jux9vqZwYHTniI+oQtaGic4h8PCspJZ81PxuIeY3DmVz07VYLFwFE2EbPXiYZOgormMs9JWLrpjgEQQBFRPQw90PXqW60pFLsicknRNHTVduUsA0UCwb/X2POOjeVNxfFBwunhumU9/OCL9jNGf/c/8Lsy2PLfnp+rrgA2vw4vXgj3xMISZ+Pt2FmOTgjRe8/sywVNQzeq2mzvrE1Na2yt7A0VZSEvZRCPX/EjFMEBUIbWOOzKYkeLGURk7tdEBFouy5sCishvNBL+bG5e3Wjniikok6WTAaA6Co1VTCXJ5SO1yMsEh9GUo9vuqcFgi8Jmq8NkanlOj9fR5rt72dbzUUqj448xnep9p+B1JfXmJ8HBqX/CHbsbp3KQopyARmHhaMp+bBC5U8Pn6zw0KgVudyQ+rx2LO7F5VHiwGp04U9cftxrgNGko3R9c0rWHNDTeSVjK96pnBY9Xqnk6Kb3xN8U6zEnk5B40+woRJuSy/pHInA53V3b82O5P++AJaoIh9TcFEHGMrTIlhOjSxtp6tvmDrW0qSoFeD0ZwNaGm8fqt/wRA0xpjSfeUBka8DeUIfgx8NXUmD8++gum+nODzjxqHxeTg5n//pcP4pykNSy44VuuUjbZQr9qGH68KBlIrATQNDHS2M4Lz+YzxMQGKlQVTF4XquiItbTcHDowFdIqLhxMTE+xGEPA6qCucSJeXyTWDmryZJI57vwc/jaZTKUrG/JuslX/AaTgo1qvx+200eGNwne0iJ2c6o0atbHdoUx/ZffumEwhYMBJdaIf81IZadcr8gXbHNp8DyLJplCdswW+rImCuQ/c7Ov3bbAqgL8d/gFmD6WUzMZnBgxcbjTM7mDSiT8vAuUBWPhJHFwmnR4M/psPvKjpclk0IcWx6Jr+0+b890XOwJyzHW3ombUZ6m0CZdZRZJ5DmAMPAnONqd93/0MmnlAaYdfxjY1s2ahqfnDyPD4eeF7xvKK7892u8Muo0In1uZhduIcl9yFLEGji+1qmLcTR3J9gfiGOTP5XyxkE4UZqHcaYixphK8Dde8vfaTV0GU00D/DBx6RZqRqZQoxIoLcli8OCtOBy1BLwOugymja864Onll3oNPDH5uKPy8Xpar8YFvgl+atems1vNImvYhjYDvHy+CPbunUF5WSagKMv6kFTdg27YmvdJs2ik2jSKPB13yhgboaGnr8FvD67QVTzuBdI3/aQ5hLZ/dYrnkt5kX8QB7tr7c/bH63xU/BwNGQmMbEgj+vKxnD/ivN69fiHChITT/jLhYlj2QN+d7/lL4Ydv9N35hBBhbaerZSJ9X8R4IgZ9iNm7Fn/1DDQCKIsZZdFQkVZ8k+OC18MVaJEmzJvbhkgVoYPHQFOgdAikO/APiwZ724+AQHIEKIVpby3mHBdvpJ6MnhxAaRpPT7qAs3JX8eNNbwdHvRNsPTUFsxS6u54N1lGsDwxpnIs1yKWsrPZnUGJEcYXla9DA7Ffdrk2i10DMWph38At2nDyCPEZTemAYGSM3YrbVguZv0w+3HaVjcVR0/ngX3BGlHPQF16q3WNzYLdXY1ujM//wLfF9ZqYtJp3BuDK4UOx5PJFVVaSjV1FKqsW33LNKy3idp30XN59Q0jakRJj6Jg8gSPzWNV/3jTTAiwoQzeScHxv+zef/a1NUc1AySt1+OxdsyJ6eBYr+lgNVRuxnhnU2sdTCvxO3GU/guKybt4bTi07CelCXBVBzVJJz2lzk39m04zfus784lhAh7CVYzuFTzwKLapJ8RafoX9vKn8FdNx/DGo5nqCNhNBPZOwWS2MLt8J1avl5VGFv5WU0RpCjwL0iCgwKJ3PKmoocAbwLa6DM1r0NTearS6YvNR1iz8uolbN7wONA66iVQk1DaQ7fKxPnJI4/Y2C8kDkGsk0GAEUDoklVio6GixIj/Y1+o4vtGxFASPiyg0mPr6bqaym/pZAapGgWbxEJOxmpq8WaA6uaKkGcRkrurpj7uNHMOFTwsAikHJ20n+kwlrno5BA3p9Pc7qaga/UkBBWhrfnDQXpeutXyp1tYk4XRMoHf4GCXvPR8OMhoZV09g3xML6SQ7OP+Ajze0n0lZAVdq71CSsAq1taHclrac+bhuDProSq5qIyRaJlxxqUyvI01NY5qtGdx8gJyMRI2UvsV4nTn8cF8xZfFivW4hwIeG0v9ii4TsvwH+uDnUlQoij0AUpcSyrqG3ZoFupS7yW+rhqhld+TqnVj8s+hYAlHTwB5q/8mjtffRqAF8aexaujTmtOOZrHQC9xY6TZO26uVApTfh3mHa1bXDu4lKzpfJoxg8t3fk56fbDJVJlg8IsGe08aiqaM5vXoD6Vh8KV/IrfY/oujcDGWIavw2UugcbonzQ3xT5ix7dPbXMpufUnbtlmHQABMkDThHeqKJgYv8bcJqMFQnTTxLcwRrX5+PaHAcMeyrs4NmomkpFwmfroTy4FgDU0LqOqNI7PSCguZtHETByefSpleQwADXemM8Q/CGkimevAyqjI+Z/Ca24hwZaKh8aN9PlbNsPDHCREYmgaMRlO3kqRKma2+ZrHnc6zWcnR/BNGF03Hun4NuzkAPBDB0E18nj+Kfg6zsjNFAM2Py5uMsfZhYXyRziucwa9YsrNaej/YXIhxJOO1P4xeDcyk8Ny/EhQghjjaLk+N4eF8hhR5fm0CpTE5O8EbwwPY/sjRuJl+aJ/Ny5vnM3ZNNQNcxGQbf2/4xLoud94bNRTcCaIBtSwXuiCRUvK1lRv7GP/VSN+adVc1xsDNn5qzkB9s+wOmrb4xpWnMLZ53m7DSYAih0dqkhuPznUu9fTMbaeeSPugdvWhUEIPZ5E9Z97QNpa6Z6jeQ7LNRc4ocTKsg87X6KN3y3zeAos72SxPHvEjvsm57+qJsKBA1yDg4nIfEAqWl7SAgUYN9k6bQeDRidu5/Z553Ea2Ufs9GUz1k1s5kdGA2AM+90LB4ntvo0NDQUCkdA8eyael7MsvCfIVYqbcEpsMaWxXDB3jNJrZ1NgV5BHcWkam+Rpb/Fh1nfxTlqLQmB2ymszADPAVIqyoiozyaudh9D6kaRVp/OqOGjWHDaab173UKEIQmnR2L1c/DpneBrADQYfAJc+iLEpLbsM3gqLKmGB0dCQ0mbw7vrc9VG5ul9VrYQIvw5TDrvTBvJ+au3U2TQ5g3jtbSz0Akw90A2VREpTC7OwRpoWUfehOLGTW9x4d7lfD5kOpW2aBLcNSz4ZB3XX3ondZmxKJuO1hDAdLAevboQTcXS1eyCuhHAavhx+uqB9hHW4fN02XIKYMVClf8GlFKYPXEk3B/AH2fGVKOhe3v2Zmiqgfh/WKip8OM6rYwhc/+Czx2H15WMbnYTEZuHpnU/X3Tzj7MxlGp1YN2hMWz6uuYX5/vGiUZDV6cBrwdX9loasuooT97EjMor8NkqcUfnkph7NqChtWnZ1Ygw/Hy/OJfzzF+zIW8y42vGk2kJrh7lMH3FZPO/0LU6/Epng2k4U+K/Jm3+N1gsMUwAfumbzObNm9m4XscVGE18ejzTT5jOqFGj0HWZIVIc/SScHq4lCYC/1QYFB9bAY6PhlF/Bgjvb7v/r3QA8kb2L2CW/5ZSqdcSOriMq2dM0T3XXLvpzX1YvhDgKZNhtLJ8zgdNW7yDf42tOVErTeTn1HP4Xt4BaeyQYBrFTypm7YW2b49Pryvn+jk+AYAbLi07BVxHAWtl6oJABOOnJtNcuq51ai53PMk5gW3wWulJMKtvDqfkbmF24hbUpYzo91qRgnhYRrKWhnIatb6AFPFjKehemmloxo982odWDP13BtEosyZ1M69cBoxbS/mDGOxKMaIVepRGxVUMLaFQl/oWLsuJRms656nNu5blu5wUoaaghtT6F/7f5Dkon/ZuatG8ZuuwxKrwaLkNhECDJrBPVNEWB0qiP28WWnEn4SsawkQAJ0bVkRDyHw7QcpSCgNKqJZEogB0vW78ES0/x8FouFadOmMW3atF797IQ4Wkg4PRxLnF0/vvxhiB8GU9quUOIxDCLuXcKUndupUxHUFQXfqCPivQyZV4a5s25C134Bzp6tsyyEOLY8klvMQa+//TdYDVwRwXlP0XWWT51FxRsv4qytxdTBRPwa8N/R8zr4JtzzcKiAqxfejl834deDc7AuHzSZF8Yt4qKdX5LgrqbSFt1mEBWApgx0I8A5a/5Nbc1BqC/r8XN2RkMj+pPgR5h3sJdACs2LRHUncqOOz2enojgBiiGhvBwt4AFNJ6t4LYmjzqXU52fL8FHdns7lSGajdTSBoigiTniWYrdOw/8eYKfXhsLAAgyxQkAFqHbDRLsJq27CmXcG7uqmBg6DQv8KhutfYygNNxY0FAlaHSSOgOkydkEcXySc9pJ/iZOmt90u37TevSU4nZS5ZZ67C/71P/60ZUO7Xd0VVna/mYY1wUfCBBcxae7gx8UZD8KJ14Kpj/6a6uvhTyPAV9d2++yfwpl/6JvnEEL0mYaAwQsHy+hwzSdNp/XFa5/Fwm9u/DWP/t99OBrqMTUO2vHrOmbDwBg2j49nn4qeX9+LVdtbGLqOzVHOtQdeAMBliaYwdii5McPJU3G8PO5Mrt76Pi+NPZMG3Y6uBYjx1HFG7lpOKtxEul6Mw+UFz+E8e9f0GgiktZ/PtUMKDqjhbL9gZvMoe80wyMzdz9T16ylav5FpsckYhp/BFSVUxMYSW1WFOWYI5sy56NZIGqJ2URu3ivpBBjVJdmwN/6Os1MmO3MnEVkzGFLAHzwt4UezzglWDWQ4Ta+v9nBhpxqxpOHRwGcH+uPuNU5lv/gcEvDjwBo8eex6c+6fgAFshjiMSTnvBt8SJmR59MQfDC7s+gnEXNG+avH5V8wdFexreciuFy+L58aPP8co5c/uo6kb19fBQWsePfftn2PF+cElWIUTYeCq/BI/qpP9kB53Wd2cM5eq7H+Gcr79g3vqVRHg87B2cyeezTyc2Zii+VAe2A/XBQ3tYQ1Pgm1m5lhG1+5q3R/pqGVG6iUzPARrShrIlkMb/hp9EYkM1p074H74cB5d98A0RXl9w/lXarQ1wxBQKX7rCNzpYZE9ek2Ho7GJKy/RPgNJ19mdlUhMTTXrOfk5dtZz48goyDuZhr/cEj6vJx138GZXX+PAMqcCvK5Zr83nTfzlnrl9HjLue2JqRmAIRbQZQNf23V8GmhgBZNhNFPkW6VWvzpcOwRsMvdkL+KjD8kD5NrpiJ45aE0x5quCeFCHr+hg5AVV6buxFeD6oHI6Cqqmp6VVuPdBZMm1TuheLtkDK2759bCNFr7oDBk3nFvT6uMiaWF8++iBfPvqjDx414G3q5p8fni8TDZHMBY6OrMDyR6A2u4AOahj8qFmWxYvbUM8lykMF+EzneOOLcNZz5wSp0b3Ci/iY9W1i1d2ovCvTqjTkvbxJ+FdFuu9J1KhITGbFnD+NWrmweXd908oZJBlXXFKAaL4aZNVjA5yQX1VPhHoEpYMPqSejyNVYbEGeCXe4AMSaN+sZ0qumQOtwJjngYvajnL0aIY5SE0x6KUO7eH2RvO8t0XlIa5kDnaysDuK1Wzpo0svfP1ZX6+p7t9/RJcHd53z63EOKwfFZeQ12gD9oaD2lhNWKt3YRTgwjNywLLPkwYxGsNaBoYkU4aIp1EFOSgNA1PaiboOqjgxPFlRiQR3mrOyf2Waatz0X39E0abXxaKqu8H8Izr4c/I0NmfM5H8/HGdd7NVBrtPyiCzMBc8LXOterMMKq/zd9in1VOUiIbC7Ivq0eutMYLn2NVqeVRlwKT5Q3r2OoQ4Dkg47YnGloJevc3qFhhzTptNU75zAQ3vvkSEx93he2NA1/lw5in8duKIwy61Q5//tmf7KX/3+wghBkSR14cOHfc3hWDg7Ml8dIfsFxgciXlvV5PTa0wwlZCsH9I3vfE87vQsWr8blqlIvvINo1rZIQlImoM14OPCPcv4/vaPMfX5xXxQmqLkLh+B1O73bWIuH0X+gUldj//SdIZU70c/pF9s7VmNQbKDH7XX23RNrWevUwM8BpQHVPNiAzPOyWLw6LgeHS/E8UAmROuJ/JW9//5/yi/BHttm0y2TRvLg5deBphE4ZC66gK5TkJBM7nevOqJSOxSQ0CnE0SbRYu48mDZpCp4dUQqUIqWhLDh6v/E+ESb8Y4PTErU9UgEGSaZqxphKGk9vkJCQR0bmRgYP2YIjsormhKZpVBoRfOQdQ80hl8m9JguvjTqNZyae36vX3B2FQmmKstv8PQ+mKjhgKvofxUzasg17fV2nuyYl7SPdtg/Vap5UZVZ4JijoZJVUm60eUPisNaju/8YwoygPBAvTMDjzugnMPG9YD1+MEMcHCac98eYNvfvuf8ptcOqvO3zo1d/8mF/++LdsGNHSt7PeFsGbJ53B60se4ZnTZhxZrR1Z+Mce7ii/DkKEi4WJTiJNXfyb7CiUtt6maWhKMcK1H7MRaN4G4EjQ8E5LQMVamneP0TQmOWs5y7wHs6aIcRYzc9YbjBu/jCFDNpOVlc248UuD52g8T7Z/EAF0VOuv70oR4fego3h32EkUOdp2bzpcqnFUVcX/8+PL7MU7sgZRb+vY99cxetsWznnvfQblH2iutYXB0GHrCUS37SerLHT51piaFpzDWul+GuyFjf1UO5ZgghxPAJQXn7maq26OZsT05J6/FiGOE3JZvzsVeeAu7dEUJQrQbt4ACZ1/C9Y1jQ9/+j0abryCn3y1gaKKGhaPG8bvxmT2ZdVtOaJ6tt8PPu6/GoQQnQooxYpKFwc9XhIsZk6Nj8Zh0rlzeDq37zrQbn9NGWgoplduZa1zQstAy0Mu8Std55uk6WAYbR676r3/ElNfx4ZR49g9KpODCSlUOuyUa6lM/XoXDkcVEyd8hta47r2uN05L5W+ZjNmndPKMuOZgGuWt5+I9Szk7ZyUxvnp8monlgyaxLmkU5+xf2eXrb7q83dU2f6qi6qoAvqxedhNQ4B8KrARNKXQFc775Bk9EBHa3G7/JROkYJ55pHqy2BjwTwbCq5hWrNDfotWB0MptTSspeCgtHUlcXR13MPkyBCGzeBBQGGnrz67BpYA9UY3jWYNhO5pRTkogef2LvXosQxwkJp935a7Als9Uqdx1SgHbDii6DaWt2k84/503viwp75lc58PDQzh+PTofMmQNXjxACgE/Kqvn1rgMUenzN2+LMJu4cns4PBiViAu7fV0iVv2UAzSBPCQ/ufoz/2M9grXNCt8/x2uZf8GbsAl7LOBc0jc9nzuWJh+/mgznz2Dt0WJs+qXnxKZye9A1oql131qZL2KDhwdwcTJ0eF48uf4LU+vLm+VUtKsCpBze2aVVteg89NHh2OJBIg8qrfKA0/CkqGEoP3a0nrQYa1M82iHkjGDibdo9wBwe5mgMBEmrLqPcYNLhARUHt+QGc/w1+PGpKw7Fcx7XI6LAF1WQKMHHSZ7y25yYySkupiduKxRtHRH0KZl80FsNGlO7GVLKGA4knoztOZ/Y5Q5m6KKubwoU4fkk47Y4/+AbWFE4PfS9s2qZrDkgdP+Dl9VhkPNxWCI9kBudgbW3CpXDJs6GpS4hjlFIKf1kDRoMfc1wEpuj2S8B9UV7D1Ztz2l0IrvQH+MXOfKr9fi5JiWdRbBTn/Xct0eZclpQ8y+zqjZRtjWLJOTd0Pz2dUtw85k6uWP0iZAb3HZe1jt//4sdsHDYuuE+rc2QPGc4V0bnNraWtWa1u4uPzqagYjA0/GgYKnR9teY/U+ormYNrErAwCuqJ+ioF7smrsIqswVYByaOh1YF+rYylsn/o0pWGq0nCdbnTc37M3Dahm8GUqbLsbW0ObTqErqr7np+FEBQGC4VNB3XwDky+KqPf94HcT9ZkJz0SFb7BqG1CVBpriTcvFfDJ2FrYRPsYU5TJt/258lio0v4Urf3Ap/rJIXJXjsUdbGD4tmYhIC0KIzkk47YXWHwG+xvvNk/IPmhyKknrH4YDflYa6CiGOea7t5Xy4Yj/LzX58OoytMVgcFUX62cPYZ9f4S14xO1xudtW5u8xYj2zZy+Mbd+Iy2zEyophca2bu7my8tSb+Yz2D3Zk9uFKjaZRY43n85FvQDANd87GfDNYNm93h7mVOJ3oXA3uGDV9PdXUqBDSG6hWUuu3MO7ChwyVT/fGK8pt9waVFmx5ueiM1gq/ctcggYq1G3L/MaP7gg02NAFEfm3CPN/Cn0TagtgqSPR6t2sF+tecFaJjV+DdwSACuWViBPnw+8V9PQnnrGLwikqqZu6geshTD0gCArSaLDyPGUVF7MhfVl3LigXrMrhKmTB7NiDPOw5wYXCmKPp4dUIhjnYTT7kSmQF37ibDbfe+94uUBKUcIEd52ry/kqoMF5AwzYTKC7xRvD4LHAz6GfLudXdGdDPtu5cTN67nyo3eYsG8XXrOZS+9/khqriY1Ro9ljH0LUxmrePvtM9EAAw9T9+ZpaRpWuE1BW1mlzgtuVYkhRATafh8LEFOrsDnxYqcaJk+oOT2W31zJpykes3nomk40CdruisKj28zcrvTGYJjZuOLRxtFXZ7mmKKq+fuBeDPy8F7HWmM6K6gMTHLNQuClB/koFqzHqWHA3bVg3XBd2PjgcgAJYDbdOpYVPUzTM6D7caVA1bTkLehVj8wdkNkvdMJWnvxfht1RAw4Y7O5/rKcaD0xtM40EhCbVQUbVlL4tUTiBglU0QJ0VsSTrtz03p4sLsl5LTgyh5CiOOax+PnysJCDjqCSSygtySfBpNiV1QHnRaVQlcKo3EU/OKlH3PLa88TaAyUy6fOpDo6pnn3O0bcwiOf3s+ewZk9C6aHMPv9BEw6C9au5Or332BISSEAPpOZT2adxLOLv8tnUWeymP9i6qQFNdJRzceesdR5oxlpyu9wH/ckFWwx7QkdGk5URL+vMFdq6MAro07njjX/RneD8y0zMe8qjBjQvKDXaShN4Z7eQavqoRTYV2no9W1TqHekal7tqfO6AtQnbCe6+AS0xifRlBlzQzyG3kB0xcQOD9PQUAFF+b+3kXb7THSHXMYXojdk7qDu2KNg4qVd7/ObgwNTixAiZOoCAfbVeyj1tgxcqvEHeO5AKYvX7+b0VTs4Z/k28iK0NqG0WaspmA7dbmga0/fvYOz+Pdz0+gsAzf03twwfjcnfMlfxsvgZfJU8DavP1/5cPaFpXPLFh9z5zycY1BhMASwBP2euXM6TD/+Or+vmU8AgDHVIa2PjFfC395xDWUMCDVjZEjOUEntsuxjrnmgEL7/3gmeSgdJhX0waK9Insju2pWFAC2iYKjX0usaalEbCkxbMJY07qFY3WraZC8D5H3Pj3dbzl/asprrit/FV7mi+71eKmvI9FCgTRhedMjQ0lM+gbl1Jp/sIITomLac9cfGzMP4SeP0KMFpNaO8cAjdng1l+jEIcq1YdqOSRjfmsqnbhjbeBzcQYu4X0+jyyK2IxzGZqokwYJj04iEjXiKoP4LI3fvdvCqTdrOa0357A1Z+8BWg0WK0smzaLgqQUtmWNCLaqtvLa7HM5df0q3j9pAYFetJ6afV7Sykq5/q1XgPatE2bDIL28mHs++iNfjZ/B6OKD1M9W0DiWq7Q+kfdyzmRFwazmYwxN59XRp/HT7DfanEtZ6N2yegqMCIXXauLBE64ETcNldWB0UCdNp67VSbrPgnuiom6mH98oUI6W80XkJJLw3yGowF4Mqxut1VjQQy/zd8a2qpSiMx6lYvBUir+9nqjynZREeLiQ7ppdg2HYm1sNJ3d39U0I0Zqkqp4acyb8TtadF+J4saWklptfXU9OQXD5Yh2waWDEmSmvMcj1GShTBWqQA3tqJIbdRIMtGKNcDlP7MNpFMNWUYuauzYzJ2cPfLvwu75y6EK/F0uFxmqGoiR7LjL1Fwap6soRpI2edix+++3rnq0oBmgGjvikgZvF+jCqNlN+YMRKgFgdPjrmegqgkQKE0DSM5An9GJG/NvxDnx4qrPniTgK6jKYWpQIdpPewTCmACXwL8ftEPyVPB5Z++mDOXkqI0Fq1cFjwvBlpj7a75Bp5xBv5yO0UHRxL9uZtBb+ZiSo/DNGgSDvtpWFQKTIGqc5ZRW/YCztdagry5TMO2TcMzupPVnwJgyYX6OQr3dAtFn51Pcsl6EhMiWXviVNjVw9fVUSu6EKJLmlJdvEsdBWpqanA6nVRXVxMTE9P9AUII0YUqn5/bNu/n03d2gcc49CpxMBy1CoMqQsc3xomR4kAzFErves17TRnBuT8PfbxpedFOJtQHMPkVl35dy4hiP26LxhcT7awfbqPN1ffWS5oeco4Ij5tXf3sTke4GzEbXwbHoIS9GJET/z0T0R8H0VmeO4P2hs/kg60QOnjAUf0Z0m5rTS4s5a8VS0stKqI+3MOWCz9Exus3OTeX+ZcN1bCybiK4CpDlK0E6OZo82mqEFuSxZ8wDxrkrQFZZ8HVtOS3uqJxNWjZ5NRm4lE8bcgqa3TZtF4/4Jy77B8a2GZrSa2D9OUfYrX3CC/daHGIA/2L/V3jCRyC0nsnnnDp67/HomuZfyi/2volc/RnOTcmevC4hbPJyoE9O7/gEIcRzoTV6TllMhxDGnsvAgxTl7MZnNpI+dyC5XPaXl5aRZzXziqua90kpKlJlYXy0JeoCa6EHUmaNItJoprK+jalsNWmMwVYCKtWKYNcxlHtpdq3YbWLIr8U3VMJIbh5N3kcaUpreksUPDqNZ1sA2YNd6YG82oAx72pplpsJlajm08p8lvYPNBvb39xXC3LYJdw7MYkZPL+jGTqY+IYEhxIZN3b287f7OmMKzBl+o6LUDUZzqaXyPS7+bS3V8SkxDgwYxJ7V5rQVIK/7jgsub7J6kx3KD+Eux72hT+Dpn+yVDBVeafzP5RMJgSwGwKcM2kF8lSB1jLTDypNsznl9GQo5H4J3O7vqzWPMXJed9SfVUcWnX7ZlBNmTA6+LQzV2okPWCh7rQAdXMNVGSwPs1nwnngNOIPLMJ0MJfU9D9i3h7D3UVpzDt5OlimsnP7Jhz109A6GbqhUGg2E46psjypEL0l4VQIEdb8AYOSWg8mXSM52oamaSilcPkCFHh9KA3SrRb2NXj4+EAR29aswrY9m+H7d7Jx3AxWF/twRTmDJ1MeUks2k1zwNHraGeQkLyZHaaSWlJORv5ohB/YytaGet6LPokGzYUSa8U2JRznM2L5sHDzU1IWUlrsKMO+oxpsU0e0l9tiaai754n3O/mYpca5aKqOi+WDufP674GyqYpwd91FVCr3EjelgPcprsGV6PJgOaX1tDKgBk0Z9F91Qb/vJnS3nbvxzUEkRv3nhr0zYtxulK9yTWvqZqkjwDVZYc1ue678LFqEZBkrvfEytZhiU7R9E4htmXAsDeMYHJ7DX3OC36Zh0A6VgV+VwXt91IftrMgAYFb+XS0e9TWbMARQwg1XNPw7nqyYIBCfob/NcKjh6P/rdKtQpBprWti5H2XjKJ31J1LL2o+ZNtRoxb5uJfkdhRFuxLLwOu28iRsU+LA1vkzT0bUoLYsCnYf/XV3gv+i3WiZdgFJZQ8MxO0hoOmZe/8U/DrJH6o4noNvmYFaK35LK+ECIsuX0Bnli6h2f2l1KbakNFWsBQWOr9+Cw62EzBZrd6P0SYwKyD14/jYD260qlPtmFEWdq3RCqFxQjg003Y/F6Sq8oYvH8PeYMyKYtPxeT34dvlwZ8RhYoPDnrRyzxY15ejACPNjj8zCuW0glJoFV7MubWYyjx4ZiWiYjsfKJNcUcYTD/+O+JpqTK0uqwd0nYpoJzf/cgnxCSVcwb/IJAcDnWw1jY93nkJOXjC8+YdE4h/r7DwE96IPahPdCGAOBHji4bsYUbCfsl/58WW0fDQkPGLGti8Ywfy6iTOefLHrEyqFzevlF39/ihN2biXO68Jn0lg6YzavnH4BB9JTiaYWPyYe58dU1sVS640iLqKSRHtlh6c0H9RIvq/7KZn0hZfhcMxrnvoJQGkBcmb/Buefq7AU0ObSfmuuUwI4yxZg0SNJG/o+FkcRhlcn9+ME/PXBkOk44w4G3X0x5kQ7O4vLWffuVmbkaNiNYDBtMCv842IYff44TFFdX/YX4ngil/WFECFX5PHyQUkVoDE5xsG0GAdaD0OTxx/g+/9czTfxGsawyJYHdA1fpLnNfRyN9wMBIr0adVnRwfud9d3UNHym4DEes5X8xHTykwa1hDpbBExt25cSw8A7PBojJQKirW36dKo4K76ERNTOavB13Y/zV//+GxiKDaPGYw74GZu7B5vPh8kwiKut5rZ//41f/OxOKohnGHsxYTCNtUwfvYbn/VfwTcEsjIRuRon3MpgCGLoJv4J/XnAJt+oPtgmm+MBS0LqFNjgoqatlUzWlmLFtI3N2bSTS6+atk0/nz5f/AFq1tFaQQJo6iA0vqZElpEZ2PeWSqYfjUV32L3AwH4XRfMldUyYGb/glB3/0AM5nXVgKNJSu2jR/V18awJY5iUH7inHoXwE+XAdtFG9wNgdTgEBdLVUf5ZD4vXGMTklg9HWnUFrvpaSqgdhIK6Oc9p4VKoTolIRTIUSf2lRVw3fW7KDaZGnTFzLebOLfk4cz3RnZ6bHVPj/fVrn4+9c5fKu8GPExbcLWiPwczv3qCzILD1Bnd7Bs+oksnTYLn9kC6NRF9bI1savR9K3uGykOSFItI69b79u4zT/a2TIRaAdSSov5cPY8lk0/sXn6p8iGei7+4kOuev8NzIbBtF3bGFxcwIspP2Aaa9FRmLTg5e+rx7/CtoqRFNmSOn2OI2GYTKwcN51K7ERSH9ymNKr2ppLsrUJv7OgZGBpgbP1WtjvGorSO+w8oXWfS7u1Eetzc/uNfsnLitA5//h4ielxf8xRR3XCnFFCQ9gSpW3+EyR+JIgBKw1KfRNr/zqFi3GvULvQRsVNH84IvTVEx28oXUWdRVpX1/9m77/ioqvSP4597p6b3CiH03nsRKQqCigV7W+z9py6WXXVVdC2rrq6uqKtr72XtXUSaFEF6r4EESCO9Trvn98dAIKRDJjMJz/v1iiZ3zr33mZBMvnPuOedyY8QPdFg7ltL1G3FX1nx+5uB4Kjfm4SlzYQrx9uTGBVuJC5ZeUiGai9/D6axZs3j44YerbUtISCArK8tPFQkhjtWz67fyVE4ZmI/4Q30woOZ7DM5YtZU5Q3rSL7x60thf6eS2zXtYXFCKAizrsnGPOCKEKcX1X37IJT9/g1vXMRsGHk1jzPpVXPH958y8428ciIqpPYTWclm/3rVHD11uP3o8ZUNLAilV77qeJaFhzB8ystpdncqCgnnn9On8b8JUXGYzIZUVhJaXkaslsEN1p7vaimW3hmW/htsKp3T7nfci+9W7FNTxUJpOmQojSJWDprFb68RjPR/B9E9FbGE+pUFBVEZYcWCvM5hqhkFkaTFn/TYXgNyo2Dp7WvO1GHarTnRgN3o9C9oDODsrPBEKvci7wH2tzDYc3aEyeBU749YRmjMYW2YCIb84cWeuRlUWEoYO6LhjFO4kRWJYR/qtLWOc2kiFJ5KirQMp3Pg1R68v5dE0CpO6ERYaDwo8RY6qcCqEaF5+D6cAffr04Zdffqn62nQMt+QTQvjXe+n7mb0nB0LCaj5YFUx0Js1bT/D2EtwdQ9Figwg3m8h1uQ+3UwrX0BjvmNKDTl8yn0t+/gagagmkQ3dQSjqQw+MvPsWN1z6Enl2BVurGSAzC0z7Ee4x6ekTr7E09hkvjDe1Tbg+q83zlwd6wXmi1UnjwVqX7sjoy5rWdWPYfDslXmn8lZLyd/55zyTHdurQhJuUm1Cghm/bM0SYzj1NxajYI8gbpeh389zB7PFzz5UeU2YPJiQoiPj+Xne071Lnb51zATJ5quDgdis/2EPVO3X+2bD2mYXX/hoN0lO6mJH45aq2ONa3mPuY8DXOextqkUzGHJePQXFRWrqb/pl9A09CPeANgaBpus4WknhcfLkduSSqEzwREODWbzSQmJvq7DCHEMbpzw0a2/bobT2QkuBwQYa07rIVZKR8cAyUuKHGSazdVzTxvp/bQgT2oIB2nsrKVnpQRxsU/f13nnYLMhkG3fen0K9rN2gG90YqcWFblYd5dinNobNXEJaBxofNYgikc00Sko3VUOzmN7+in1mGK91B8moeweWDd7X3mJrfiwl++I6y8jH9eccNxnetouvIwqGQ7u3/+J8+cGUWl/dB0/Qae18HvbRDleDDhtNi9tR2xj8nlxGM+6qYCB4+7UhvB6+oGZvAaOh406u6ArhgOluJwQr+tALcLNB2UAboZa89pWLpOQmkLvI0NwAPBi+oYegBU2u2sjipF6Tu89YRHkzdxAv3WrSc+N7eqXWZyIh17XoUtrD1oYO0QhrmeiW9CiOMTEOF0+/btJCcnY7PZGDFiBI8//jidO3euta3D4cDhcFR9XVxc3FJlCnHC8yjFx5n5bC6rINfhoshjsKOkjA7Li1itB+GOtUFQAy8rh8ahhlurXZ7WlMF+UtinpVYFl1BVzLDS3wkrL2N/XCIxxQUEHfH7f4hbNzFs8zrW9uiNCrPgGhqLZWkOpv3luOsLyi2pgRrGqV+4jpcx0DFhgA6VQ8AxzE3ExyZCFnhDlg6csWQ+H086k4zE5rktpq4MrC4YtiiJ/Sn5/N3zGIVrktB2WlnSeRi/DjrZ27C2oHrw6wpCamw7xGOxkrg1A1dCKHmRUQCEl5VQEhyK0nV+1SazQo1gLAvozmYG8wcaqtqlfo/SMRsWosL+D9uURNyZqzEqCtBt4ZiTB4ElCI+1CGfo/qpgGv2KGXN+Xd93xYGxdjAdmhjlbXcgLo55p0wkqLwcm6MSt93CFFMqdqNj1Z7hkw9/7nG42bgqi+IyJxEdwunbLabRE/+EELXz+1JSP/zwA+Xl5XTv3p3s7GweffRRtmzZwsaNG4mJianRvrYxqoAsJSWEj2wureA/GTl8kV2Is5aXi5ByD44dRbh7R9Zce/N4KcPbO3aQ2e3ilOWLufrbT4kvyMdptjBn+Bh+GX4SO9t1oCT08JAC85o87yQley2X9gNMO5XOP5hZ77jL2CfMWDMOLeek89Hks3j9iAXvG62WgJma7eK0VWXEOCroMekBLAeXc1LA4sxTeLndzYf3haZ/P5XizDk/c/uXb1MUFoHZ48HkcfPnPz/Azvap3vGoB4+pKw9d2cbdPEYQFWiAgcZKhtFrw7kM3J+IqY6+1dzOX1AWvQrrkv0EL9YxFdVdpzvGIO9mN5l6R7ZuHXuo0IMfOpruJiF2N33MVtrvn0ZlRBrl8VuwJARjL+iOaWc/MsohWEGQVo7ZtJL9wU42mJLo2N7C2WecDSE1/4YJcaJqylJSfg+nRysrK6NLly7cc889zJw5s8bjtfWcpqSkSDgVwgfm5hVz5fo0XHW9TCgFFW70Aw6M9iG+uY/4UWHK5PEQXlrCbR+/yTOXX0dpcGjN0KSUd+a8qe5F4gPJlepVJjLH22NaGw8ELdeIetd7adytm/hp5Mn884rrG3eCo74/XfY5GZDmwGpATLGHqDIP5qStpA56G1NIPkWuSDY6B/C/0As4oCUc79MDYNLvi7jvrZeqbauw2vhq3CS+Hnsq2TGxBGnlnMQCpqpvidVyMdD4jXEsZAJBVFDuTOKBlVH0LDEwUOhoKMNAO2ryWvnSf+PJ2eR9c1PXtwTvTQEKrnWz2H0m5eWRBx8xGDb8C2y28oPfLp2q0KpM3m+l5mFh2jP8r30H8m3ec0e6irkp4yP+L+MDtoR04r8JF/HwadMJT+jeLN8/IVq7Vh1OASZNmkTXrl15+eWXG2wri/AL0fwKKpxctGAz68srUWGWhntEm2G8ZVPoHu+yRoauB3yvaGM8qW6nPXvrbWPKg4QHvONAPbrOu1PP5e0zz2/44HX822iGIrHQg9WtyA814QpyYKeSEkLxaM0/2SeyuIhP7725akJbbYpig3jxofMZa5pPF3ZWu+vpodGov28cjrP0NIY4Y0kpLCUqOw1L8hAwWaruDGWU51G+8B8oR0nDAdUEq6/vzPaC4VXbBw76jrCw/Np2AA1eddzLAvvQox7z/ikdVrSez9begcNkY2bvv/HSOTdhaSVvkoTwpVa9CL/D4WDz5s2MHTu24cZCiGNS5vHw7r48PsjM44DTTbTFxKTYCM5LiOK73Xk8l5blDaXWg5NiGgqAjQ2IzRRiDZOpxQOxLxl13J/9qEZVdMPgp5En199eHeztO+pWnodClNIM8iLdODXLwTZBVOKjBeSVotAayneDxzFt5fxqM+GP9PFJZzPHfDpz1FSGsILJfE8ndqHQqFBBFGhRvNXrBoasWErI1s/Z7XTSp0ink6sCW6dxKKXQdBN6cAxB4+/Hte1HXHsWgcdV6/k0NJShSFqXx/aUw9vN5sPttTII/dXkHSZQrOEK0ukzahMbT+3kXb6sqqH3Z3FFZH9eTrmYWzI+4tScBfywaSBn9Rtz/N9DIU4gfu85veuuu5g2bRodOnQgJyeHRx99lAULFrB+/XpSU1Mb3F96ToVovEKXm2fSMnltX17toxtbIvC1oVDZXC5VbzOFb+u9rB/8m07kx97+hI9OPYNXzru87gMqD1P5hnUM8k4w8zelMG8vxmRW3P3rO5yycilu3XRw/VPvigv/mzCFl86/AnX0+rLKw6XGO5zi+hW7rRwPOvcaz5DjSaDTorVYiioZHxbOhUZnQtC8vaF4g2c6Hkzf30W4s6xGSe54RcVgAyNY4XZamR95Fm6XlaCgIoYM+wZNA70IYp+xYMoDTR3+mXXrOmVBwShUsO4AAM6YSURBVPzfXbNqTkpTimhXEZuWno1TM3PdSe/w9ilnNPu3VIjWplX1nO7du5dLLrmEAwcOEBcXx8iRI1m2bFmjgqkQon5lHg//y8znq9xC9pQ72Od0e+8t79iKtWIlmnLitrTHETwaZQppmdAowbSGXziN0/iu9uWyDr6LCFlgoiQohA+mnMVHk6bVPIhSaHhQmhk0Ez9wToPn1YFQk06xp/7brh4XpdDzHJh2l6JCzDx67W18PHkak35fRFRJMTlRMfw4ahwZicl1VrlN78WA3O3s29sXpTSmuVayul1Xfj95KNY/DrCz2MVmypmIhWKlKNNgMS5saPxdr95rqkyK0lM8mHM1gpbrYFJUDHQxuvv/2JY/jLDg7Kof0YiPzZjyqwdT8IbpkIpy/vbGbG6474nq5Woa+ZYI3JiwKjelbh9+b4Voo/weTj/66CN/lyBEm6OU4r97c3l4x/6DN5300jwlROQ+i8W5A1U1ms8gtPAjimOuxxk8wh/lnvBytET+re7iNv6JQlX1oHoORtU5+85i40WDWN+lBy5LHeNBNQ2FmWiTxqVJsVzfIZ6VxWVkOlz8JyOXjEpntd5yE2DSNN7o14nHd2ayqqTcd0+w0AmAXurCnFbM9k6d2J7SsdFvVKLJJandNoqcseTv7YyhaaQU5PJ7Vx3niDj03EoWZZZTsDeL+wuKsUd14jxLCOFolMX1wrNvLdrBjFjZ0yDsZzNKV2iGdxxr6C+KkPlguXk529z9UApMxWBfq9UIpoeYDYPuGbvpsXsnWzt2qf6gpuHSTbgwERkef2zfMyFOYH4Pp0KI5qOU4o/icp5Oy2RhQenRDxKR+wxmZxoA2hGxVSkn4QdepDA+Ere9R0uWXN0JfMl/pTacO9VsTuFn+rIOUGyiL79op5Gb2vBNSoI1+HZID3qHHR43OjUuEoALEqP5T0YOb+3LI8/lxqTBtLhIbktNoHdoEF8PDqXPb+sp8kUPqqZhdA3H0SEEU1YFOA2shQ6cEY27F31vUwbXWRdTYhrHht4TWJDUkR5ZewipLMfiduEymTESgjASghi/6Qsil/yKCYUWHEdpZARqYC+0jLUAeEIUQRu9b8q8wfRgiUoDtyL6P2YS7t9NYUEiiVnZdQbTQxTQPSOtejhVijBPGVbDyXtJZ3FR155N+34JISScCtFaGUqhHxHk9lQ4uGbDbjaUVtTa3uLYhMW5s9bHNEChEVz8DcX+DKeHFug/QQPqAS2ej7mcj5uwjxmYnhDFnZ0SSQ2q/a5FYWYTd3dK4q6OiZQbBnZdx3TE99isa6w7qS8n/76ZPZW1Tx46blYTng6hAOybMJAil5trN+xmUWFpjaY60DnYxp2piZyTMABNOwuA04ENJeVM+iO01jHT67v25KxFcwFQ5blQnos1aTDagItxrP0IZQalqVpDp6Y0cChi15eypl0P4k05DT4lDXCaa/ZkX7v3f+jAil5/4vlYmQshRFNJOBWiFSnzeHhj7wHe2neAfQ4XQbrOqMhgtpVWsNfpqTfYaUYl5aGnYav4A5MnD5elIy57bwAsjq2YnTuxVq4F5QStcb1aPnGCBtPG0oHzEqL4W+dEPGhEWcwENXKpIk3TCDHVfjtPm67z6/CePLozkw8z86g0GjdXNliH8iZ0uB6KchEWM58O6lq13eXxoGsapqMnRB2lb1gwb/btxLUb03AfVeKCQSP4y9svV1uuyrNnLcEn3Yke1ZXyBY+i1fe0NLBu16mIDsfdezAEbYaKusO6R9P5o1e/wxuUYkDJFv6c/i4a8M9R46q9CRBCNI6EUyEClEcp5uYV8012AWmVTsJNOiuKyyk54tJrhWHwa/4RPU/1/CF0Bg3CGTSIsqjLvAFUt1VbbkjzFKO785GXhQBwxJuMBIuJV/p0oJ3NRpTVTKjZd/8+ISYTT3Rvz32dk9h8sAf+UPB9Ni2TH/NKqnosNeCihChuSY1n7PKtjT7HU93b17rdUkdors2UuAhWjerDv3Zn8UV2PqUehV3XiLUVkNY+ma7pe6vuIeU5sBVPYQZ6eHuUd/Goeo+tgLLSGArLptDvmkwOzJ5dezsNVgzuT16E93askc4ibsn4kBv2fYpZedga3JEeFj++yROiFZO/QkIEoC1lFZyzajuFzTnTt9p6l0euX+r9M670MDw2uQTpV8ogvnwuEzqfT3u7nYuSoulQx6V6XwozmxgeGVpt25v9u9Ta1tXIHlaAixIjuaRd7HHVdki8zcITPVJ4osfhBUodjhx+7ZaHll69rXP3AoIGXs7mTt3onba17rGkCvZ0aofbZaOwsJDYm27ElZlJ0WefgckEHg/KZELzeAhOdHBFp++5dNEcXLqZEE9FVSA2gLIh1zbL82zLKl0e9haUoxtuUmJCsdQ12a8JNpdW8M7+PDaVVhBs0jk9LoLpCVF1XjEQgUnCqRABZld5Jacu34rblyeprYdVLj/6lzKwlq/gneGTGBjfyd/VNJqlCbesfb5XR98VAths8Qz8v6dJW3onkeWOqrCIy9sLnJGUSp9d22rdV2kKZYXNnv7E5Wexz2YCXSf5sUeJuuQSij7/DFdmFqboaB7vOQiPeSeztz6OCQObx3t8z8Ge2Xlx4zhlws0+fa6tWUmli3/+sImPVqTjMLxvmlO0XK4I/YPpU08jdtCZjX49chuKCsMgxKTzwp4cnkjLxKSBR3nfds/LL+HZtGw+G9SVzsHH90bPOHg16739eaRVOIi2mDkvMYrzEqIJlruANSsJp0L4UaHLjUspYixmNOCl9Bz+vivT32UJX6hvopdSoNwMNm1hQNz1LVtXG1C8K43Fi5exuKSSFV170mPGlZz9wXskFZWhAZ78nShlMHD37qq1ZI+cGKU0721MDTOMXLaGXcNPJdduZt++fbRv356gvn0I6tun6nyPuz1csXYXZwUlc3PGR0zOX4JFedgW3JH5XS/hpnPuAl166mpTUubkvOcXsqO4EmeIBU/XcFSkle0kMCuvG4Xfv8tNP9zNuqRbqCCCiI6pDB4/tsZY5M0lZXy97Eu2FRxgTVhPSk3BGBp017YR5lhLpkokyzoEZUkgx+ni4rU7WTKiF+YmvJk6kstQ3LRpN99lZ2FzbMdQbnZaO7KsqJSXd6bz+ZCeJAYHN8e3SBAAd4g6XnKHKNEafZtTyAvp2awt8fa4RJhNlLo91dYkFW2AUlWL6KNrBxfKN1Ba9eCiufMZ6P6eDybcT5Q9quXrPE6v7s7mwbT631R1sJpZPqZvs57XlZ3Nnr/ei2vp0qptbk3n51En8/Wo0Uxd9gOddmewp0tvzjQGYaz5EFPp4Vn4SlNVdz3QPN7QUhYczLfTplEGTBw/nqkTxtd5/vUl5XybU0iuw0n/UDsXtYtv9OS0E5Erv4JHnl/KuyYnjn5RqAjr4RU6Drplzjtcvf0LbLoLV5mJ4j1BFMZE4j6nB6UhBhmWcObGjMTkKGZ5xABKzcEYmgmUm9CCT7CXzUVTzqrjKVsP8mNuwjDH8Eba84xzRVCwtpKKjVvQrFbCTj2VqEsvwZqSUlvJABQ5irhp9W/8nrmIoJI5VcdXaDiDBlEe+ScGVWTzTXIFDL1arkLVoSl5TcKpEC3s/m17eX3fAX+XIXxJKe/AQw1vKD3IrmksH9Wbubn7+Sh9M+WOA6Rairmq0yBGJY9A11pvsBm6eAN7nbUPRtGBfeMHoDXjH21PYSG7zj6HouxsgoAjj+wGNqd2YuZdj3BJzm469e9P0BNPMyZtP57C3Wiq9rHcCsiNi2PeKROxuXU8g/vzt+nnNFvNJzJlKDY+uYyLjBLyhseCSSPIcHBuzhzOrvgGPbgAj02hVWrY082kVpQQb5RQWWAmKNoNBzOs0jRMmuLH6NHc1OtBKsxB3rVl8/6DrXwpGooIj4cJ5RWEGwb7TSbW2IOZWjiMA+Ud6LV5F+1yM2m3dz+6UmAyoZlMpPznZUJGj65Ws8Pj4IVVL/Dupg+J1hI5YKRX/0HDuwRZmDOEKcWjsYW46BeiGJfaieA+Z0FsV8RhEk6F8LMd5ZUsLijFrRTbS8r59kAxB9zSL9qqNcP6q092b8eMdnHNVFDguW9rOm/sz6+2bVBYED8Mbf61c3NfeIF9L76ElUPr9FbPDQrY2KEzd858kC9WzuOxsEQee/lpqCOYHrJs5Aj2pHbEpDSsQSlcdsVk2revfYUB0Xj71+dQ+v4WThllwRVmJ8mZy2drb6O4Qxl5CVbw4L1tmQJQJO53kpyuiHJVXwdXAXnRFopDLGRYE7mj3d/JdTqIyp6FphT/V1DElUXFmPG+PzQB+brOi7bevFnwV8y4mWhayzB2MmnvEqz5ThxFVipKwon/6Sv2kIfFMCja9gN37f6MfmUlXFJcxm2JNSfydXc4ubS4hLEVFYQaCpuCT+MnMavLLdy69yNuCXeinfMSWOy+/va2ChJOhfCDvAoHN63bxcJyh79LEQGog93KwuE9sctl32axpk9frB7P0R1ZNfw6ZCQRpSUUXXUjfPIeE1b9Xus+h3pN508YjzrYgz3K1Y2NUVn8+a6ZzdrreyJa8N56ctPzuHVUJCjFD6tuICx6L3tSg2r0Rqaml9N1d3mNNxyVVp1V/cKpCDGjGQqlAZrGJ9nB/O5Q3FZQyFVFJTX+fQ28/74uzFiUB9PBxW4PpR9N87apAByaxnaLhQfiYhjicPD3A/n8PTaar0JD8GgaIYbBmaVlnF1SRl+nsyoAHynPFMaA0V8yI+M9ZtmLyBj+AC6Xi/j4eKKiWt+wnebSlLwmE6KEaIBHKTLKK/j3tj18UCjBUzRdnxA77/TvLMG0GVkaEUwBJqxcxsYu3Tll1t18O+Fcvjw5nDMX/4rFc/hKhqFp7OzShbUDB6AOTbzxGGw07SWlKJaMjAw6dOjgmydygqhweVhtzQUVwZDijQwo28qiPjE1gmloqZuuu8uBmj3hNqdB3y0lrBoQgcd8+HepDBeRbo0/1RJMwTusxAPYcFe7+HHk5zoQAoQoxQink5/3ZVadN0fXGVbpYHR5BReXlGI/ok+vtmlvMZ4Svll5A9OGvMLEZfexeMtbGAcHN3fp0oVp06YRGRlZ7/frRCfhVJywDMNga1klm0vL+SqrgLTySnI9BoUe1cAy3UJUpwMmTcMMVCiFBnQKsjE8IoQLEqMYHRkqPW/NrLHfTQ3osXM7CsXkDdswZaxiwcTTcWsVhBcXUxEcTF5sLO5Da2wevKwcVVREQZROnCuMzZs3Szg9TmWJQTj25YLWjfEFKygJtuC21fxXbLe/okaPKUd8HVbmodOecnZ0ObwOb7tyN33KXdT31u9Y107QgKdy8whTqta66jKwfAcfr76d/PAYbs57mzX0YTV92LVrF6+99ho33HADYWFhx1hV2yfhVJwQPtmfy21b9/m7DNFGhZlNfNC/M/3Dgil0uwk1mWTWdgCxHHy7GWSNwhGdysnzf+DXyVPY3SWu5mBVFHE5OSRmH6AoJJh8vQxXobxdPS4bvmHw6vso2j+Ks7IruDnjI4yg2sf+Rhe66g2AGtAuq5JdnUIwdA3NUFx4oJhltiA8UG9APVZhB3tKm/L2UgNGl25AlXo/P4XFTGQxK1U/fiydyOLFi5kyZYoPqm0bJJyKNi9l3hrqvju2OGE0YUJTotXMv3p2IN/lZkd5Jfsrnex3uMh0uLyXF3WdYJNOgs3C2Kgwzk+IItTs7ZuJsx7/XW6Ej1QUENLjLCqX/ptTf/yeHV27srlXLyqD7KAUsbm5dN+yla2duoLyYDYMdlgyiS6J93flrVP6CtQbp3qvJABGUAlXbfnY+1ahHMwuA7elepzUVC3vF45i9oCt0qAi2ITZrRhc4WSr2Rpwgebw/fcOG8Z6erGD91eWYUyejK7Lm9jaBNq/pRDNqrME0xPL0fM76xpgdoRkq5lr28eBpuFRih4hdiZGhx/zYt2iZWjh4VBc3LjGwUGo8gr0iHaY4/tg63M+jo3/o9OuXXTbsQOFd4misqBg7v6/e9mT1I5LFv9IsOHEqTuxlpY2eApxlKwNcDCYHtIptADUwdXVFLTfV8nu1KBqv5tlwSbsjoZv23zwxlK4zRpKgwtKSnEBFprWw9mSDtUVQgWXuj7AdeBmbPG13xb4RCfhVLRZ60vKKPd3EaLFTIkOY2RkCHsqXTgMgw2lFawvraw2flgHos0mEmwWxkSFMqNdLF2CZZmX1qj7ksVs7duvwSBibt+O6Cv+RPYTT6CHe5eEKu5zGreePZQzf/uFHrt34rRYWTxgKD+OGkdxaBi64WF+v+GctmkZQLPc8/2E88bpNTYd/X6vU0Y5JaEm8mJtVVc2dre3E1tQd5eCOvihGQdn3Osa2bFWEnKdVZf0mzI21B80IJRy1EuDIb4PnPYYdJng77ICioRT0WZduHqnv0sQzcyua3SxW+kYZCPEbCLMbGJsVBgTYsKw1XJ5rMTtYVNpBRrQNyxY7n/dhpjMZnqsW8u2/gPqDCNhkyfT7vnncFVUsum1N2jvcYIy+CnJyq72HXjukmtqPbahm9gdm4TDbMPmdtG7d2+fPpc2pzQXnEUNNtMVDNhUQk6sg31JdiqCTHgsJhxmsLpr/zc9tK3r7nI29A4HpdidGkzCAWfV3dgCOZgeSQfI2QjvngOdJ8AFb0LQibvU1JEknIo2q8DT8KUhEZhsQGqQlb92TmJqXOQxz3QPM5sYERnacEPRKpmsVnpt2YzH7WbvY49RPn8BelISUcOHE3PjDZjs3l5xc5CdjMRkErLWYmk/nAM2HV2BUc+PldI0KixW7B43Q4YMaaFn1EYUN37yqQYkHHASn+usurrf0PQzDYg/4MTsMjB5FCn7KtFa2Zy1Gj96u+bBiyPglhUQFOGPkgKKhFMhxPE5NNGogQlHoUC/iGBCTSZCTCYGRgRj0zTcSmHRdU6KCqVzkM07iUCWXRJNYDKbSX3oIXio9sd1TaPH9i14HE6MnjlEO5IxtAYu1SuF3eXAarXKDV6aKji6ybu4lQmL5l17tlQPIthwYKLuDgYNGLa6kKBKo9X0lDaoNBs+uBCu+cnflfidhFPRZnWxW9hZKdOhfOLIIOrwgFtBsBnwbjcBQ8KDuCgphrFRYXQIsvmzWiGwuBygDMqX/IsJIXfyQo+OdbbVDIMO+dnY3a7Di/KLxovsgPeideOvXj3e6Vq+ixsHus7UAwt4cNcrDe4TXNkGr45lLIO9q6H9IH9X4lcSTkWb9U7/zoxZvtXn5xkXaue5fh1JsttRStXo9fu9sJTrN6SR7fJU2947yM79XRLYUeFdnujM+AiiLGa+yC5kVVEZBjA+Oowz4yIxULy2N5fXMnLZ73TXWYtN07goMYr2diuvpOeQ56uhDVXX3xTYD7+MRJt17uvSjsuTY3xzXiGOQdq61RQG2YgprUAvzyPi679xaur9/Nyr5lhSTRnoymD47s2Ahsslb3CPyfRXUZ9f2+hezcUxQ0gPaQfA1/ETeXDXf3xXW6B7bTz0PR9OnQWRKf6uxi80pY5ee6V1acq9WsWJ569b03lrf36T9rECoRoE6zA8PIgHuqUQF2THfBw9KEoplhaWsbOikjCTiYkx4YSbj+2eJW5DUWEYuAwDDxBjMdd5KTzP6WJJYRlp5ZVsKq1kY2k52yucRxfn/f9xXEofEhrE3Z2TOCkqTJZgEgHnxZk3E7Z5M8PSsqq2eTSNJ6+9lfn9h+MyH36DFVVWzITNK4kvOzyhZ9asWS1Zbtvx3d2oFa82KqCeNugV1ob3rPr6se3PcdX+L9Ebeb++Q63a3KtPh9Fw6sNQmgkmG3QcA7bWeWeppuQ1CacBavvypXz376fxuLxBIjw+gRlPPI81VCZ3NNXcA4Vcu343FbU8lgq8PbQbPcNCWrosv1FK8UNuIbPTc9mbk0vC3nS67Evny/GnHdPxbk2J5/4uSTJOVASsf910FUZ+Lt0z8+iaU1jtsf3xCfwy+mRKQ0JIzs0mtqSQfamHb1Vqs9m49957W7jiNsRViXqiGxjeNWnrepV4rNN1vJRyCR7N+6bdpNw8vOPFgwG1aeNKA30pqeNitsPIm2HC/WBqXRe/JZy2cv+58U+UFdTe2zfyvEsYc+FlLVyRaKvKV61iz6WXsaTfYO6/+e4m7/9x/06Mi5GZpSKwvfzYQ5SvWwlAXHEZffYeIMhVfXiMx2RiXf/+bO/R/eAWb8QZNmwYZ5xxRssW3BaV5sLz/cFV++rTGbYERg9/H5SHG/d+Sp+ynRSYw/kkcTJ3736b8QXLfXJr0lZrwKVw7sv+rqJJJJwGKMeuNDJuvhlXejoohR4SQvy9fyXqvPOq2nz88F/Zu2lDvce59qU3iYiJ83W54gSglGLntLPYdyCfix97oUmTP8zA3gkDfVabEM0lv7iIN667rFpvmsmAiOAYgiorqbAHsa99O9y1LLY/c+bMgP/b0moc2A6vTgBnSa0Pbw3qQNeKvdVm6StgeVg/Epy5dHRk1brfiUuDKU9BeCK0Hwrhyf4uqF5NyWvyRqSF5Mx+kV2nn45r924wDFAKo7SUrPv/xo7TplS1ayiYAnx430wfVipOJJqm0f6ZZ4hxOzl59e9oRuMnUNU9LUuIwBIdHoFp4PBqoxc9OmSbPWzp2ZM9HVOPCKbV+2skmDaj2G5wbwacMgtCEkCrPu6+R0U6+lEz/DVgRMn6Ywqme43oGnc0blsU/Hg3fHIFPNsLHkuGzPX+LqpZSDhtAY6MDPJmz67zcdeePWT83//hrKxs1PHKCguaqzQhsPfoTvcvv+Si/CxSsvfXvD99HVrXaCdxorvjrw+gn3RKtehjKSkgftMqYnKyvJ0GwJGjFa+44ooWrfGEoGkw9s9w9za4r+Zi/c05VnSV0Y1SgjBUmx2BWp2rDF45CWZFwOxRR/xMtz7y96UF7L3ppgbblP4yl4jyshaoRoiarO3bMf3xh2mfV8J5a7bjasTkpunxMtZUtB6apjHz//5M8U238fmi+VTsWkhFxgFyjJhaV6o49dRT6dKlS8sXeiKxBEFUJyhI88nhzzL/zlqjE7EU007Lw1Aa2lE94212HueBTfDIkbdCNcFf9kBQ65jpL+G0BTjTGvGLpxTBeiOXFmqzv03C34bHhJFxymAS561psO3jPTo02EaIQBNuNnHlhFNgwikAZGdn89FHH1FU5F06qkuXLlx88cWYTMe21Jtooovfh5dH++zwA3Tv31+lAO1wOPU4NSryrIBCNyuC41woA7Q2ez3ZA0+2P/xl4hS45m2w2P1XUj0knLaERo55OfDp/+GymzFVutDrubgx/JwLmqkwIWr3Rp9Urt64p+7H+6YSeozrtAoRSBISErj99tv9XcaJK6EP2KOhsmnrUTeV1m0y2nmvQvoy8LgwJQ1A351PxvU3YJSWEBTrIKprGfYoJ9ZQow2H1IOyfoTHEryfX7UAUgf6tZyjyWz9FrB15CiMwsI6H9dtHiK6VPD7KUNw6hbmRgxnf7aNweuWEFZeWq2t2Wrj9nc/83HFQsCKglJu3LyHfY7Dd8hpZ7Pwbv9O9A4N9mNlQog2JXcbvDjMN8cOS4ZJj0C/82u96ugpLaP4m68p+3259wrmkCFEDO+I6Zc74cDhOwy26bVTAcI6wZ1rfHoKWUoqwBTNmcP+/7ut1sfCU8tJHlGI0kBpGgoNMwZp9mRmdP8747//koiSQm/buHium/1GC1YuBLgNgxK3QYTFhC5DSoQQvvDWNNi9sOF28b0hZ9Phr3UzRHaAQX+C7lOgIs97y8/I1OOvyVEC2RvBVQnZG8n5/Q2CSvYRanhv6XLo1bDN3J2q2+lw2Yc+O7yE0wC065xzcGypfp/3oFgHqafkATXf0LkxkW5P5Kx+/6ZTRSVfn3eG3IFHCCFE2/XZDbD+o9ofSxwIpz0KncZCwR7vmqnWEGg/rMXulKSU4t39eTy/OwtHSQ4jitdh1nVSOw3jjrJlBC99wRuO0SA4Hmwh3sGuHgcYbgiKhrg+sPkLIEBn0t+wCJL6++TQEk4D1L777qP4iy+rluppPzafkGQHulb3P8G1vR+mzGTioSnX0jMkqIUqFUIIIfxAKVj0L1jzLuh2mPQQdBgJQZH+rqyKoRTbyitxGIrOQTbCjhx/r1TDk5YNAxb/C5a9DGW53m2a5WAXrKu+PX1v8JVw1vM+ObSE0wDncThQmdvQ3xqLXs9sKTc6nydM4uuEsdw68SpGRoa2YJVCCCGE8BnDgJL9gAZhSaDrsHclLP8v7PgFynNbvqbkwXD9PJ8cuil5TWbr+4HJZgOLQUPT+DUUNsOJR9NJsVtbpjghhPCBJfkl3Lp5DwdcHiwaTI+PpFNIEL/kFWEomBgTzs0pcZibcAtdIVo1XYeI9tW3tR/i/ThSYSb8dxyUZfu+JntgrF8t4dRfkvpRqVmxKlc9vacaG0K6oqL70E7CqRCiFTIMg+HLNrHXcfiGt04F72YVAIfvdresqIyn0jJ5o28nJscGxh/IhiilWFlczurickwajIsOo0twYK4bKVqxyCTvHbVKc2D9p1B88M5asT28QyAK99BsY1j7nNM8xzlOEk79RdexawZGHaMqDMDQNFZH9OSxoSNbtjYhhGgmp/2xvVowrY9bwZ/WpzF/WA96hgb2GPud5ZVct2E3m8oq0fFeB1PAKdGhPNM9gcRWcice0YqExsOoW6pvGzKj+teGAY+ngLv6MpSNEpIA/QJjHXW5fuJPM7fhRsdAq/aex40J0Hik8w3cf9LZ9AiRd+JCiNanzOVmfVlFk/e7cPV2H1TTfHIcLs5atYOtZZWAtzPhUDfD3Lwihi74mWlfnsOn2z7FUAE6K1u0TboO96VDp5Obtl9YMlz9g3cFhAAgE6L8rTQf9WwvinQrke5iPGgsixhAZkgq51//jr+rE0KIY/bojn3MzjiGSR1KMWb3Vm4cOYFTesaj64G1jN7jO/fzYnoOnnrapG57kUq7TnlQBCbDzu3xSdw08aYWq1EIXJWw7QdwO6DzBAhLgMIM+N/1sHcZoEP3yTD4Cuh+GjT2FurHSGbrt1aVpd773LbQmm1CCOFLZ/6xhT9KKpu208E/SRN/eJBVHU1MiLqL2RePwRRAAXXg4g1kOesYqqAMgos+J7j4e7QjlgUytCB061QeTujKhJFnEmwJxma2tVDFQvhfU/KaXNYPJPZQCaZCiDaj0Re03Yb349AakZrG2ogZjF2dwLyCp3jjt12+LLPJCt1195mG5r1GcPFX1YIpgKYqwPE5D6U/xckfnczQ94bS/+1+PL7scV+XK0SrI+FUCCGET/QLDa73cT2zHOvSHOxzM7HPzcS6OAdTRhkoRbu+efzS4Wwi85N4dfmvGEbgXORrb7fWeqtKs2MXQeWLan2s2jbdu8FQ8OHWDznz8zN9UqcQrZWEUyGEED4xJS6yzsfMu4roXbGWCe0WclrfeYzrtpggRwmWTYWYNxawLawPIa4STJaTKdJWkVncxOEBPnRFckyt2+2l8xpYvbq6QzcS2lOyh1fXvnr8hQnRRkg4FUII4RPjo8OoMapSKSIOZNPtwEZ2bO/Ags2j+GnDBFbv6cc5XX+gf/x6zPsqcOaa6BiZToY5HkNZqsaiBoIrkmPpExrE0dNHTO7MWntNG2P2mtnHW5YQbYaEUyGEED6haRrfDu1efVuJA8daN7sKU6ttL3aG8/GW6XQKSyc1PB1TRhllwaHgMFBGYkDdOSrYpPP5oK5cnBSN9Yj7qBtaSJN6To+kUOwv3d88BQrRygXOb7sQQog2p19YMJ8N7EJCVjrhJcWYd5ejPKDVkeK+2TWFk1OXoJe42GPujLLouIu6HXPo85Vws4lnenZg3Zg+vNgtiM6FL2AvW3vMPacAi/Yuarb6hGjNJJwKIYTwmc+z8vnbh2+TVFhMsT0EPauizmAKoJRGeWUQSgenx44nWicpJJr4sMBcdinSYua89j1YcNZ/eOzkRzC04GMO0lnlWc1amxCtlYRTIYQQPvHr2i3cs3QxI7fuY02PPmhuVW8wBdA1g0JHJCTaoNyNKc/DtWM7BdxC/EezmCyc1fUs/jlm1jH3niYEJzRrTUK0VhJOhRBCNLu//+sx7t21GWdQPFFlxaBpKLPeYK+iUhqabuCKCcZAcXpSMFeN6dQiNTeH0zqfRrg1/Jjmb53W8bTmL0iIViggwulLL71Ep06dsNvtDBkyhEWLZNyNEEK0Rpv37OTv387gh/7dyYjoQEJBHibPweX4LTpGnL3egGqgUxIWgWlLIQM6arx8eWDdHaohuqbz0ikvoTWx5IGxA4myR/mmKCFaGb+H048//pg77riD+++/n9WrVzN27FimTp1Kenq6v0sTQgjRSNmVDnr+uoglO6+jIsjOLq0rhmbCYbXSc8/OqnburuGgU0dAVfRP2MDybQMISbbxw/RTAv5yfm0GxA/gybFPHt6gjvg40sGv4+3xvDn1zRaqTojApynl38XjRowYweDBg3n55ZertvXq1YtzzjmHJ554osH9m3KvViGEEM3vqQ3bmJOzmEKi2EcKCg2F9zakKMUbf7+Hf/zpBraldgFNQytwYFlfgF7hQeG9e5LSIDkum8ycGHr1ieOHK0b7+2kdt52FO3l6xdMs3r+41sft2Ll1yK3M6DujhSsTouU1Ja/5NZw6nU6Cg4P59NNPOffcc6u233777axZs4YFCxbU2MfhcOBwOKq+Li4uJiUlRcKpEEK0MI/HQ7s5K2hvzWIvqWgYKO3opelhwh9Luf6LD7j+3scpCQmtCq16gROt1IUyaegeF56dpSy8YwLdokP88Gx8p8RZQmFlIZH2SMKsYf4uRwi/aEo4NbdQTbU6cOAAHo+HhITqMxQTEhLIyqp9SY0nnniChx9+uCXKE0IIUQuXy8XID/7N/sQ+hFiD2Uuqd8JTjXsmec0bOoq4gjzeeuQuPph8Nt+PGU+F3Y4WbqJ9ZQ6Gs5TFl1+A1eLXP0k+E2YNk1AqRBMExCuBdtTIcaVUjW2H3HvvvcycObPq60M9p0IIIXyrtMLBuC/fIC+4FBWpUJYENEqg6uJ83T6ZdCbzhozi9CXzuPOD1ymzB7G0bz+s7WP45LJLWqR+IUTr4NdwGhsbi8lkqtFLmpOTU6M39RCbzYbNFpiLMQshRFv0/f58bt+YThnFGImjQBlwcExpKY0fTpUbHcPbZ5zn3d9ZSdbUMb4rWgjRavl1tr7VamXIkCHMmTOn2vY5c+YwenTrHwwvhBCtVanbw32/ryV57iqu3ppOiV6JYTp4aVrTqVorqSnTFpQioqiI7rouwVQIUSe/X9afOXMmV1xxBUOHDmXUqFG8+uqrpKenc+ONN/q7NCGEOCHtqXAwdfE68nXz4RCq22tta8WBW1kwapkIdcgE9TNBlLPMGMP6s0/BpPt9FUMhRADzezi96KKLyMvL45FHHiEzM5O+ffvy/fffk5qa6u/ShBCiTXPs2oU7J5eCiAhKUlJJtFmINJu4ZPmm6sH0iMv4R3NqtYdWAF15iCKffKIZm3Aeb/Tp4qNnIoRoS/y+zunxknVOhRCicSoqKnj7+edJ+e034van48GF0wxxxbA9pSOvnH8F1mHDWFZUVn1HZXgv5ddBUwYK0FEY6GgolKYToQoI8+Tz20mnYw8K8u2TE0IEtFazlJQQQoiW8c7dtxO5KYOxOzdXbVMamBQUhkCpeTdPPv8YM2Y9C7Hx1XtJNd07trSOVVTUwcdNuAinFDNudMPDs917cWrKBF8/NSFEGyPhVAgh2rA1H71Cxf9eZ8jWEnTX4e0Kha68YTOsHDrmwm+9FcM3rOHL8ZNrHqi+m8UrBcqJC41CouhjqmDueJnwJIQ4NhJOhRCijVFKMfHllymJTSC51ETEkMs5yfwHY9atxGQY3kbawTWl0TApiCqFHckwdPNKvpxwWm0HPbjfUSFVGZidadiKF4F9CjvPmuLbJyeEaPMknAohRBvx8eIf2PvR+5QURTMsLpzFIcms6DQYraNizsiTScnaxz///TjxBfloSkNxeMqBAvrtVlRYNhJUUUHF0WNED95yFOWBQzPzlYHJlUVkcSkbLnyuxZ6nEKJtk3AqhBCt2ILFS3hsRyV5wcE4NSuTbZ25YuXnmJTiqu8+Y2nfgfz9mtuoMAWxPy6Re279K68/+hdMB3tND9EAqxv2xSq67NvDhq49a/aWahooHTwGCSad/w7oyvCYwS3/pIUQbZosNieEEK1MudvNS1+9yOmv/cZl5XbWpUSRGW3jQFQ0758xndOfe4sd7ToAMHzTOh5+9V+gFB6TiT3JKazoPaDGMQ0N0hI1TB47Wzt2JcVu4ZYoG0nOCoKclUSWlzCysogfeySQdepg1k4YyPAYWSFFCNH8pOdUCCFaAY/HwwMf/MYqJ2xuH4YjfAxH3jnUOGIoqDKZuPkvj/LjHVdidbsZtnk9vXbvZHOnrpg8bpb2G8zIjWu8bVFwsAf11/4ayWXn4zKbub9zMuckRPFAyz1FIYQApOdUCCECVnl5OV/dciW/jh3Lz5OvZGeBmTWdI3BY63/pVpqGMpl44fwrAHDrJsatWlb1uNNiOdhOoQ4G01en6lgZwKKTzuCp7u05JyHKR89KCCHqJz2nQggRYL78ahCa3Y3HZSE+sRT76gjm9b6CRX2CG30MzVAsGDqKOz96E4CQygoADF2nW8ZulK5QOqxvD1+MtpA/ZDp/GngL5yREE2au+1akQgjhaxJOhRAiAJTl7eLHpecSEVxKWNjBjRZwjIH90cPYUBmMqmep0aNpClwm70u8rgwy4pNAGVhcLib/voiSxGD+PaQv+8cO5M2JV9IxNLr5n5QQQhwDCadCCOFneenLWLj1eiKDy6jtftKVBZ0oidLRFI0OqIYOUcVF3s81nZ+Gj0VTcNPa/5I+YSjJd/2D95Pl0r0QIvBIOBVCCD9buuBawtt5L7vXmj01D2GVRuN7TpVCV3DrwUv6/77wSkqxMiRzKffc+Qomk1y2F0IELgmnQgjhRwd2/IpKrq2/9LCQhE30WT+cOQNDGgyomqFQukbn9DTi8/J59qyLiBrVj32njQJGNV/hAWpDSTmXr91Blst7J6w/J0Xxl56pfq5KCNEUEk6FEMKP9ix6Cluqo9424R1WEL7+XMZusrGgb0jNBkpVLZQfW+zBpEoYlruZM+b/xDT9xFiUpcTtYdBv6yk9Kuf/K7OAf2UWALB3bF/MZvmzJ0Sgk99SIYTwJ00/uJxT3b2nutlJyrh/MX7BTKwuWNgnqNpyUtGlLk7evYce1u3cdu3dmMwWYILvaw8QSimGLd5QI5gerf2iDXw5oBMjoyNapjAhxDHRlFIN/DoHtuLiYiIiIigqKiI8XO5WIoRoXQ7sXsjCbbcRYS5psK3Ks+P5z1iy4/qyrHcqGYlWBrQrZ9YpkzDbQ1ug2sC0vLCUs1bvaHT7/eP6o58gPcpCBIqm5DXpORVCCD+K7XgyUd+W4Oldx2QoqOpUtXxow1y+Hk9qArNuu4r4yFou8Z+AXs3IaVL7P2/J4PneMg5ViEAlbx2FEMLPhlzwFZX7g6su7B95OUsBHjQWbjyVlHtfYfzSxVz15MMSTI+wp6L+MbtH+zK7wEeVCCGag/ScCiGEn4Un9GXiOb/w+wenkpdsJSioHBMuPMpMeWEsF5z/G5NP8XeVgatviJ31ZY0PqB4f1iJ8K6eykjG/b6XEOPwWblpMOP/t39mPVYnmJmNOhRBCtGrZDicDlmxqdPtEq5k1Y/r6sCLhC//YuY/n0nNrfUwDMicMbNF6RNM0Ja/JZX0hhBCtWoLNiq0J7V+W8aatTmVlZZ3BFLzDXzouWNtyBQmfknAqhBCi1dvTyF6zbkE2RkWF+bYY0ezGrNzZYJtKQ+HxyKCNtkDCqRBCiDYha8JA1vdPqfPx8VGhLBrZqwUrEs1ln9PVqHazdu73cSWiJciEKCGEEG1GXEwMWRNiAMiudDA3r4SUICtjo2VOwokgq7JxIVYENgmnQohWa9W/r6doznpMlYoQUzGOYRoJZ99Pl6GX+rs0EQAS7DYubdeU0agiUFmAxsTOmamJvi5FtAC5rC+EaHV2LFvO12ecScWHG4jaU46t0GBnaB/St/Sm9NbHWPHBFf4uUQjRjD7o37FR7XpFBPu2ENEiJJwKIVqVzV9+S9bMO+i6cydRBQXYnE7CSkrou2ED3XbsZHnvkVhnryRzx1x/lyqEaCZjYyKJNNUfWd7t3bFlihE+J+FUCNGq7Hv+WaIKCtE4fLvPQ5/bKyvptWULGZGd2PW/u/xXpBCi2W05uT99gu01tmvAR/06MikhssVrEr4hY06FEK3Gjvc+JiE7G72Oe4foShGTn8+Wnj1IXrGjhasTQvja3BE9Ae+6p+kOg+5yGb9Nkp5TIUSrsffDDzAbRr1tFBBcVo7WtNutCyFaEbvdLsG0DZNwKoRoFdbe+n+Y8uu+Q8yRbHo5njiLjysSQgjhC3JZXwgR8DKfex7LL78QZjJRatMIcipMtV/ZRwNSHdtJuOfJFq1RCCFE85CeUyFEwHo3bR395nzA5JQ+3HDPLCpsRr3B9JDgLYqSZT+0TJFCCCGalfScCiEC0u0rf+Tjwmgw9YBoEw++cidhFbUHU6UpPBFQdIEb+0adoBU6RSt/bfmihRBCHDcJp0KIgLM2fy+fFEaAZgZNp9/WhfTOcKLXdSlfaZgLQYVA0WUeSs70YF2j1d5YCCFEQJPL+kKIgHPnut9Qmh0070vUgC0/1hlMD1GawrJPAw2MMKg8SfHH71f6vlghhBDNSsKpEKJl1bFG6ZH2OBRweMkop6kRd9VWoKwHPzcBZigqWYRqxPmEEEIEDrmsL4RodpUegy/ev41BWYvoUp6BhiLfEsF3caP5b5dzmVw5lyEFu4g+6d+MTu2BpnkvwSul+DS7AMdRa5nubNeJ4qC9hFfUc1INKvsctQaqDmvX3UinjjcQHj6o6jxCCCECl6ZaebdCcXExERERFBUVER4e7u9yhDjhLc0rZNmX93NHxnvA4VuMqoOfrw3pymmD/0s7bS//zHmAefEPcf/4c7DpOk/uyuS53ftJqfyZ9KCpVce0VRZwxVe3ctn82hfgV5qiYoRB4Z88NR874hXOMHSGD/uOyMjuzfRshRBCNEZT8ppc1hdCNJu0cgcP/PZjjWB65OcDynbwxI5/kUk7noz/P6bufpiHt+xmc2kF/9qTzXh+5U7r+2ieYlDesOmwRxFeZuXT8SMAcOs6SgN1cCBqZT9F4cU1gymApnk/AEwmgz9WTmXRb+c2+3MXQgjRPCScCiGazUu79vBg2itA9WB6JAWcnTsPQzOxhiHkxNqoWPMh/83IxaTBZL4nRq/gEveLaEYFKIPr/vceXXOSeemiO/jTQ8/wyalnsmFIF8rGGuTe7aLgBjdY6zjhQYcCqqaBw7GONWvvkfGoQggRgGTMqRCi2XyZXci9pdvrDKbgDa1R7hJQBmg6q0P6MmzvOl4pKcNjKNqTgQacYf2Dvp47WfXrFC6Z+x1vnHUhJo+bjMRk/nvuJWjK4EZe4CQWYqCh4w2ah4YP1EfTIDfrM34tTmPowH8TEZbUPN8AIYQQx03CqRCtVFq5g207NxKnweC+g/1dDgAOTQe0RgXEQy00FDoGVk1H1zQ8yoSOG4DUrEJG/e8TACotVrQjOjqVpvMf9X+sZwCT+Z5UduPBjFIKu+as/9QKdDMo5yqWLz+JUkJpF3sFwwfcdSxPWwghRDOScCpEKzMnK4/5Tz/NtHlz6VBeCsA6k4m8mHAST51E15l3YwkN9UttnUweVof1ZGLB8jrbKCDXEgWahqYMhhet57ew05gWF8n60gpWMZThLEMDLF8loMhFAzrt34vbZKp+LE3nN8bzG+MBCHJX8LTzBuxBDYRTzVuI5l0WlXBKKc57mc/nvkeEVkJS0lX07vW34/hOCCGEOFYy5lSIVuSr/QfYdcefufy7rwg/GEwBLB4PiTkF8MEnbB86jDUD+/HiP57knW/mkvfOJZQ8O4DCl8dTkbnRp/Xd2L0rD3W+BYC6RnNqwBtJ56ArD0NZTmiuzqau07mxQxxdg218r3knK9kOtCdmQ27VfhNWLiW4shLNqH3Gvu7xUKHb+NE+rXHFajW/jNBKAMjMfJO5v3YhL29p444lhBCi2Ug4FaKVcBgG733yGSevWQHUfdlcA6yVbia89RbD3r6BDT/s4ruM9vxcHorllTGUPdER5WqgZ/EYXZAQTXxELI90uhGoHlAPff5j9Gie63QlKezhtow3eSfuap7s3werrvPpwC4EhfbjNW4kZrYd/YjnGeR0cN9bL6Iphe6pPjNfNzy0y8kEXed7bXpj1vmv16Hd16y9HIcj7/gOJoQQoklknVMhWomvcwpRl11Ct4zdjRjPCZnRsbxzxnR+GTUGt2bFpNyMKlxCljWBTGt7TBYT98Y6mN5tGOG2oGNaoN6Zm0Xetp9QFoPIXhMIDuuIy1A8uXwBSzMzeCDtFQaUbEVHkW5P5KX2F7ImrjOnlS6gXX4Ruf1v4sL+Y2hvPzzVXinF0rxSIk4aXuu7502duvLeaWezrN9glK4TXlrC2Qvn8O7Uc73X6ZXiFOMrrtLe9c7Qb9wA2DoFBXVj9Kgfj/0AQgghmpTXJJwK0Uq8sCebUWdNIcRR2WDb9IQkbr37EcrtQXiOHKepVNWaStHqAOEUUWCEMCHvR64vnEOIrkjqcxnhI+8Fve4LK3t3bGX2l2+wqLwrFYad5JAsxrdfzElh5fSf+F+Cg1MxlGJfQS77ts0nJjyBLt3HoJu9E5acSmHVtDoDsVHpZuXI4YRW1n1LKKfZQqXVSkhFOW6luPzx2RyIisEMnB4XQffNrzAo6lNvMD3OG0OdMnHn8R1ACCFOcE3JazIhSohWItJiqh406/HPy6+nzB6EUUv7bmoLF/EevdgMgNJhXdxAbo1+iBd+ewr7lmcom/csQee8ht6n+mL1SinmLn2eO35Iosx1Eupg8iusjGBDXm9WJPzBDeYzGD3+Z+z2ZFKi40kZeWG1Y2iahq2BXlrNasJtrv+5Wt0urG4X4B2f9NzG5RRedwOnxIQTZTHzrzkJRDwRib2yBBWqoTSD3McMGcwkhBABTsKpEK3ElNgIPunVj4krl9XbLj0hmfVde9Z8QCn6sJ57ePTgYk9eGtCXdfQ0bebPox7glG/+4PxPvmd1+vvMmbgPu3JgUh4SHTn8bu1NnjMZa7JOcY4JvcJ7HANvkPw9ewip4RnEr3ucvsNnH/Nz1XSN8KTeqO3LG9XpqQEdlyyi6wP3Vm2zWq3sb5dMl+07MBWDQsO6VeHsqY67J1UIIYTvSDgVopWIs1rYed4ZjF/1O5pSdeartOT2tW7XUFzHS+gYVQvWH2LCAFxcan2HWec/QVpqCgsHjaDcZMei3BiajkczcdqB34g2lZO6+HfMbjcrooey0dzj8O2XgDnp45nc4e/08lRiMtmP+fn2/Oi/bB4ygMb1FYOqrD7coW/fvqzctYsuO3ailEJDI+plnZyHPagoGj0WNSSkb1NLF0IIcRz8eoGrY8eOaAfHnR36+Otf/+rPkoQIaP889zw+uuxCVD2XxYMcjlq392IjceTWCKaHmDDoxjbijGx+HDqOcpMNNA2XbsGjeSPinJhRWHHz27Sz2ddtCCc50jgnZ+4RR9EocESR5wzD5So45ucJsOmqPzXpBSqob/UQOXToUFzx8SweexKG7n3WuttE3N9MmBbZUUesSFXXwHsFDBr4ThMrF0IIcTz83nP6yCOPcN1111V9HeqnxcOFaA10TePvf5vFqjMnsfGJf9Fn0zbsLle1DsB+2zcTVFlBhT2o2r4JZNV5XFM2BK3SoUxnSvxiPht+GuVBIYcbKEU3thLDAXbHRXFO2i/8Y5R3uSiLcjC4eBXbl8ZRrnnPqSkNs7npExTL9u0m7f6rYHUmZkfD3ZoKqLBa2di5L+dddmm1x0JCQrjyyit5//33+TYqii5pacTm5KDQyNsWieqRzsr44fRlPQlkYaolomrAb4uH0CHlWtq1u4SNm+6iuHgtoLDZEunf7xXCw3s3+XkKIYSom19n63fs2JE77riDO+6445iPIbP1xYmurKCAbZedj3lPJroCt1nnnUvP4v3hF1S73D5cLeV2/ll9ZydEvmsieKU3mhka6AoqbHb+edl1zBs2mj5qLVfzKolHhFuXx8oP+lRKtXDcmFnDYEJVCabf8ikllOmj97GloAequBiAUN1GVFgihXFOYiJ0phiRJC/czb7d+8nZt464/RuJKStEd3gvvyu8/28MAzh19nt8OqQ7J0WF1Xjc4/Gwbds29uzZA8CBktkkRm/BqVmw4myG4adJnDLxt+M+ihBCtGWtZimpjh074nA4cDqdpKSkcMEFF3D33XdjtVrr3MfhcOA44rJlcXExKSkpEk6FOKi80smnz77IovZlfNv+DO9G5camuXiZa7Fx+Pcn8jUTQatN1e5ZD97Ah6bx779czHkd3kVDVRsOcGhFqvCPTYQs0lFWyE0NoaIsBqvbhUJjU/du5LZLxuzUWNSrD5sSO4Kuc+N2B5ftcWApLaBi2YsYxXtB06l2nb0J3LqJSS+8Q6TFzKax/dAbWAlg+77vSd/6fzgxY8Vdb9sK7OQRQxKZB8fl1k2WmxJCiLo1JZz6dczp7bffzkcffcS8efO49dZbee6557j55pvr3eeJJ54gIiKi6iMlJaWFqhWidQi2W5lx35957U9/43N9KycV/U50QREOgviS86ramTMheFXNYAreFwYDmG7/qEYwBaoWty85ywMmSI/rgC3TTMe9GSRmZ5OUncmkhQuZ+t33fDJ4NBuSO2OYTNy9qZKr0lxYnS7Kf3sGo2S/94DHGEwV8HufAaDrFHoMfisorbWdYTgxDO+yU12Tp4IeSt1TyrwKiMSCiyT2NRhMARYsHN3k+oUQQtTU7D2ns2bN4uGHH663zYoVKxg6dGiN7Z999hnnn38+Bw4cICYmptZ9pedUiKbbkrWLB9/5nIVDxzOdzzibz4j8XhH2nbnWcArgSjLIfaD+nkUA9xcJxC2qwOZwoB/1cmJoGtkxscx48J8kO8189lsZAM7di3Csefe4ntOhM90+8yHWd+sJSvFEjxSuahfrfVwp9u//hO07nsLjKay2b2hoX4pLN9S5Pr8CHOjYMJp02X/ihB3HdKctIYRo6/y6CP+tt97KxRdfXG+bjh071rp95MiRAOzYsaPOcGqz2bDZbMdVoxAnmp6Jnfnknrv49cc3eHZbGH9rdyfPFr+NoqDO8OWJaMSBDXBF6dgqK2u9DKMrRdKBXE5ZsZhOcaNxa2BW4N63Am8sPLb3xof2+vqkU7zBFEDTCDN5q1BKsWHDbeTkfl/r/qWlG+q9bOQ8hmAKsG//h7Rvd2nDDYUQQtSp2cNpbGwssbGxx7Tv6tWrAUhKSmrOkoQQB02ccjUTp3g/n//9N2iq7uWeTEWNOKAOURkl9YY4Azhz8Tyypo6qCpXKWc6xBNMjlyb94uRTeeGSa6oes2gap8Z4343n5PxYZzBtDOsxBFOAwsL1tG93zKcVQgiBH5eSWrp0KcuWLWPChAlERESwYsUK/vznP3PWWWfRoUMHf5UlxAnD3WE46ved4K5jLfpsE+UFQdijSmtfG1WBcmgEr6t/9KYOhJeVst52eP69HpbknQjVhLGm6uDHus7defCGmRSHR1R78KYOcURavC9pabv/3ejj1uZYL8zHx004rvMKIYTw44Qom83Gxx9/zPjx4+nduzcPPvgg1113HR9++KG/ShLihHLqQw+SMaEbULMP06Np5EXG8JrtBhRazX7Eg12Ylh9CKbOF1TtdyNA09sUn8l2yBfPBE1k6ndzkYGpo8I/LbuCOu2YdDqYHx7henxLLXzofvuJSXr6r0cduTvHxk/1yXiGEaEv81nM6ePBgli2r/x7hQgjfmvLC13z8l0tI/XUzESXeiYYeTWNvVBivTr+A30NGUen5KzO010jQcqr200sg/EsTQcscbOjblej8/DrPoSvF/8ZPYW+IzgcdLFyS7sIU3RVLp/G40ubXuo86GJcdXQwse3TC7rkb09kX8nJIMBsLSvnPnlw8GoyIDePchCiS7UcvP9fy77vDwka1+DmFEKIt8us6p81BFuEX4vjty/6DV958D3tWKQeCgok0F3L6wj/IMrVjzsiTyQ+PoBtbGJC9nvYZ2di3auguHYUiLzoGw6QTm3ugRiRUwPI+A/jrzfeA5r2sf/VOJ3/a7STYrXClzce5/SdURX5Ve6WBEa5QZo2Uex4n6uxzm/x8VqyYTnHJ2uP9tjRBCKdMXNeC5xNCiNal1SzC3xwknArhO46sLHY9/29KCwuwpnbE+vXXkJ/vDZEmhWYASuNAVBTlYaEk78/E4vYuP+W0mMkPj2DByVPJiYhjXq8eVNhsRFSWMjZ7I+f9tp1QwskPhjK9gEi7hb6TphAzeTIm8/Fd1CkqWs0fK88//m9AI7RLvpKePR9okXMJIURrJeFUCOFTrsJC3NnZmGNiMMfEoNxu8r/7nrUvvITH48Kkm+l9z59JmjLVbzVu2foI+/a97bPjBwV1ZuSIn9B1v97LRAghWgUJp0IIAWRl/cDGTbc2+3H79n2VhPhTmv24QgjRVvl1EX4hhAgUiYlTSUzciWEYlJRspbx8D2geSkrWUFaWTn7+IsDR4HEAdD2ck8YsxWKx+7ZoIYQ4wUk4FUK0ebquExHRi4iIXgAkJZ5R7XHDcFFZmen9XDmw25Iwm0NbvE4hhBASToUQAl23EBwsN/8QQohAICP5hRBCCCFEwJBwKoQQQgghAoaEUyGEEEIIETAknAohhBBCiIAh4VQIIYQQQgQMCadCCCGEECJgSDgVQgghhBABQ8KpEEIIIYQIGK1+EX6lFOC9Z6sQQgghhAg8h3LaodxWn1YfTktKSgBISUnxcyVCCCGEEKI+JSUlRERE1NtGU42JsAHMMAz2799PWFgYmqb5uxxRi+LiYlJSUsjIyCA8PNzf5Qg/kZ8DIT8DAuTn4ESllKKkpITk5GR0vf5Rpa2+51TXddq3b+/vMkQjhIeHywuRkJ8DIT8DApCfgxNRQz2mh8iEKCGEEEIIETAknAohhBBCiIAh4VT4nM1m46GHHsJms/m7FOFH8nMg5GdAgPwciIa1+glRQgghhBCi7ZCeUyGEEEIIETAknAohhBBCiIAh4VQIIYQQQgQMCadCCCGEECJgSDgVPvXSSy/RqVMn7HY7Q4YMYdGiRf4uSbSgWbNmoWlatY/ExER/lyV8bOHChUybNo3k5GQ0TePLL7+s9rhSilmzZpGcnExQUBDjx49n48aN/ilW+ERDPwNXXnlljdeGkSNH+qdYEXAknAqf+fjjj7njjju4//77Wb16NWPHjmXq1Kmkp6f7uzTRgvr06UNmZmbVx/r16/1dkvCxsrIyBgwYwOzZs2t9/KmnnuLZZ59l9uzZrFixgsTERCZNmkRJSUkLVyp8paGfAYApU6ZUe234/vvvW7BCEcha/e1LReB69tlnueaaa7j22msBeO655/jpp594+eWXeeKJJ/xcnWgpZrNZektPMFOnTmXq1Km1PqaU4rnnnuP+++9n+vTpALz99tskJCTwwQcfcMMNN7RkqcJH6vsZOMRms8lrg6iV9JwKn3A6naxcuZLJkydX2z558mSWLFnip6qEP2zfvp3k5GQ6derExRdfzK5du/xdkvCjtLQ0srKyqr022Gw2xo0bJ68NJ5j58+cTHx9P9+7due6668jJyfF3SSJASDgVPnHgwAE8Hg8JCQnVtickJJCVleWnqkRLGzFiBO+88w4//fQT//3vf8nKymL06NHk5eX5uzThJ4d+/+W14cQ2depU3n//fX799VeeeeYZVqxYwcSJE3E4HP4uTQQAuawvfErTtGpfK6VqbBNt15GX9fr168eoUaPo0qULb7/9NjNnzvRjZcLf5LXhxHbRRRdVfd63b1+GDh1Kamoq3333XdVwD3Hikp5T4ROxsbGYTKYaPSE5OTk1ekzEiSMkJIR+/fqxfft2f5ci/OTQGEN5bRBHSkpKIjU1VV4bBCDhVPiI1WplyJAhzJkzp9r2OXPmMHr0aD9VJfzN4XCwefNmkpKS/F2K8JNOnTqRmJhY7bXB6XSyYMECeW04geXl5ZGRkSGvDQKQy/rCh2bOnMkVV1zB0KFDGTVqFK+++irp6enceOON/i5NtJC77rqLadOm0aFDB3Jycnj00UcpLi5mxowZ/i5N+FBpaSk7duyo+jotLY01a9YQHR1Nhw4duOOOO3j88cfp1q0b3bp14/HHHyc4OJhLL73Uj1WL5lTfz0B0dDSzZs3ivPPOIykpid27d3PfffcRGxvLueee68eqRcBQQvjQiy++qFJTU5XValWDBw9WCxYs8HdJogVddNFFKikpSVksFpWcnKymT5+uNm7c6O+yhI/NmzdPATU+ZsyYoZRSyjAM9dBDD6nExERls9nUySefrNavX+/fokWzqu9noLy8XE2ePFnFxcUpi8WiOnTooGbMmKHS09P9XbYIEJpSSvkrGAshhBBCCHEkGXMqhBBCCCEChoRTIYQQQggRMCScCiGEEEKIgCHhVAghhBBCBAwJp0IIIYQQImBIOBVCCCGEEAFDwqkQQgghhAgYEk6FEEIIIUTAkHAqhBBCCCEChoRTIYQQQggRMCScCiGEEEKIgCHhVAghhBBCBAwJp0IIIYQQImBIOBVCCCGEEAFDwqkQQgghhAgYEk6FEEIIIUTAkHAqhBBCCCEChoRTIYQQQggRMCScCiGEEEKIgCHhVAghhBBCBAwJp0IIIYQQImBIOBVCCCGEEAFDwqkQQgghhAgYEk6FEEIIIUTAkHAqhBBCCCEChoRTIUSLmzVrFpqmceDAgVof79u3L+PHj6/6evfu3WiahqZpzJo1q9Z9rr766qo2dRk8eDCapvHPf/6z1sffeuutqmNomobZbKZ9+/ZcddVV7Nu3r8HndeS+R39ceeWVDe7fWIfq/OOPP5rtmHU59G/VGEf/+xyqc/fu3b4pTgjRJpn9XYAQQjRWWFgYb731Fg8++CC6fvi9dWlpKZ9++inh4eEUFxfXuu+aNWtYvXo1AK+//jp33XVXned588036dmzJxUVFSxcuJAnnniCBQsWsH79ekJCQuqt8fzzz+fOO++ssT0uLq4xT7FNOeOMM1i6dClJSUn+LkUI0YpIOBVCtBoXXXQRr732GnPnzmXSpElV2z/++GM8Hg/nnHMO7733Xq37vvbaa4A3MH333XcsWbKE0aNH19q2b9++DB06FIAJEybg8Xj4+9//zpdffslll11Wb40JCQmMHDnyWJ5emxMXF3dChnIhxPGRy/pCiFajR48ejB49mjfeeKPa9jfeeIPp06cTERFR636VlZV88MEHDBkyhH/9619V+zTWobC5Z8+eY6y8uiuvvJLQ0FC2bNnCaaedRkhICElJSfzjH/8AYNmyZZx00kmEhITQvXt33n777VqPU1BQwFVXXUV0dDQhISFMmzaNXbt21Wj3yy+/cMoppxAeHk5wcDBjxoxh7ty5Ndp99913DBw4EJvNRqdOneoc/lBcXMx1111HTEwMoaGhTJkyhW3bttVoV9tl/fHjx9O3b19WrFjB2LFjCQ4OpnPnzvzjH//AMIxq+2/cuJHJkycTHBxMXFwct9xyC9999x2apjF//vy6vr1CiFZOwqkQolW55ppr+PLLLykoKABg69atLFmyhGuuuabOfT7//HMKCgq4+uqr6datGyeddBIff/wxpaWljTrnjh07gMZdmldK4Xa7a3wopaq1c7lcTJ8+nTPOOIOvvvqKqVOncu+993LfffcxY8YMrr76ar744gt69OjBlVdeycqVK2v9Xui6zgcffMBzzz3H8uXLGT9+PIWFhVVt3nvvPSZPnkx4eDhvv/02n3zyCdHR0Zx22mnVAurcuXM5++yzCQsL46OPPuLpp5/mk08+4c0336zx/M455xzeffdd7rzzTr744gtGjhzJ1KlTG/W9BMjKyuKyyy7j8ssv5+uvv6567kf2emdmZjJu3Di2bt3Kyy+/zDvvvENJSQm33npro88jhGillBBCtLCHHnpIASo3N7fWx/v06aPGjRtX9XVaWpoC1NNPP61KSkpUaGiomj17tlJKqbvvvlt16tRJGYahbrnlFlXby9rEiROV3W5XBQUFSiml3nzzTQWo119/vVq7Q9uXLVumXC6XKikpUd9++62Ki4tTYWFhKisrq97nBdT58e6771a1mzFjhgLUZ599VrXN5XKpuLg4BahVq1ZVbc/Ly1Mmk0nNnDmzRp3nnntutfMvXrxYAerRRx9VSilVVlamoqOj1bRp06q183g8asCAAWr48OFV20aMGKGSk5NVRUVF1bbi4mIVHR1d7Xv6ww8/KEA9//zz1Y752GOPKUA99NBDNepMS0ur2jZu3DgFqN9//73a/r1791annXZa1dd333230jRNbdy4sVq70047TQFq3rx5SgjRNknPqRCiVQkNDeWCCy7gjTfewO12884773DVVVfVOaM8LS2NefPmMX36dCIjIwG44IILCAsLq/PS/siRI7FYLISFhXHmmWeSmJjIDz/8QEJCQoP1XXjhhaxYsaLGx+mnn16tnaZp1baZzWa6du1KUlISgwYNqtoeHR1NfHx8rUMKjh7/Onr0aFJTU5k3bx4AS5YsIT8/nxkzZlTrxTUMgylTprBixQrKysooKytjxYoVTJ8+HbvdXnW8sLAwpk2bVu0ch4599LkvvfTSBr83hyQmJjJ8+PBq2/r371/tOS5YsIC+ffvSu3fvau0uueSSRp9HCNE6yYQoIUSLM5u9Lz0ej6fWx91uNxaLpc79r7nmGk466SQee+wxcnNz612m6Y033kApxfnnn1/tcvdZZ53F+++/z5YtW+jZs2e1fd555x169eqF2WwmISGhSbPN4+LiqiZT1Sc4OLhaEASwWq1ER0fXaGu1WqmsrKyxPTExsdZteXl5AGRnZwPeFQTqkp+fj6ZpGIZR5/GOlJeXh9lsJiYmpsFa6nL0vgA2m42Kiopq5+nUqVONdo15gyCEaN0knAohWtyhgLFv374aYUMpRWZmZr0Bb8yYMfTo0YNHHnmESZMmkZKSUms7wzB46623AJg+fXqtbd544w2eeuqpatt69erVqIDpb1lZWbVu69q1KwCxsbEAvPDCC3WuIJCQkIDL5ULTtDqPd6SYmBjcbjd5eXnVQmZt+x6PmJiYqnBdXz1CiLZHLusLIVrcxIkT0TSNjz/+uMZjP/74I8XFxZx66qn1HuNvf/sb06ZNq3VN0UN++ukn9u7dyy233MK8efNqfPTp04d33nkHt9t93M/JH95///1qXy9ZsoQ9e/ZU3cBgzJgxREZGsmnTJoYOHVrrh9VqJSQkhOHDh/P5559X66EtKSnhm2++qXaOCRMm1HruDz74oFmf27hx49iwYQObNm2qtv2jjz5q1vMIIQKP9JwKIVpcly5duPXWW3n66acpLCzk9NNPJygoiBUrVvCPf/yDoUOHNjiG8fLLL+fyyy+vt83rr7+O2WzmvvvuIzk5ucbjN9xwA7fddhvfffcdZ5999nE9p0Oys7NZtmxZje3h4eE1xk8erz/++INrr72WCy64gIyMDO6//37atWvHzTffDHjH577wwgvMmDGD/Px8zj//fOLj48nNzWXt2rXk5uby8ssvA/D3v/+dKVOmMGnSJO688048Hg9PPvkkISEh5OfnV51z8uTJnHzyydxzzz2UlZUxdOhQFi9ezLvvvtusz+2OO+7gjTfeYOrUqTzyyCMkJCTwwQcfsGXLFoBqN2EQQrQt8tsthPCL559/npdeeolVq1Zx6aWXMm3aNN5+++2qXk6r1Xpcxz9w4ADffPMNZ555Zq3BFOCKK64gKCiI119//bjOdaT//e9/jBo1qsbH9ddf32znOOT111/H6XRy8cUXc9tttzF06FDmz59fbdzq5Zdfzrx58ygtLeWGG27g1FNP5fbbb2fVqlWccsopVe0mTZrEl19+SXFxMRdddBEzZ87kvPPO4+qrr652Tl3X+frrr7nssst46qmnOOecc1iyZAnff/99sz635ORkFixYQPfu3bnxxhu57LLLsFqtPPLIIwBVk9uEEG2PptRRi+8JIYQQAer666/nww8/JC8v77jfwAghApNc1hdCCBGQHnnkEZKTk+ncuTOlpaV8++23vPbaa/ztb3+TYCpEGybhVAghRECyWCw8/fTT7N27F7fbTbdu3Xj22We5/fbb/V2aEMKH5LK+EEIIIYQIGDIhSgghhBBCBAwJp0IIIYQQImC0+jGnhmGwf/9+wsLC6ry3thBCCCGE8B+lFCUlJSQnJze4TnGrD6f79++v89aFQgghhBAicGRkZNC+fft627T6cBoWFgZ4n2x4eLifqxFCCCGEEEcrLi4mJSWlKrfVp9WH00OX8sPDwyWcCiGEEEIEsMYMwZQJUUIIIYQQImBIOBVCCCGEEAFDwqkQQgghhAgYEk6FEEIIIUTAkHAqhBBCCCEChoRTIYQQQggRMCScCiGEEEKIgCHhVAghAoBSik0l5cw/UEy5y+3vcoQQwm98Gk4XLlzItGnTSE5ORtM0vvzyy2qPX3nllWiaVu1j5MiRvixJCCECziVrtpM0fy0T/9jGxet30fm3DSTOW8MV89b4uzQhhGhxPg2nZWVlDBgwgNmzZ9fZZsqUKWRmZlZ9fP/9974sSQghAkrqvDXMKyir9bE5QKIEVCHECcanty+dOnUqU6dOrbeNzWYjMTHRl2UIIURAmnugEEcj2u0pKyc1JNjn9QghRCDw+5jT+fPnEx8fT/fu3bnuuuvIycmpt73D4aC4uLjahxBCtEaXrd/dqHYjlm/zbSFCCBFA/BpOp06dyvvvv8+vv/7KM888w4oVK5g4cSIOR919CU888QQRERFVHykpKS1YsRBC+Mf+Sqe/SxBCiBahKaVUi5xI0/jiiy8455xz6myTmZlJamoqH330EdOnT6+1jcPhqBZei4uLSUlJoaioiPDw8OYuWwghfKYp40n/3asDFyZG+64YIYTwoeLiYiIiIhqV13w65rSpkpKSSE1NZfv27XW2sdls2Gy2FqxKCCH8z90y/QhCCOF3fh9zeqS8vDwyMjJISkrydylCCOFz3wzs3Oi2g8NlQpQQ4sTg057T0tJSduzYUfV1Wloaa9asITo6mujoaGbNmsV5551HUlISu3fv5r777iM2NpZzzz3Xl2UJIURAGBbVuKFIA8KC6BkS5ONqhBAiMPi05/SPP/5g0KBBDBo0CICZM2cyaNAgHnzwQUwmE+vXr+fss8+me/fuzJgxg+7du7N06VLCwsJ8WZYQQgSMfeP61/t4tFnn9b6dWqgaIYTwvxabEOUrTRlgK4QQgWpPeQUjft9a9XW4BjemJnJl+1iiLQE1PUAIIZqs1U6IEkKIE1VqcBBZEwb6uwwhhPC7gJoQJYQQQgghTmwSToUQQgghRMCQcCqEEEIIIQKGhFMhhBBCCBEwJJwKIYQQQoiAIeFUCCGEEEIEDFlKSgjRdLMigVqWSJ5V1NKVCCGEaGOk51QI0TSzIqg1mFY9JoQQQhw7CadCiMZ7LKXhNhJQhRBCHAcJp0KIxnMV+7sCIYQQbZyEUyGEEEIIETAknAohhBBCiIAh4VQIIYQQQgQMCadCiMZLHtZwG83q+zqEEEK0WRJOhRCNd/0vgFZ/m4dyW6QUIYQQbZOEUyFE08wqhNQJNbeHt5dF+IUQQhw3uUOUEKLprvrS3xUIIYRoo6TnVAghhBBCBAwJp0IIIYQQImBIOBVCCCGEEAFDwqkQQgghhAgYEk6FEEIIIUTAkHAqhBBCCCEChoRTIYQQQggRMCScCiGEEEKIgCHhVAghWpnbN+xi8OIN3Ls53d+lCCFEs5M7RAkhRCvRed4ayo/4+s2sfN7MyifRrLNmbH+/1SWEEM1Jek6FEKIVSDwqmB4py23Qc8HaFq1HCCF8RcKpEEIEuLnpmQ22KTRUC1QihBC+J+FUCCEC3GU7sxvVrs/CdT6uRAghfE/CqRBCtBF5HsPfJQghxHGTcCqEEG2EvKALIdoCeS0TQog24q2eHfxdghBCHDcJp0IIEeDGR4U2qt3kpGgfVyKEEL4n4VQIIQLcRwO7Ntjmu+7JLVCJEEL4noRTIYRoBTLG9iVE12p9bM6QrgxpF9/CFQkhhG/IHaKEEKIVsJjN7Bw3gGKXiyd3ZVPq8XBjhzh6hQb7uzQhhGhWEk6FEKIVCbdYeKxHe3+XIYQQPiPhVAghRKO4XC5WrZpOadlWQCM2ZgIDBvzH32UJIdoYGXMqhBCiQes3/JmFi3pSWrYJ8ABuDuTNYe6vXcjY+4G/yxNCtCESToUQQtRr9+7XyMn5us7Ht217gJKS3S1XkBCiTZNwKoQQol47d/2jwTZ/rDyrBSoRQpwIJJwKIYRogGqwhWGUtUAdQogTgYRTIYQQQggRMCScCiGEEEKIgCHhVAghRL00reFVB63WxBaoRAhxIpBwKoQQol4DB77TYJvhw35tgUqEECcCCadCCCHqFR01gj69n6/z8VEj52Oz2VqwIiFEWyZ3iBJCCNGgxMQzSUw8k/T0D8jY+wqaZqZnjyeIjh7u79KEEG2MhFMhhBCN1qHDpXTocKm/yxBCtGESToUQAUEphUd5MOtmShwlrM5djUkz0TO6JzFBMf4uTwghRAvxaThduHAhTz/9NCtXriQzM5MvvviCc845p+pxpRQPP/wwr776KgUFBYwYMYIXX3yRPn36+LIsIUQAWZ+7nhdWv8DSzKV1tjFpJqZ2nMoNA26gY0THlitOCCFEi/PphKiysjIGDBjA7Nmza338qaee4tlnn2X27NmsWLGCxMREJk2aRElJiS/LEkIEiCu+u4JLv7+03mAK4FEevk37lmlfTmPMB2NYkbWihSoUQgjR0jSlVMP3pWuOE2latZ5TpRTJycnccccd/OUvfwHA4XCQkJDAk08+yQ033FDrcRwOBw6Ho+rr4uJiUlJSKCoqIjw83OfPQwhx/JweJxM+nkCxq/iYj3Hf8Pu4pNclzViVEEIIXykuLiYiIqJRec1vS0mlpaWRlZXF5MmTq7bZbDbGjRvHkiVL6tzviSeeICIiouojJSWlJcoVQjSjq76/6riCKcDjyx9nXvq8ZqpICCFEoPBbOM3KygIgISGh2vaEhISqx2pz7733UlRUVPWRkZHh0zqFEM3rq+1fsS5/XbMc67Z5t+ExPM1yLCGEEIHB74vwa5pW7WulVI1tR7LZbISHh1f7EEK0Dtvyt/G3JX9r1mM+s+KZZj2eCGyGUny0/wCP7tjHovwif5cjhPABv4XTxETvfZiP7iXNycmp0ZsqhGj9tuZv5bxvzmv247675V1aaOi88LPzV2whee4q7ti6l9kZuVywZheJv6zkld2Z/i5NCNGM/BZOO3XqRGJiInPmzKna5nQ6WbBgAaNHj/ZXWUIIH/AYHm6de6vPjv/upnd9dmwRGAb+vIzfSirAZDq8UdPAZOKhXVn8a9c+/xUnhGhWPg2npaWlrFmzhjVr1gDeSVBr1qwhPT0dTdO44447ePzxx/niiy/YsGEDV155JcHBwVx6qdx9RIi2ZNG+RWSV1z2W/Hg9t/I5yl3lPju+8K99JWVkmW3eMFobTePJtOyWLUoI4TM+XYT/jz/+YMKECVVfz5w5E4AZM2bw1ltvcc8991BRUcHNN99ctQj/zz//TFhYmC/LEkK0sNU5q316fJdy8du+35jccXLDjUWrM2TJBrDa6m+kabyTns2fOsiwMCFaO5+G0/Hjx9c7FkzTNGbNmsWsWbN8WYYQws90zfcjiAoqC3x+DuEnFmvDbTSNv+3cL+FUiDbA77P1hRBt38ikkT4/R5FDZm63RYZhNLqt0y3LignRFkg4FUL43PDE4T4/h9zStO1xGwbdF6yre6zpUcaENqKHVQgR8CScCiF8TtM02ge19+k5NuZt9OnxRcuq9Bj0+209pY3dQSk+G9XflyUJIVqIhFMhRIs4q/tZPj1+hbvCp8c/VoWFhWzdupW9e/cGxHqsB5wu1peU4/QE9iXw81Zvp8Dj/++XEKLl+XRClBBCHHJVn6t4ae1LPjt+IAS/I2VmZvLqq68SXFJC8r79mD1uCiMiyUpK5KFHHmnxemas3clP+SXVtunAe307MjEussXrqc/KwhJWljTxzUYjL/0LIQKf9JwKIVqE3WL36fE1TQuYgJqVlcVrL77IiMWLGTdvPm6TzvauXcmJjyO0pIRnbr+9SRN9jtfYpZtqBFMAA7h0w26+z85vsVoakut0ccbqnf4uQwjhRxJOhRAt5o5Bd/js2G7lDphL+/999VVGL16CyeXm+zNOJ61LF9xWKx6LhZKICEqionj0gQdapJaMsnK2VzrrbXP1pvQWqaUhSikmLt/q7zKEEH4m4VQI0WKu6X8NGr65/GrWzFhN/p+tXVJSQkRuLtH5+SweexLoeq2XnA2LhVmzZpGZ6dv7wk9auaNR7ebn+H+d2KfSssh1uY9pX7moL0TbIeFUCNGiFl60sNmPqaExueNkzLr/h9Hn5eWRunsPG3v1bFRgeuWVV3jxxRcpKytrthqUUqSnv828+b35t/s8XlDXcrr6ElTdQwmu2Lin2c5/LLaVVvDcnmO/Ban8MROi7ZDfZyFEi4q0R/LoqEeb9ZgWk4Vr+13brMc8ViEhIcQeyKUsNAzVyEk6ubm5vPHGG3iaYQa9x+Pg13ld2b7jEQzDgQmDaAq4jHe5gv/WuZ8LmJ/nnxsZbCytYMKKrRzPiOHAXntACNEUEk6FEC3u7O5n89DIh5rlWDG2GF6d9Crdoro1y/GOV0xkJGHFxUQVFqDVNkFLgVmZ0FX14JqXl8fWrcc33tIw3Mxf0LvOx8fyG1ZV97jci9el0X3BmhadWKaU4sYNaRIuhRBV/H8NTAhxQjq/x/mc2eVMLvzmQtKK05q07/h24+kW3Y1+sf0Y235sQFzOP8SdnY3FYxBWUlqt51RXGn08KfRxtyeUIIq1cjK0PHaassnRi0BTrF+/nt696w6X9VFKsXTpJfW2CaacB3iQB3i6zjbFBiTNX8tDqXHc1LndMdXSFGtLKtheUf+ELSHEiSVwXtGFECccu9nO1+d+zfe7vucvi/7SqH3+Pe7fTOg4wceVHTtN0zAsBu327cPk9uCxmNGVxmTnANqpaDK1An61bCBHL67ax64sVOJi8+bNjTpHeXka+QVLUYbCEjwA3dIVzbWaSseq+msDOrELq6rEqdW/tNfDe3KxmXSuTk1qVE3Haktp862wUOByE2WRP2tCtHbyWyzEicjjgVfHQ84G79cx3eG6hWCz+aWc0zufztROU1m4dyHLM5ezYO8C9pRUn6ATbA7mn+P+ydj2Y/1SY2OZk5JwJSls6W4GrF3LqqFD6OluT4QeTTr5/GJeizpqdGWl5uLQpnXr1tG/f+234XQ687n13cf5efcEYkxOxiQvx6QvZFNRT7aE9OX1bg2vRa8BfVjLakY0+Fzu25XNqOgIeoUFN+apN5lSirf35Tbb8TaVVjAmKqzZjieE8A9NBcqq1ceouLiYiIgIioqKCA8P93c5QgS+7/8Ky1+u/bH+F8P0V1q2njrsK93H3D1zKXeX0zmiMxNSJmAxWfxdVqOsu2kaRsY2SrSxbBx/Cb3KbYS5YV+QxvqgEhILswhxuTigl5CrFVdfB0nBX+/9K3Z79Z7Nsv15jH7rBypL7fx1+POkhO2vFkTTVCc6kgZaw8sqPcedrNBGN/r5/CU1nj93Tm50+8a6at0ufsgrbrhhI02LjeC//To12/GEEM2nKXlNwqkQJ5JtP8MHF9Tf5qwXYfDlLVNPG2UYBp/NfpiueZOIcXhfYnW8d2TSOdRJ6v3vFn0fKyw7cWrV1/ecNWtW1ee/rN7LX35cRn6RmRcm3ofd5KjRQ+pBR8doMJgq4Grew6kFNek5RZk0Np88oEn71KXSYzB91TZWlVY2y/EOibGY2HhSv2Y9phCieTQlr8lsfSFOJB9d2nCbb27zfR1tnUeRXDiJKKdC5/AL7aH/a4ATN/u0ApKMKM50DmGYsytWwzvSSjNgyaTT+W3QSL4ecSqPLFhMTkUQ9w1/niBzzWAKYGpEMD2ybVMVeBRDflt/3DP53YZizO+bmj2YAhS5ZM6/EG2BhFMhTiSGq+E2Sv7AH6+P311NarnCXEeOUyhsWGivookgmCgVwgAjlcudJ9PVnYjSoaDfGcQHx7GjZxd2meLpbE+nc2R6EyJo7TQgkmO7G9Q+l4exyzbz2I59vL3vAAXHcDenmVvS2edwgw8u2h3bvaWEEIFGJkQJIUQzcxQ68QCmRrQ98nauGjDO3ZtyzcEfYbnEjJ7BFwPs6HtcnNRuGUqBrh1/qCsl9Jj33VHp5IUM7ySm+7bt5d7OSVycGM3uSifBJp2eIXb0Wrp2C1xu/rwlnR8PHBxj2sgbFDTVrvJKOgfXvxKBECKwSTgVQohmZjQ4Y772BhoaCsUIdzcWWTaz2ZpFeVBvTncZRNsLvcdGQz+ueylBBSHHtf8hHuDRXZk8tiuzqqJ4q5lkm4VgXadLsI1rU+JJtVu5YM1ONjXjslF1eWDbXt4f2NXn5xFC+I6EUyECWNaLL1Ewe7b3EqjFQvKLs4k4+eRjP2BQNFTk19/G0jzB5UTm7hGOKfvYLp1raMSoMAa7OhOMjc9XmNgJLHSGouC4g6lS4NYtNTceR0/mkRXlON3kOL0X2JcUlfFuZj79w4LY4OtgevA5zC0olfVOhWjlZMypEAEo44l/sKlnLwpeeOHw2DyXi/3X38Dmnr3IefGlYzvw7WsbbnPr8mM7tqhy3dQ+bAvVcB/HlevfrJv50racr6wr2EUZSzOHoWveGf+1xVNPI2NrjaGehzb4cOGWdcXl1F51MzoiXKdXOHx7LiGET0k4FSKApP3jaX4bOpKSt9+ut92BF15gc58+TT+BPRxuqecuQjcsgYj2TT+uqEbTNHaelkiWXUNB1dz4xsYzBy4qcKEZBqWufDaaN7K1oCvrcnuBggqCcHD4hgkGGn8wnN8Z2uCx/6efX+1rHYMo8gnjGNcbVaqRwdY3Y0xro7fguYQQzU+uewgRANaNGIUqKsaKQUwj2muA8hhs6NmLvlsad8vLKnFdYFYR7F8D39zhDRZTnoCOjV+UXTTsumFd+So2mOXf7mFkngeLAbpSRLvqj2kGijTzV0zeNJ+IjQ40Q8Nj0+jbvQdfWMdR3C2MUckr0DTYqrqzS+tKujuV9ek9KA0NZ1jc1ZjqOEEOMXzNhQDYVCXX8hLDWYYZ7woNlcrKr0zmfWaA1si+i8YMB/DR5Kdqjhia0DHI6vvzCSF8RhbhF8JPlFJsO+ssPNt3UGG1kRkbj9Xton1OVqP7fRRQYTIzZON6X5YqjoOn3EX635dVLSvVUDDNtL9M2GerwQPaETOrlK5wR8GvV3ZjcelQ4oLy6BqVhq4ZFFRGsdwYwZoOY7BRwV94hG5qR1UmNIDVDOEF7sKlWbGpCp7nRsIorXb+Q38MfmMs/9HuaK5vQYvSgMwJA/1dhhDiKHKHKCECnOFwsHXAQErsQbxx9kX8MHo8Dqv3Mm1yThZX/PAFU5YtbNSxFFAcF8fIRY1rL1qeu9RB9r9WocoOr8SplDp4q1FvgqzExbaYeXT47FP0ItBUzRirdEVen1AcN3onW2nawavqgK5Bhqc9j5seoViLIFiV0p0teNDZQU8qtGBwejAVOXgi7G6SrVm1dmh+xzQ+5nI8mFqmx9MHMscPQGultQvRVjUlr8llfSFamFKKrQMGUm6zc8edD7E7qT2G6fCKmPvj4nlyxk3kRMXwpx++qLk/CneiwrCDORNMDp3w3BwqK4ux2+UNWiAyh9po98Ao3KVOytfk4ilzULY5D2N/OR7dIEPL41frBoY7fsZUWHeo0gyNmI1lZJWDOriogqYd7o1tr+/lcc9MbjX9l3ItlDUMPTg9X2HZko+eWUGYuYTk8bUH0/mcwgfalc3+/FtauccgxNyYVWaFEIFIwqkQx8jjdrP0n9ewQTcoUVGYdRdJzr1MmHQbCcMn1bnf9j/NAOCTU09nd3IKhn7U2L6DY/3enHYBp6xYTLsDOVUPFZ/upnSSQdVcGIV3sckKyFw4qOo3evy4LZhMRy0XJPzOHGol/KR2AESd1hlPqZPM/65E5boxoRNZWITSq1/OP5pmgClbw9255kUvTYMoUyFXul7lLeuN3o0eA+uKPLQSFxpweq9fag2mTsx8yOXHvaxUILAd/TslhGhVJJwKcQzclRW889wM0hx92BKbzJJuA/CYzGhK0WfLdv664CpOvfvNWvf1rFiBAr4+eVLNYHoE3TD4YfR4rv36EwDyr3FROURVn/Kt4f0tDqu+77z5PdE0GD9uEyaTDRGYTKFW2v95FPrOdux+fxeGVWvczPcG5vucap5DP7WOOUzl131jq4KphsGEhJrDP1YzmJe5nTLt2O8cdUii2k8CmZQTwg66obSW78Es9xiE69JzKkRrJW8vhTgGXz95Adtd/Xlj1Oks6j0Mj8UKuo4ymdiQ0pPLh9zGOz9+VWO/omXLAHCZLRSER9Z7DqVp7ItLRFkUedc7qRzciBk1Bx3q+Jq/oDdzf+1JefmxLQgvWkZylw50HDaUnPZx9a43pVC4oxXu5PoDrKZBgsrmCt7i9ZRrubrPeyQEZ9M/eRNWzVOt7Ta68yx/pYzgxhVbR3hOUXu4VT1DX9aygx6k0YUEsuiitjbuuM3oo6y8Fj+nEKL5SDgVoonclRXssHXloyET8Jjrvvhwj7UDHk/1ILD/eu+lVrPHjcXtqvc8ujKwOSvJvgkc/TmOZSJdLF06lLm/djnWA4gWcPLUSeTl96ZiiIHSag+AGhqlUz2NeuU+9AZF1xRjkpfzyOjHuKr7eyiq598u7OB0vm780lG1iFT5nMtHvMot/MpkyrRQ3JqFLJLYSfdjPu6xWlpQ2nAjIUTAknAqRBNlLfuRbJVEhT247rF5mgaaxslffV59u9u7HLuuFOP/WIrpqPB6JI/JTGhCAUZPV/2/qR4IWqoT+5SZxLssxD9oIexbE3rxESHkYJlzf5GAGsiu/dt/WD2kP5V9vP9ySleHPzRF8ZluykcbDRylJk0DkwZh1vKDl/cPM2FwCe8xXv3S+IMdpZAo/s09OLFiHHkZX9MPLylwkF1VMFV9zVPqNl5VV3CvmtXk59OQknp+r4QQgU/CqRBN5PY4WJ/YseFJI0qxM7IrHy5fcnibfrin9ZKfv8Hk8aAZNcOG7vGQnJNFdOf9eOr7NXVBzGwzUe+asezR0Ms1zAc0Qn/QiXvUgiXT26yASO8nGuza/m7jnqjwi0tvfIefBp/Bhj+1p2iMiYqhBqVTDHIecVF6unHMPegN7XYN/+Fc9TF2VXEMB9cOftTxs3rwdyVMFfF37uFS3iGJfYRQTh/Wk6wymvX2qdZWPqFLiBOdhFMhmqj9SedQGBrScMODf7D/XBrE8wsWs2LOjzhNhy/ld8rcy9MvPE5USREAJrcb/WCPT0hFOfvjEwmnGJ26e8rCvjNh3eb9Q3zkupia0tDLIeoVMyh4idspJRQ0SNsz6xietWgpQUFB2Ozt2egYw2/dTqXwSg8lZ3jwNObWYfVpIK/pKKbzKQ9xP0Gq7DhPVrtr+A8JZKGjqv74fMxl7NdSmvU8XYJlEqAQrZnM1heiicw2OyPzlpAee2Gj2ltdTj7NyCTm1/cY7HBXe6z/jq18fN//sbTfIHakdMTicrG6e29W9e4PQB6xGOiYaguoLghZqNe6WDt4lyOy5GiYtppJ69mZOUzhXP7XIrc4zyyq4OMVGazfW8i+ggriI+yM7x7POYPaER0it5asj6ZpjBgxgjlz5lBSFkVxYQIRYXkok7vhnWtRgZ1VDGUUi9Hrm22FN6C2I50L+JB3uPaYzleXaHWAIayoVsMqhvCNNt37RTP2dvYJDWq2YwkhWp6EUyGOwT/Ov5lP1uV6v2jgj6rHZCbZsp8hv9c+a9lseBi79g/Grv0DBUzauY+fei0lhBK6sL32YAqYszX0yvrPrXRF1q6OVPQMYT6neMOpj73/+x7u/2LD4RqAzdmlLNh2gEe+3cQlozrw+Fl95Q4+9Rg5ciR79uxh27ZtbNw8nont9lOR8hugmvzmIp1UFjGeMfzWqPYmFKfwE5+qi6lohqWlDunMjhrh+EfORFee6uNUm0GERf60CdGayWV9IY5BcGx7euTv935R11i5g9s9JhP9V23H08DC4ArQdAshHdYynrkYHhO/F5/BXtrV3t/VqJCisV4bAJpGERFV+ynlmwkj87fmVAXTQzVrR3wAvL80nZs+Xe2T89cmcd6aah9/2birxc59rEwmExdddBHTpk0jOqo9O0odJP1+L9aS9vUuNXU0BaSym96sJ49ojEYmWzMGl/PWMdVedy01f/63073ZgylKEW+VcCpEaybhVIhjtOD8M+hWuL3uBkf0DGqlJowGego1wDBrfNL7NO50Ps/g4g48d86DlHX+kC+4gAqOuFRpeG9diqn+P8KaAUt6DQeliOTwWqcej6Pe/Y7VM3O2ecszaXhSQnAMisY5OAZ3lzCUzftyowPfbciksMLpkxoOOWvFFhLnramx/e2c4lq3BxqTycSQIUO4+eabmXLhP8ju/Dpxa66my4LnSFp3I4nrryds36h65xFpgB0HZ/A1oZSimtDtOp55XKbebLaJSlvphZvqQbShYQbHRNN4fe+B5j+uEKLFSDgV4jgsmn4hmqolZB31Bz07OgZTLbPyj+Q26bw5aRJb7QOY5tnJmef9HYAbUpNxx9/ITbzOY8wiaraZ+PvNRL9hAU/d4xDdus7Gjl3Z3LELGooJHF4qSKljG79YnzKHm/V7i/CEW3CenIC7VwQqzo4Ra8PdJQzHyYl4EoJQgO6Enl8sa/YaDsnOzmZ5aWW9bVpDQD0kPj6VYVPeJythNulDnqY8ehPl0Rspj92E0hruTDWhsODE08Q4eDrfMo65zRJQS7UwFjCxWu9tf1ajN/fPolLMzStq3mMKIVqUhFMhjtNZdqf3j3c9f8BXDetRb8+pW9fZ0iuVnd17MqxTEE+ccWvVYyZN4+U+qTzXuxtBESOwbrdjLqr5q+vRvcc3NA0FZMbGM+uGP6NjEE82p/JTVVuzuRGrDTTRmowCPGYN19BYMOtHLC906ANcA6JQYRY0wJTnxumj9SgHbMr0yXH9KTSyE+NvWkGhp5zCdgspbrcYj60IvRKMRmRHHSgnyLusWCPaKyCLBKI5QHRJIShV67JnTfEuV7GRvgB40JnIzxg082V9TaPYo3AeZ61CCP+RcCrEcXplzFgS/r+9+46PozrXOP47s029d1uSe++9gLExGEwHUwNckkASegiQBEISnAYkJJSEFhICBILpHQyYZmOwjbuNe5Vkq1m9bp1z/1hJtqwuS1qV93s/upFmZ2fe3TGrR2dOcWfV33hcEM2PTOCZ8y8DGuYCr2FQERKK2+LhhSvn8Zv5ixqcw1CKRUkxfDB5GP3fe7fROrzJmtzUaDYOH8Vfrv4J193zZwojo5jAeu7lHkKpOqa8jl93fF9+Jb7+IWBVYDQSxJW/ic+b7g/GqtzLOet2d3gdbfH7HQcCev72mHXyq5g+S93fQqqs8bf7eBqIpJwYSlq3BC6QQD72ah8v/vo2bn/p3ww5dJAgZzvmQa3hUQ7+zG/4K3ezlmm8xDXtPlZzNJDn7vi7A0KIriG9xoXoAJvPPI+L33ialdFTjwZTreu+L1NRfHz6LMpCw/n++68RX+Lv/6mB9aPGoMOqmXr/LwgLa3kFp6gB6RyOT8M4ksWxUdeer7Hckk/EoApGKwsj1BoGsp84XVAvjAQFDe+ol11PhdeLTmxhfXZDYSYEAyVgN9hS2fyt9872WUk5vw1oBW0XFz+I0fyU7UX/wOr14ItoIWvWhtja749fIqoZCs188xPsXi/nrvycc1d+jtNm56xHnkW3MMCvyXKUhY1MYSNT2vX81gqS2SCE6LEknArRQV5f9GP+tfY9/lwcQYU1AgDD9GEa/lbKYhXHJzNmsXnKYAYeyCbY7SSp9DBrk0bx4DTFmOSTWn2uwZ+8wYHZp0NVSd025VHE/d1K8FwnEXPW4YsDvPiDyDENpdOmvnriL7YRj5QXomtv5zdHgVbgGxbRKXW0xQMDEwNdQrv0O/1GPD//Fzm5iqoftDCwTDXxfSsowBHspDg8mrgyfz/OII+bWVs28PWEJsLlMX+UBdK2sgrmxkcHugwhRDvIbX0hOtCPpp7L3gWnsG5SMlOO7MLhNev6oga5nJy74gt+8swrjF+3ltRde9g/IoUl545i6oTv1z+QabLj21d47/nreevpK/nPW3/hsf1Z5Lr8K0wFBYdhGzqgwfmVVxH2qYXE39pJutVKxMtGvWCqNdhsHTd35bHK7BaUu4V+fqZGlXoww23o8M6bjD+6ldloZlLPDKcoRezVv6VkxpAWA6fW4PNZyN8/qE3TUNUqVZFcft/jvHvS/Lptv3v6IYZkHjh6gmP+N5hqovSRDl2OtD3e3tXzumwIIfyU1gH+BDlBZWVlREZGUlpaSkRE4FtihDjeF4d2sj73EOPKckmKjcKbNoNQexjDQhyNTkT/9Zp3KFv5JKeXrcGq/GHPqWzsCB1EmRHEV6c/wT1jRqOUYueUmeiKEjQaVZNSNBrXSJOqGSbO8RpqM6AG21cQ+fVgRr/2KtaoqA57jUfcHsau/A6KXRAT1GzrmWV/Gb7UMLAq4u1Wtp40tsPqOFZLo/GnhNp5f9qoTjl3V/n8mf9DD/y6wXafz0p29nBysofhcoViMTyEe0sYMv1rgoMrWn18HwbvsIgVzMOKh1v/+SIzNm+ue3z5hGm8cNaFFMZG4Qiu5hQ+I5ksHlV3d8jrOxFX4uJv86YHugwhRI225DUJp0J0I299/TYL3v8xIXZXg2ynNRwKSsTq8/Ds+e/yq7Fj0Vqz9/9+hHPH11grwHRoim7w4h6mMbVCKV23/GmVDibtD25suRbKw8KY+Nmn2CMjT7hmrTUXbNjDmtLKo6FUqfoBtfb7ai8EHW3KfX7sQM6IjzrhGprSVEAdH2Lj4+mjO+28XWXbQz8gd8KKetu8XhtbNi+gsrL2lraq+f8mhsXHuHGfEBZe1OKxTcCFg1IiSSIfAJdpJ+YLL+HvWzBcCq38K1YV/NyLKx0+5GyWcA2owN+U+2dSOOePbLkPtxCia7QlrwX+E0QIAYBPa6a/+TNCHQ2DKfizXX9nHnY8RKz+B1VeE6UUUY/9kYN3WDnyCw95v/fgHOrf31C6prupv/U1RFWT8b1wACIqKlh2xRVUVlaeUM1v5RUzePkW1pRV1Z82qrbgY4sHCLbWff/9frGdGkwBcudNYMeEdELx9274XlwkufMm9Ipgajq9DCreDl57vTvoBw9MpLIyiuNHPmkMfD4L27ef0uwd92NX9grGRWJNMAVwGG4q5mn2/DaE/WkpaAcU/cSLO13zL25gCd/vFsHU4XZx1vBBgS5DCNFOgf8UEUIAcOvbS0gObblFy6us3HT4Fcz7Uqg4sIbVm96m2JaCZ4BGh/tDaaM0hMeXYNo1GggrKeGFv/0Nr7fhlDtVVVV8/PHHvP3222zZsgVfI/OR/nHPIW7YnkHVsUmnNQNhtGZGzl4eGJ7W8r4dIDo6mn3zJnB43gQeGjuwS87ZFXxlbhRWYvedUve2e71W8vIG0/RHu4HLFUZJcXKTx1VN/G/d44YmNLqMd+6azYV/fZLcsRFsYxwr1PzADIRqJGnPiwzF1pr5tYQQ3ZKM1heiGyh0e7lw3X9Qtub3UwqiPWUoIMys5tWlf+XeITdhj7mVv3ErGtX0GkAKzEjwJWmMTEgoKsb3+ef80+Nh3hVXMGrUKFwuFw888ADH9vbZtHEjn/3rX0zesIbYojKUhoogO4//7bn6LaWtoTWGp5qR330LXNL654kGjCArZb5zGJPzBGvKw3FOcVFdFYFptrCkrTIpr4glOqb9CxUoNKezlHctF3Gv/jMD2YvSJrobtJoCTEmOD3QJQogTIOFUiG5gWWEpgzwVaGvLWc80DTB8fBB7MreNuAuNQqsoynU4oVTS4pDsY0bvJ+XmEfbhUj7Pz+ej4cMpKyvzP1DbR1RrlNaUxsaycdJ0Tl7xFcEuF49c/uP2zXOpFOmZG3HozlkZqi+xRNiptp6Ew7OcmP9kkD3EwKDlVZG0BkOd2OpJCoihCIv2UqjiMbURuGDaSOfsq5JjA1OLEKJDdI8/c4Xo4yp8JjujBrWqEdJt+tPlk6k1K07VhIKPOLuuf2mTvGDNVXUj+xUQXlnJqctXELJ9+9H9juk3WhtCS6Kj+WrOyXgNg8+nzW79izvO8ANbSRzcOQsB9DURpw+k2PdzAIJfTSYkopQgZ1UL0zgZRMccPuFze7DhwwJa4yQIdICXC61ZQjjBbiXKLu0uQvRkAQ+nixcvRilV7yspKSnQZQnRpQYHO/jN1FvwOlWTuUJrME2IsDrZGZTGusixmMcsQ/ouiygipumTmAYhW2IwqhtPwNpiaTbUaMNgZ/ogLvvj39vXt7AmPPTLK+XCc89v+/NFAxEn9ydkcn+MhNH4sm341iaSHrat0evjcFQwaPC3zJq1hNDQ0hM6rw+DVcyu69ZhIUBLhR7z79Xq84I2WTer5w92E6KvC3g4BRg9ejQ5OTl1X1u3bg10SUJ0qTkx4cSGRvB85Hmgm8iIGjzV/v9kj9gb3rbUymApZ4FpAdM4/kFsVYkklyzGEj+ybrO7v0nRjzwU3O7GGF3W7ITuB2MSeGvSXIqimgnATdGaWLfmL5uqMbyh8gdoBwqbauPIkCSCKkoIqTyZ+Bk7GVS2A/BPHwUQElrIpMnvk5KyG4v1xIKkD4UPC+9z9A+MeH2EGIqgtd01OmoGw2OmKjt1+1piHHbs7VxWVQjRfXSLex9Wq1V+WYk+zaIUfx+ZxhXuOyhfH8JPDr1OcKR/NSitwVVmwbCaOEL9YSPVlY1F+/Ad03IK8LG+gJ+vGUZl/y8oS/4GbXVhcUYSdehUojNPx/AE4Rh7GRVf/paCn3spSovgK+aSo1Kw+9yEbAkjoby4QUb1ofh49Az/D21tNdWaCI/m+VVVJLo0I6ed1563SDTCuX07B6+6GkJC2NU/kTHVk/GY79LvrHUkfbOfnCNDKB0YwpCRa7BYPO0eTK8BHxas+KgknEe5k8Pq6GwLk/UaClQiX3Jq6w7YwaP6oypKKQqPxmn26Gm7hRA1ukU43bNnDykpKTgcDqZPn859993HoEGNz1HncrlwuVx1P9cN4BCihzspOpx3Jw3lL9E/589F13PGoS846/BXTHZuY1Bkbr3AOMCVxxkFK/k4djY+4+h/xjMKfYSXpxG+4xqSdlyDxkQde4NEgSUihfKb+vFR2jCeUz9C1z5uASYpbB43kzJ3MyongyDTSVBIGZ+OnIKhfPhqpxNo5frpIR7NRYc8fP+Aiyh/1ib5sKx33hG01mTfdTfa6SS2qop1Y0dh+jxEHppLyYCPsZxURH++pb+bo6uEtftcig85h4NqMOuYdvTfAWDX1SwzFlJOZNvmOG3lv6GWGD4v83ZvZOm42YwMCTrh4wkhAi/g4XT69On897//ZdiwYeTl5fHHP/6RWbNmsW3bNmJjG966vP/++/nd734XgEqF6HwTI0JYMn4wRR4vJZ6RxNtvJXzJZbAvt8G+N2S+zDdREyknpC6gxjvrD0pRTfTcWZ08nWeNyxp9zGOzs27QMNIGbuFk830cFhdTeJ9ywvhSzyfXmULkGpN3Tjm96XChNbOPeHlooxPL8Y8FeNxMb+HcuhXX7t11P8/+dj1FcyYxZO8iylK+xrRV+LtpnGAwBf/cuW/qy/BoGxx721xr4snjMGl1wTS6rITiiKjmD1jbwtkBDagTMnazdNwsnDY7P+wfd+IHFEIEXMA75yxcuJBFixYxduxYTjvtND744AMAnn/++Ub3v/vuuyktLa37ysrK6spyhegSMTYrg0IchFstcPXrcMt6sIbU22dquIPHy95lTvF6VM1I6UJH6/6TfiZkfpP9/pT2cRt/5Tz1Jg7L0bsU4VRwDu/w/cLn+MlbLzBuz466QU51an62m/CHrY0EU4BW1iia59q7r97PYZWVxH/1IhafldRvf4XFFQXUXJITOI8GiojGYzga+WNEc1gNqAumszev45Vf3cy1b7/c8N/GsQyFcbD8BKoCtMbhdrFh4EhcNgcL4yK4KFFa5YXoDQLecnq80NBQxo4dy549exp93OFw4HA4urgqIQIsdgj8uuGk6fNrvj764M8sKyrDCNL4bCdjeELrpouqR5scDi3kiKPppR2n8i2TWN/oYwqw9aumcGocf/37fbx26lm8evo5lIZHgNaEVldx7lefcaT/SCK8DfuRayDhjsmte82iWUZIcINt9ooCvHlbsSePYcDKB6hMWktp0mqq47Y1eyxN042YWiuW6zP83T5q5r49OtXY0T80EooKuPdfj2Lx+bjq43dYPWY82waPqH8wU4MC645SLIcrcfULBZsB7VnNqWamgAjDwx2DB3Btv3gsgVihSgjR4bpdOHW5XOzYsYOTTz450KUI0WOcefYvOVNr9Hu3siv5BcIyb0CjjwuoJiioiH4H+FmTx5rPx/gwmpwz1acN9l0YR/+vy/jesvf43rL38CmFoTUKMJXi6YuuAuqHUw14FTgipF9gRwidPRvlcKCP6YMP4Fz9BI65v6Rg1H4iKwcSsfcqssP/ToQ9D0sTk+9vZRzj2IKpj8uJ2iC4vD83bJzLwbFe1sXW/MpopL/ouV99hqHNuttxKQVH2D5wmH+KMgCnF0tONZZDlRhV/lH99g2FuKfE+ZNxa4Ol1hjaJKWkgIHxZbxy0iIMGaEvRK8S8P+i77zzTpYvX86BAwdYs2YNF198MWVlZVxzzTWBLk2InkUp1Hn/YPh5P8PX/3lMW/3bphYKibX9keklHx7t89eIZLKbnczfokzCQ0rZ2z/96LaaYFpXynEfLRpwoRl4v/zR2VEs4eHENPo5qXF9+Wfsnx1ic9or5E7/FXHflODJ8XcL8dVcm2P/BURQymvmVVirUuq2Ka+D6IzTSV17N2GuIB7dUE16pdlkiJy48zss5tF/NydtXnc0mAJYDawHK1BVR6ebMso8OFbmYdlXjir3NPvvsraLwIAj2UzK3Mmvpg/mtTmXSDAVohcKeMvpoUOHuOKKKygoKCA+Pp4ZM2awevVq0tPTW36yEKIB1X8q6TdPxfR6OfTdfvYUOKkIjWDiipuwV2dh8ZnElB2hKDK+0aBRQRgxFDZ5m9es2ScvdSBDDmU0eNzQGmvCYMjxByAPmqgbR5CaltChr1NA/E9vxVdeTsmSJWCxgFJ4DINPJ8/io4suIzssgguO/Ifz939B/JtOcqfE8M01YwmnjGqCmcg6bHgZQAbjctJI3PZHfEFFmIYbmzMOwzw6mkpruDzDzZ9HBTW8vQ+o43q2zt6ynrScwxxOSMJnsYDVwD01Dvu6AnCZR/d2m1gPlOOJtKPDbTTFYvq4/JN3uaq8iIlPPtaRb2OvtXTpUtasWdNg++zZszn99NMDUJEQraO07qjZkAOjrKyMyMhISktLiYiICHQ5QnRbWbu+JPHlRRjaZLl1AlfOfKjR26ln6Xe4ghcwmhhGo4HnuZapz+7n9LVf13vMZxhsGD6a56/+OaO1lYfPHoslKOB/A/d67owMSt99j9LsbG4YOZWt/QegtEYbBpHmEd586mbUNoXHsHPe3/6Fy+7vt5+sD3ERrzKdVaRtuJXQgnEoDLwKVsdaKHAYxLlMZhT6sGootsHpp4b7T3pcOL3u7Ze5fNl7oDVrxkxk9ZiJlIeEsmXICIqiorH4vGilMLWBkVeNpcAJGsxIO76UILAf02UA6gJwWvYhLl/2Hqd/uxLHwIEM+t+LWKNl4FNLXnjhBfbt29fk4yNGjODyyy/vwopEX9eWvCa/NYToI1KHz2XX5W9TvPQ3zC/ZwJ0bn+KvE37i79xzTMj4kvks5H0iKWlwe9+HQSFxfK3ncP3Od/EaBlbTxKcUFq05mNyfB79/LZeNSuHXQ/t18Svsu+zp6YQtPJNfv/gm2/qlgVLommtaasQTHWeh1NTYTQ+pRVkMSNzDJNZhw8MBBnMPD7LYF814DJYmW/nbCAcl9qO3y6NdJrfvcjE3v+nVpd47eT6nrF/Fr278BVnJ/bB4vaDAZ1j8c+fu2sautEGURERipoRgpvi7GVi8HrAe86uo9t+iaZJUdIS//eM+YqKjSb7rl0RdfDFGaGjHv4G9UHPBFGDnzp1dVIkQbSctp0L0QWsydvFJxl62eSNZV2yjIsgAhwUs/kDS35nBjY5HSSejro+iBZMDDOIR7mQMW7lh59O4V8aiCqwcDktm9eRppJ4xj19NkdH4gbB25iwu+t0jeGwNJzZdtuJz7G8/RVFyKLl3QLgqQ6Mw0PgwUGiKdv6JUk8avx0X3HDAU83P1+928tSwpge0BTmdeGw2/238Y6iavqj6uDlS7a5q3EEh9c4BYPh89C/MYVKV4i9XLCAiqOnb/aKhJ554gvz8/Bb369evHz/60Y+6oCIhpOVUCNGC6enDmZ4+vMH2Sq+Pi176ikvfXsI7c6+kZEwwI9iOBnYymt2MYCLruIZ/4x5hsml4Kv/1XofDFsaXJ00lzC4hIhAq1qxhb1xSXTC1aC9WPLjw9w9dFTWD+SlLqfhJJuEVJo48hbaDpz9YDH9wTOz/BH+wPdz4yk01t9ifHVwzjV8Tqzs5gxoPrrqxQUtK4XYcnQ4rqcjHydurKQtR7BmueO6s+QwLbzhdlmhZa4IpwOHDhzu5EiHaR8KpEKJOqNXCx/83l4pLZ7HihY8JXnWANUNnURQRgccKNu9Bqi2apyy/5JIBU/jZgDH8vD1zVIoOVfjCiwAM0ns5lzeZzFosmJQQxRo9i+X9zmRGuJfkPyiMckvdFGO+UE35+T6qZptsCouhoLnlR5XC1eiqCu1Uc9MuvqiMi77VJJTWTC8Va2X6+BESTLuAknlhRTcl4VQI0UBYkJ3nf3RuoMsQLdi2fgtff7mSIxHhzA/bzb36Vyil6/oKR+oSzuBDjE9WYtvkrJls/2ggsVQqol6yYpR7yV7Yuj7CwS4n1fYOWAilJhilHH6ZhNKL/ZuAx6aH8mmSDHg6EWPHjmXr1q0t7jdlypQuqEaItpNwKoQQPdAnr37AN9vXgoYws5qqq6r9izgds49S4NigiF3h9P/cxARha3Ln8CI/aNV5qx0duIiCNqm0HwDAVPDGrFB+PL4/8dI95IQsWrSoVeH07LPP7oJqhGg7CadCCNHDHNi61x9MARTExWegg+p3A7XvhKhnrVjKm791uyN9MPd//yZ0kzPb1tAam8+Lx2Jt/WpOzR7Ph835HS57OOsHO9g5MoRbJqVyRUrciR9bcOGFF/LWW281+fill17ahdUI0TYSToUQogfxlrv44H8v4QuCjLgUssOiyCnxkv2pQWR5CQ6bm8krCgiq9PfpbGk6ltfmn4WhNb5mVlqaWOTl8gw3E4t9mErxTZyFl9Pt7I5oZydUrQGDkLIPKIydza2LJjAuIgRD+kB2mPHjxzNo0CAefvhhzGNW7jIMg9tvv52wsLAAVidE8yScCiFEFyvOzea7L5bhdlYTEZfAoIlTiEnpj2phKU6tNe/e9Xv2pgTxwaTTqLAHc+XbzzJv0zriyquxmCZBbi/HRsaW4t7qsRMbTP10rGv2u7hljxuvAqsG0JyV4+XsbC+LxwaxNKWNt+C1BjRhRc9h+MpIs41lQqTMXdoZwsPD+e1vfxvoMoRoMwmnQgjRBbRpsuGjd/nqf8/j83rqPbbixf8AMGD8JM7/+a+xNjJXKcD29z+icPhqPhr9KyZt2sL13/0Lx+AK9DmgDimCvjawuNvW+ugzmg6mE4u83LLHDdQGU+q+18DirU62Rlo4FFoTqrXGyKkGBWZiMBw/k4M2sXgOEXnkb/isiZQk3s2VVVVtqlcI0ftJOBVCiE5WXVHOy7/9BUWHs5rd7+DmDTx61UV184pabDZGz5nPSVdcw6Fdm8mo+DX7R03jyo/fYvq0zzAnuqk2DVAa5xSNtmrCl1qaHPjUmOEZ+/hu8PBG5yK9POPYFtP6FKAVLDrk5tGhDjAURnYV1u9KMAAztBz3lDgIqgm/NVNHWd1ZlMbfic/Wj6jyEhalyMh8IUR9Ek6FEKKTvf/wA00GU8M0sXt9eC0GXkv9IOfzeNj42Ses//QLBocUEuq1YbFbGX3h1xjB3toDHD2Wq/luAY05aeO3bB06stHHJhabjQbTWlYNk/O9WEJ9WA5XoUrcdbFYVXmxbyzEPT2ubgCVMjWe4BmYFgvRxUe44rOXGPLQk22uWQjRu0k4FUKIDuZxu3nujhsoy89rfketMbwmymsS7PFi9/goC3HgsVkps4WzLWQkJ2dvwW4tJ9eawvpJp1A+1s0824eNHs4X3vbVqF8684ImHzNb0QBrVnmwbWt4a15pUGUeVIkbHe1g1roVVIYEAYr+2QcYvX8L55yUiK0jp6YSQvQKEk6FEKIDffqfJ9n88QcNttfGxnp5Tym8diteu7Xefj5lkJvcj5IBKWTby4kuzsbmK2Ps2vfwZtgoGh9BzKCyBufwJus23dIH8Fmb/jXwTZyFs3K8Tbae+tB8i6/J52sFlkI33mgH1WHRhLqPkHYwk9ScfZyatJehUbIKlBCiobbfAxJCCNGojM0bGw2m4A+lrYmNCrBqk2GZO1n41TvEF+zE6jsaRC1HPGQu60fuhtgGzzXD217z8Ix9GL7GA+Yr6XaUbnw6Kh/gAd7B3fwJTA1K8d2QERyOGcqYwu2c028HE6Jz2xijhRB9hYRTIYToIK/f95uOO1htP02OW/WpJinmrk2gurD+MqKeNI0vTKNbnN30qCn7tmM2MZXUrggLvxvjwAS8xxThAzwG3GWpprCZcykNZqR/5gGPxUbqoRx+OHADwyMKQBmQPrPVdQoh+g4Jp0II0RMpTcH240a6W6B8oa/ZW/uaoy2h2SnJEB7EmEP7ag55dHCVqpm4/cN+dhadFMqSdBvbIwy2Rho8M9jORbODWJ3maDKaakDbDcyEIDA1qtJDXkoS/+u3ELeygsUGE/+vfa9dCNGrSZ9TIYToibSiquDoYCJT+1tYcwcFURYbTGpheaMR1acUzuBgwqqq2DliBIZpMnvfVpJLC9nafzB54dEoNP2L8xmftZdsRzDrR07h70NtaCMIZZpopYgoL6lLucf3p9U133sGhNXNdaqK3OxN7sfPbXfwXvw8XhidiiMsvlPeGiFEzybhVAgheiANVFlDMVEYaMo90RTviKPkWwtmqsGBfv2YtmMfFq0xTJPKoCB2jB1DVloaWikSc3M5Eh8Pyt/OOrggm8EF2XXHDysvZ9iu3aRmZWH4fGQkJPHh7FPYNHgoww5sp9IawlrfeLwjI0GD5VAlVHn93REUaK/Gkl2Fb0AYRm41ZrQNbBYwYWX0ZP5hT+LOgL17QojuTGmt2z73SDdSVlZGZGQkpaWlREREBLocIUQf9vBVF2J6PC3v2AE08OlJ57J11CTC3ZVctPYronZtxOL1D1CqHDASbQ9CN7M0aVMScvOYs2IFSmsMfWy7qCYrOpyvRwzmuTk/xpUSAVaj/kpQpgafxv7tEYwKL56RkZixDnSQxb+fxwS7hWibhS2zxmA7fhUpIUSv1Ja8Jn1OhRCig1z/zxe65DymUlQGh7F92Hgiqqs5a/O32N1OLB4XAKlF5ZhBIS0HU63rJvyvZfV4OGnlSpRpHhNMofbmff/icoqd6bjiwhoGU/D/bFF4xvr7w9p2lGLJrKwZ2aXA5v+1U+zxke1qYaS/EKJPknAqhBAdJDg0jCv++Deg8emX2kMf9wXgdgSzdcqpnLFjHZeu+5yI6koc+YcJs0YyNe5MpqZcSkp2Tt2gpsYPXHNEVT9cph/MwOr1NvnLQaE4d99qCLM1DKa1DIWOsGOG2wCwZlZi5FTXHECB6Z+6yqKk1VQI0ZD0ORVCiA6UMnQ4Exeey8al79UNDGqtxgYWVdoS2R+SRrR5hESjAm9oBL6IKMYUZNe1evYv8TI76EzColNQSlESA3uCKgivLkfXBkCl/PvX/GypKic8O4MEj4Xdo0b5BzoZBrGFhWilUE32+NL0L8sjyOXE2cLqTjrcBuUeNGA9WIG7X6i/FK0ZGOygn8PWhndHCNFXSDgVQogOFhGXANT20mx51SYNVCsHBY44toSO4uzCZXXzm0ZZRzPNmIBWGq+9HLexEydOtIZoHc4YXypDg5PrzqGBFwbYeSVtLtNyNzMlewfeqiC8pg2r4ca+fy/K58PwehiUW8SQvGL65+SwZ8hQiuLisGFrXaDOdmIrrkT5fMT4ShlXsoVITxkFMYlsHjWFougE8Jl174NR7gGPD6wGDo+HW9ITUNJyKoRohIRTIYToYCNPmsuK/z3rX5zeYuDyObFjoFAUq1CqbOEEm9W4DTurI6eQFTagrhX03LwP64XDgQc+ICvNze4h8SS4jhBdnMGA7EpGJZ5NVFAKJiYKhYmJgcGb/a38b4DBDPU1/9fvGUKTnYR8cClRjpNQMftYam7G9Pr7ovYv8k83FX+kgPgjBWB14Bh/Fa6De5p8bRrFruhU2F1JbY/WUh3ECqYxyHOQqEOlzN6/lNwRA9hSNrTueYY2/aP308I4LeMgl585o2PfdCFEryHhVIgusP7zDax+taTetpueOjUwxYhOFxoVzUmX/x9fvfQcRtJIfFYfruI83L4iIirLybOl8FHMAqqsoXXPCfeWc0rhSgZUZ/o3aI3d62PAkVw2jgsm6dDXuFNSOZKYyJFE2K530N/MZ4gvEYe2U2FUkxH8HcNyl/H2inIMNO5BPoKiFxBjX4BCoYuHEzvAQ8FeC1qDzXvcsqVeFygLKigK7SoD3bDPqkLz2pC59bZp5e+huj9kYM1OCmuBh2TXYXKDUwDNyIL97M4cTFl6OBds3ohSV3TU2y2E6GUknArRyR6//vMmtycNtrLo53O6uCLRFaadfzFBYWEsf+s1fBGp+EIGoRhEldakVZYysPAt8rzhuCzBhJhVpLhyjraYao3SmgkZeRyJSmFDv91MdQ5Ea9/RfRQcshRyyFIIQErFAWZ9+C1Gta7tT0DQVgtYP6Pwwmzi3D/D0DamVN/MJzyPDy8VDgubh/j4bLyiIFIRWQmn7nmdM2f8GHPVk2hX+dEXpAzQJs+OWsg3/cY1/qKPuU3vNWzkBiXXFVsVb8fnhejSEobvWNdxb7QQoteReU6F6ERNBdNjSQtq72aaPj55/z1Wb9iEUoraj1wFaK+XwZs3YXGVkxsV5h+8pDXx5VUMyS3C4bPy6hkXkRNzkFT7NCxlhxsdIO9wVnHuR+9huDRK199BKw0GqEWXE+b2/1srcubwZeEbfDx2N1mJPpSp0Yaq61rQr8TOn/fdTHjeITzZG8HnwohK408DprI8IqGupbQBrUmvzmRs2Tbi3AV4lI29oYP5LmIUZpDBqIoDnJuxnim5uYxZtbzD3uOWPHEwh+VF5cyPieDHA5K67LxCiKPaktcknArRiVoTTkECal+wd+9evvnmGw4cOIDWmn79+jFjxgxGjx7Npgcf5tDSN0gpqsDm82Fog4P9J/PGzFCqQ8p49obHeOjNr/AcWHf8zE8ATD64isFrMhoE01ra0DByNAz7EXsseZSpKj6JX87miO3+8Hocw9SMOQgXbVnImmGnU63ga7wUoeuN+K9/Es3cghWMrdhet2oVgInCo2y8nXw2p6esZMgXxYy0JjDj3adP5O1slQFfbMLZyPapYcG8N3V4p59fCHFUW/Ka3NYXopM8fkvrgqnoG4YMGcKQIUPQWqO1xjCOtj5O+uUdTPzF7Xyy9jVe/eoN8gxNbBD8YtrljJo4G2UYXDB/Ji/+exN27W3QepqUmdfsxKrKVGQ6fWTlvUZ1WDCVMYr9YdtoIstiGootg2CTbzAVPg9mlB1LsQbMxoMpMKpiB2MrtgPUBdPa723aw7m5S6keFcymM0KZWja5Ve9ZexVVOxm1emeTj6+tqObU1dv5fMaoTq1DCNE+Ek6F6Cxds4ql6GGUUo1OoaSU4oxpl3LGtEsbfd6Y1Fi8g05C7f8Ku/bVPMefSZWv6emqVHA0Xm81A7J2MCWinKjkKixo7sqEVUEOnoqOZENQ4/OVGmFZ+MKG4x0VRcThQlK2Z7FHJ8DxM7hqzcTSzU3O62qgCTGdbNg2AU+SZvD/nd30G3SCkr7Y1Kr9tle7qfZ6CbbKr0EhuhtZIUqIThKWGOgKRG9z/1VzCJpwDhvMVPLMMI6YoZSYQXhjU/y37o+jQmLR1cXYVBXppxXgGDSTPPPvZDnfJcP5NqGlv+fvh2KYX1nV6Pls2op3ULg/BUdZme3IIBwXoOq1utpNNzGekmbnR/VhEFVRynclE7l/3ZETeyOa0NpgWuvijU1PmSWECBwJp0J0kmt+J/1IRceyWQzuvXAi/73rahYuuoI5517GyIH92d9/MspsGA21sxSAuDHlVDjuoNj3U7x6AAoDC1Yi9ChKPA9y1uELCG5kqdNfV42GIP9spkWhkZQ7gplgO4QZYsFMCkZbalefak31te2qiv+uPczbG7La9yY04X+Z+W1+zrZKV4fWIIToGBJOhQgwGQwl2io61M75E/px/tgEjhw6wK5oC67J/inJaltQVWgCmF7cwVZsA+dQrU9CoTCOSZLWms4AQ3znMzn/6PRQSismVYwkhqS6PqZaKTakDWOQUcTY6iK8/UJxnZqMc14yLmWnwBbTXLdXLGgOBaXUnoHbXt3SkW8Jd+zLbvNzgmWFKiG6JelsI0QnuumpU5sdsX/2XYO6sBrRU3k8blaveZPNm7dQ7fQREaaZNGkchjGcOF8uA9QhPhoyjdNCr8Cb8R7hWeVYrUEUxsSwee544nwnNXlsA4UVTb+SS9EJ36EUpLqSuDP7Gv49yF5v312JqQzLzWZK2W7sW2H15CHocDueiTFsqJjAgoLG/62bKKoswewLrf/v3ev1YbVaGn1OV1gybmDAzi2EaJqEUyE6WW3L6LEhdexpUcy5eFKgShI9SHl5MY//82GcFQYmdgygvBxyPthLovE1521ZSvn+IBIH7+LAmQmYC+w4HMHErCznKzWHYMOLNlObvfOugDQdSVTZKE7zJHBF4fnkBQfxbprDv4PWBDmrmfvNB1RbbOyMH0FQThk3rHmJTxMmsjdpGFtnTiPum0ImFW6um0qqtiXVZdh5L/FsTFU/iB4qqWRAXPumACxcupT82++om5v1idQB3Hjn78Bub+GZR02IlukHheiOZJ5TIYToxh587PdUFHpIiM0g3bmbuC0VGGWKak8YkYfKcbh9HFgYx7bkiVRWxtQ9z2Evx+UKY45rJENJaXI0f61v8VCFiyP2rSS4p/DHCSEUJzjqbusr7SPU5WJ4bgZZMYn8cIfBmyVVzLd8SIEO4z3zZNCaFGcOY8u+I85TWDcJ//bwETgtwQ3O+d3iBYQF2dr8nuyYMBGcDWcw1cADV17HJyfNb/EYB2ePJsje9nMLIdpH5jkVQghAm5rt32Sz5fMsvG6T2JQgkpKyKC3IwhIaSvrYiaSNGYcyumf3+337v8VdWsnUsR+R8pKT4O8Mf59SDWGqGEw4cEoi30acApX1w6fLHUaIdjCAhBaDKUA5muEEs1d7eYRq2FJN0OQ4nDEOgnQVo/P3MWZvFsFeN1MzdlGmFXcxCpfvIg6TyRhjGZ+aqWwLTuPjoNMA1WBO1OOnmmpPMN192umNBtNad/3v36ycOJ2q0LBGH0+xWdhw0tg2n1cI0XUknAoheqV9G3L56Gn/pPD43GREHqDwUCZbIqbiCU8nNXs/J71/L7FJyVxy92IiE7rPspZer4fPPrsFzZdMn+Eh+jkLQdv8AbpuVL4/o7IleSq1o+DrU6SZsayy7uEUb/OTzWs0VUB/LPQz4/1HMjXz1+9n5rj/UV0US2F+/f6ZJhqnxclKj4cII5wbVRUDE3Zzzfi5qNxqrLvKUW6zriptUZiRNixFbgDOGp3QrvfGd+hQk4/Vnuuxv97LD+/9W4PH980ZS6glcH1chRCtI+FUCNHrHNh6hI+e3o6p4ECyk1KjlGVTp+K2z6zro5iblMraiXM4ZdVHOO+9ix8//CT2oIa3nrvaxo0vU1D4a6w2f52WQgheazTa+nkkIR4njbcQAjiVlwyjgGneIQTTdF9MhWI8/tA22ZeMwh98t2pF6s7JNDZXlEIx1pdC8sHXiY/5nLiEPB4a/CRKgZkShjslDEyNqvYCoIP9v26M5bmMignliauntvIdOcrbTIvpsQbk1h+5/+TIflyYFN/m8wGgNXd89Arbq124DQf7Qgew5eQJRDSxcIEQ4sRJOBVC9CplhdV8+PhWvGi87gKywiP4asLIulB6/K3m5TPPJGxZCTu++pLxpy/s+oKPkZv7HYVF93BsLwPHdwZ1afE4laGhzR4vX5UCmq3WTKZ6BzcacE1MXCjSasJpPBGchZMP8GCiQKv62bTm3vxU72DWD3Iw/v3PGXxRLpkhSWyKGFn/4IZChx5z615rzjknmMenzWm27qb4CgtbtZ8CcudNaNc5jvXmG/ezOHQK+Y7hEHT0TRi/YgM+i4PM+Z27DKsQfZWEUyFEj5ddkc2SLa+wcvu3mEfKOLliLJn9p7BjcBhbhyT7d2psTkulQGs+nXM+Iz57PeDhdNXqWwgPr79NuRvftyo4GK/R/C3qKuUGBVstGUSZIQwzUzAxMTAw0RgoylQ1UTq0bmy9QjEQA4Um0ajwH+iYzqJhOoh+9sEwdxKTH7gF5TBRBhRbI1vxCn18mrOcKs80Qmwhrdi/PntKSss7dZA1r97DrbEX4jUa/pqstgYDmoGfb+DAqTLrhhAdTcKpEKLHMk3Nf1a8yD8y/kpUqZVheZdzOHUy342z8NmEEDxWa5MtpnWUwhUUQk514FcLCgs71KBMbz+N0goTQCnyExLYOnYMRXFx/h20bvq11aRKrWCFbQd7zFxG+FKI0CG48LDPkkueUcolrpmoY46Riw+A4ZZ8UODFy4B5A5jd73RiExOJD3Pg3ruX/QcPYNgMtIZ+rnyUNtGqucFlFkx3DksPLGXRsEVtfn9UKyfNt0+Y0OZj11O0n7uCJ+JVTYR/5e/jG+QuOrHzCCEaJeFUCNEj5R0o49//fYtlkU9x6frxZA66lHhPGKGHSnltbn98htEwtDUT5Ioi2zdAp6NUV1ejVMMlRF0jNPnDI4jZW8nGCRPYP2Rw/R1qWn9bfK0KcizF5FiKj27SMMk7qF7oM9Esxct5lkIiDH9gLwoq4toJ1zIwMr1uP1+5v1XV9BhUZDuISy5mQeE3fBo7A59q5FeL1qCdhLg2sr90cMPHW6nfs//h8A9+2Ow+g19e0u7jA5SsW8KO0LOaCf1+xfYYbvhuH0+Oaf/rEUI01D3nTxFCiGbkZZTw+p/XEXIokgu33kDxgGvJSI0j3OVjb1oipmokmMLRIHcsrUFr8pPSG+7fhVwuFz6ftUF5xZkp2HMVH5xz9tFgevxrU0c7pSrTH3CtXi9Tv/2Wgfv2NXzN+INphA5htC+1bptGswkffyOEftZsdM3/WUZYGBhZf7S+PbV/XR1HtkagNfx631OE+JxYTF/9k2kTlCK8+L8o09WuW/q1ImbOJOmJxxt/0DAYuXNHu49da39BaYvBtNbq4qoTPp8Qoj5pORVC9Biuag8v3PMVzkqNUgqbEY62hJFcWEX6ES8K2NnPjjbatma63e0kdubszim6lUJDQ8nLG0xKyq66bVqDe0USy+cOwhkU1EJg8gfvlEOHSM06RL/sbKw+HwMOHCS0sopdI4bjqVk9SWkYZCYy0zMc+zG/BhSKCRgcNI5Qpfytpvmp+Tyw8IEGZ7PGxxN26qlUfPklrhLI/CKW9BnZfLjhBn4z+GaWx0xD19arnYCN8pjrqAo/kxcObyDE+jwXDb2ASEdr+qrWF33qqUTv3EHVnr3k/+2vWBMSSPzNb7DZOmZS/eCgVq4ypTXzY8Nb3k8I0SayQpQQolvTpmbfpnw+fnobGt3oiPPajzGlFH+9IIpqRytvCmn/ZKHXbXyPhdf+jNnRgQ0aL730P2Ji/oDV6kEZUFkZRe47E8nu379Nxxn93XeM+W5bvW1ew2D/oEG4Tw1hWsZ2Sn13EhU6AIVCKVU3IKoCJytsO8iIz2PG3BksHLMQm9F46HNnZXHwkkvxlZeDzwdoDk3w8O0sL3n2eFbGnktO7DkA6Nr+m9oEFPbqdQyufJn/nvkcqRGpjR4/UMxdHzMsM5QKS2izfxAkOvPZvHBBF1YmRM8lK0QJIXo802fyr8c/oHq7FSt2NCYGjQ9QObbPZHKxlwMJtiZbT5Vpog0DtCau1Melh17ilEH9Ah5MAaqqU8jedjIDB35HVFQ+Ho+d0qioFgY9NbRtzBjSMzIIr+kXCmA1TZLyc5lethuiodr9BIXmn6nt3VUb+qP6x/Hjm25t1eAje2oqA15/nSMPP0zZRx+Bz0em08HLkSGMIZ782IVoDaPzd/DrAxsZ5crD0MHstM/gyYHjWGvfzk2f38Q757/T6sFOXcEYehqXrbmfZ1LPaXyHmj+GdCNLsgohTpy0nAohup2sfQW8+uBqHBz95d+aJTgBdqfYeOXk5oNmYqGHoYermMer/KToFax374egwH5+mD6TP9z3Dxy2g0RHZ+NwOMnOHorbGQJtXV5Va9IPZjBjzZqjx1cKX4KVcfMy0Bo80eOx/XQ5zl1FuDPLMYJthExNxBLUvjYLX1kZ3rw8btr5IJGHN+AZMps33XO4a9ub3FjxKQon1PxxoZQPp288b0T+ggfifoXVYuWCIedzz7R7sFq6SZtJZSHff38JH8XPbvCHgWF6GVq2n+UXXhqg4oToeaTlVAjRIxVml/Py79ei0QTRvkEzQ7M9TN7jZP3QIJSp61pQa1tMwyqqSC72cUH+Cq6yvYjnlAcCHkwBVq9ahc9XjNewkZs7DK1rAmkb+8/WykxLZcq6dVh9/sFJhtakDDkC+LOWTZWhlCJ4RCzBI2JPuH5LRASWiAgql+9nRozmLU80F+55lJsqtgJmTb47OlDKYWxlUen9bLGcx4fR7/D67tf5PGsFn1/8CZYW5m/tEqGxPHfpTexb/xl3HTxARkg/DG3SrzqH1xddh1JTAl2hEL2WhFMhRMCVHKnkf7/xt/I11a+0tRSwcEMVqYVe1gwLIifGitKa1JxM+uWXMKJoIPPNV5lg/wD36Y9jn31VB72K9nO73Xz+5RcYaLwe/wTvERG5lJUlUW8G/NZSCm0YZKSnM3j/fjSQlxDPiH7+ZT01oOzNry7VXj8qzKAyDfJyN/Nwuae2nDpe4MHoKF6LCMOjSoF36h4rqs7nyqXX8fLZz3ZKbW2mFIOnnMZrkkOF6FLdIpw+8cQTPPjgg+Tk5DB69GgeeeQRTj755ECXJYToZC6nm3/ftrLethMJpkePAWMz3Iw56EIbCm/VWhJsoThTR7B03H4clUM57Zr9bb9d3knWrFmD1+uldp3SIUPXUFSYTJtD6XFykxJJz8hg75AhVKf4B1lBTR/d0RecYNWNm+Ys5nMiUZ49DPUeQqmjPcfcwKlp/Si1HNcyekznsm0F68itzCUpNKlT6hNCdH8B/2R+5ZVXuO2227jnnnvYuHEjJ598MgsXLiQzMzPQpQkhOkl1hZvHr/+8QTDtCMd2o/dYNPgqSI4azgcnDeW11CBOyrXz22tu6TbBdN++fXz22Wd1P4eHH6HgSDpFRSc476pSZKek8M7557Fl5DCM6pKjjzkiYdL3T+z4TbBgUu20EIxGUX9Iw/VJ8ZQ29r4fk8G1hn9sfr5TahNC9AwB/3R+6KGHuPbaa7nuuusYOXIkjzzyCKmpqTz55JOBLk0I0cG01rzywEr+c2fHh9La44PJ7ng31ZSjrCWY8QfwWktYlJPNv6ZH89NbvofRHfo0Aj6fj9dee83/g9aAprw8npKS5A45vmm14vO5CcncTYGrZpCYYYWFf4aw+A45x7F8po9DVoPhuW5KDQuV6mjXAQ+wtsW5Wv0Pf5GxtMNrE0L0HAG9re92u1m/fj133XVXve0LFizgm2++afQ5LpcLl+voGthlZWWdWqMQomMU5pXx8r3rOvUcVdZScqMN5sUkcdY9U7C3c+R5V3n66adxOp3+H+pWeerYKZV04T4MnxfTYviPbprw7i0QPRDSpnfouaq91TwVFcFfcgtJ7pfOuyHBXF65G4XJDru91dNhlbsLO7QuIUTPEtCW04KCAnw+H4mJifW2JyYmkpub2+hz7r//fiIjI+u+UlO71+TNQoj6TNPk8es/75RgamJSYnOyN6qQLUmHWRAUxbmhKVzwsxndLpiapsnhw4fZu3cvhYWFLF68mLy8vOP26vi5Pl1RsWhAh4fxVtypeFFgeuHdmxtd1vREhNhCWBkZy3afg3ty9/JolJssawJaGw1u8QshRFO6xaf38ZMva62bnJD57rvv5vbbb6/7uaysTAKqEN2UaZo8eeOXHX5cjcbEh0azN+ZLZjrHsKAqnXK7hWk3jO/w850I0zT59NNP+fbbb2sGPXWt6OAwxkTmMDsuE2uh5rH+l3Hj4VexF+yGQ+sgdWqHnctQBucNuYDve5bw1I4j3K/LuDqqP7c4EzmjcnebFxMQQvRNAQ2ncXFxWCyWBq2k+fn5DVpTazkcDhwOR1eUJ4Q4QR0ZTGunmNJofMqLVVtJtSjOqT4Hm6HwpIYx/JrR2MNbuS56FyguLuaJJ57A4/EE5Pwak5stLxGS4qrdwG2HXuKzqKnML1kLRfs7NJwCXDv2Wj7O+JibhirSfC5ey9/COpXOn2wTsOosvC2FU033mOdUCBEwAQ2ndrudyZMns2zZMi688MK67cuWLeP8888PYGVCiBPV0YvP1QbTKqOcw1G7iVVhTE+dSeL0fgQPjcIS1n1CKYDH4+HRRx8N2Pk1mhHsJQTXcdthXsla3Bjcs/IgL+SsA3vtuvea8Ybi43kT233epNAkXlz4Ivd+cy/r8tYxP70/k6ormV+1FVVq4f2oiOZbTxVcMfyKdp9fCNHzBfy2/u23387VV1/NlClTmDlzJk8//TSZmZlcf/31gS5NCHECnJUd11qYPCSCOZcNxxFqo6LIiWYucf3Dul2/0mMtWbIkoOe34WUBXzfYXhsLKy0hvDbsFKidc7QmMG7W0O+TtRxe0P4W1bSINJ4981n2l+znN1//hg0FW9gQFHT05I2N+6rZFm4L544pd7T73EKIni/gn+yXXXYZhYWF/P73vycnJ4cxY8bw4Ycfkp5+gnP8CSECqql+460VMQDO+cF0ohPrr2QUHhN0QsftKvv37w/YuRUm17GEWEqa3MeuPTgtjvqtmDXf+6xWJn76LRtPm3ZCdQyKGsQLZ73AG3ve4Pltz5NRlgGAwwWY4ArmaEhVMD5uPM+e+SxWS8B/NQkhAqhbfALceOON3HjjjYEuQwjRgRwh7f94ufHJeSccbvuyc/mEJJqejkkBVm02e3s9x7B1SC2GMrhk2CVcPPRiyj3lGBiE2vx/cBQ7i/mu4DtCbaFMSJggfU2FEEA3CadCiN5HKYXFofC5Wtf3NDQRvv+7Uzu5qt7q6Hu8gBWMYH+zM6Zq4LAjoenDKdXh00wppYiwR9TbFhMcw5zUOR16HiFEzyfhVAjRaX7yyFyeuOGLZvcZOS+KUy+b1EUV9SwG4NMmShkcDaCNddbUjGY3p7OSKMpbNZX/cykXtHh+n8+HxSKtmUKIriXhVAjRaZRS3PjkPJ6/ZyWVRQ0HSN30lLSUHu/OO+8kLCys7ueSkhL+/dTjVDg9NfOEQu3oIUP7iPcWMNmzkSGOQ4QaVVQrB9nE0488HHgaibKKXcHpvJh8dtNF1LSaSjAVQgSC0h0930sXKysrIzIyktLSUiIiIlp+ghBCdIEtW7bw5ptvtnr/e++9t8l+th6Ph23btvHZh0s56LBTGhLK+n4jKAyPOrqT1sRVlBLkcTExczdppfmcxldMZTNWTP8+ygKjL2Rq9plkjRlSs63xcwa7qjlw5sxW1y+EEM1pS16TllMhhOgE48aN44svvqC4uLjZ/ZoLpbVsNhsTJkxgaEQlY/c5qLI28tGtFAXhUdi9HhLKS/Bh4WNOYYMxiSsWziAmKhqSx0NYAu8UljJ55U50uL3+qk2132vNrlMnt/elCyHECZGWUyGE6ER79uzhf//7X4Pt119/PUlJSW0+3kNrPucvldFNtnj+8J1XOOvbFXgdDqKDgxn94gtYY2Ia7FdcWsHUD9ZQkRhTr4NqUHUVexZMw2brmNH6QggBbctrEk6FEKIHMbXmD7sO8lROCYbW/kFTNatnXfbJ+/z47SUoq5WIc84m8c47scbFtXjMopxDWC12IhKaGcEvhBAnQMKpEEL0cllON2/mFpPn9pBot3FRYhQJ2Ycwq53YU/tjiYwMdIlCCFFH+pwKIUQvlxpk56cDEutvHDy4w47vcrkoKioiLCyM8PDwDjuuEEK0RMKpEEKIOjk5Obz44otUVlbWbTMMgzlz5jB37tzAFSaE6DOMQBcghBCie8jOzuaf//xnvWAKYJomX375JW+88UaAKhNC9CUSToUQQoDXzbP/frLZXbZu3doguAohREeTcCqEEH2daVL0zMV4zJZ/JSxZsqQLChJC9GUSToUQoq/b8wlbc6qgwWKnDeXn53d+PUKIPk0GRAkhRF/mdcOn9xLamrYKrVtczUoIIU6UtJwKIURflbEK/dBwOLKTsewCWp72esjAAZ1elhCib5OWUyGE6IP2b3ie3e++TjbzseJjoNpHVFAeJVWJTSyNqjEwCf/yfbj8ii6vVwjRd0g4FUKIPuazz//NVyuyiCgfxNCKbeT0K+KzYaPZ7R3J8B1H0FYLAP2yDzNq93bCSyrwWiyEpHoIG1XFqs2rmDl+ZoBfhRCit5JwKoQQvZRpmmRlZVFVVUVoRARh8QnkfP0xXy3PYnret0xP3kJ1bDBbw4Zy+sF1mGoDy1JnMDw/k/S9mdgOu6gsdKC9BjY86N2air02LN6f8di2Uzms7USZ1Zwfrhgx40pIGhvolyyE6AWU1rrlTkbdWFvWahVCiN6moqKCvXv34vF4SEhIIC0tDV+pmwMfbiFvVyab7VnsHFVEUXgoOa40Yg+5GJV7ALv2EEcRM9nIML0PB16U0mjqj9n3eRRHtoZTvDsUUGgFFUEhXHrfP/DabWgUPsPK+fmf8+iYIQSNPi9A74QQojtrS16TcCqEED2Q1+vl448/Zv369ZimWbd9pn0kVofmcPJ7hCTsJoJi3K4QSkoS2bd3BlobgCKGEkbp3TiUm2AzhjF6Lw5jH0ds0bySfCa7QgcRZpZzuu8TIsJy8NgUtiIIXm5FfWNj+xkjyRrXn6+jJvJ11EQUmgtzl3FbSCRpp19FUGhY4N4cIUS3I+FUCCF6uddff51t27Zx7Ed4hCMd54QNTHd8yLGf7MoL5qooyrf0xzSsDOuXwbjoPZgoTEBp+I7hPJV0GZ+mT8fm82JxVPNLyx9IUrloDYYCTP83oftM+r2jSZpahk372BEykGvG3E9mUBJPrbqdwzvDmHzhVUy/8FKZekoIAUg4FUKIXi03N5ennnqq3jaXxSB91AaGRm+tt92+UxH9jBVLpcI0/EFU2zWec1xUzNa4giwoF+QeGMP2solYnTVPVCbxCQcYOGAjDkd1/QK0Jm69j/FVJQD4UBRaI5k19UWM/VV8knMta7IGMOC8W5l+4aWd9C4IIXqStuQ1medUCCF6mC1btmAYRz++q0IVo6csaxBMAbRN40nz3/Y3TNAOTcHtXgrnGbhtiiH7K4n5No7d+ROwOc1jnmhwJG8gmzYuhHI7AzKrGLG7nMH7Kwmr9GHr76mbFdWCJsFbwsZvL2W6Zxvv+05lUdpW9r3/NK6qqs58K4QQvZCEUyGE6GEqKyvrvt+RlEby5M0k2rMb3dczAIpu9lE11QdA+Xk+vCkalGbMzgqSDnn5QJ8G+Gcyrc/A4w6mfONoBh2sIjnPRdrhaqZvKGHU7kqOF+ar4vmi35OjYzAUTIvax/71azrkNQsh+g4Jp0II0cNERkaitSY3IpJ9w2IZx2Z/n9DG+KcspeRKH94Ik6qZJlggusRDQqGbbQzDg5X6Y/SP0hhsZSRubBgaDF27veEzFKC05sfW91EaBocV4SrNP/EXLIToUyScCiFEDzNh3Fhm6dXsSB3AeL0Rs4lgWUcBNqg6xUQ7/Jv6H65GA4VEY2A292x8WCgjvMEhGz2VgnTjCEr5v4+MDG3VaxJCiFoSToUQoicpLSLmsSGcxjfsi07Fony0alSrD3zR/j2Tc53EF3lQgAMXuqVwW7NfW2kNaVPntvl5Qoi+TcKpEEL0FFrDwwOP/qjgAIOxtCaeKjBKIDbbzcjdFXWbR7Onkb6mxz7NpD/ZRNCwj2lrWBzSciqEaBsJp0II0VO8sKjuWwWMrNzHNsaQRyItTgpogeCNFobsrUSro7flYylhLNtrZjw9nkajmMuq9tdcVdj+5woh+iQJp0II0VPs/6zejz/N/B+msvIoP8elHE0HVB84tinsWQahpq9uUFOt8/iUsewE/C2lBj5AY8fDIj5kCJntr3nNP9v/XCFEnyST8AshRE+xOLLejxr4+aif8mL8RSTqHP6PfzOeTaBrWka1AYZJ0K4wop5ykTC0lLjRVTS1aFMhkWxnGC7sxFLMaHZjx9vucrUGlTASblrd7mMIIXqHtuQ1axfVJIQQooMp4MHtjzKj/0aWxF7AE2F3EK7Luc79NGOsm4goTCPi4A9wlCTiHvAJRfs/JXbEfrDQaECNpZSTWduxBZbndtzxhBB9goRTIYToKaIHQvGBepsUcPGhFSw6tAKXXaHdYDHBWWFhoyrDmf4lCZ45BI08D/vwsyhxvkhM2OtdUq4CMCxdci4hRO8h4VQIIXqKC56CZ89o9CEFONz+SaGqCuyU7gwlMbccw7aChMnvEdpPoTEwVGWjE+h3Bg2o8KQuOJMQojeRcCqEED1F+gw47Xfw6b2NPqywAR5CEtyEJLiBmn6fxyVRrcGsGbHfmSFVAZieTjyDEKI3ktH6QgjRk5x0G9yxB4acDoYDlAVih8Kde2FxASx6BuKG1+3eWN9SpaCQqHrbOmNorNZASXbHH1gI0avJaH0hhOhttIbyHPC64Ls34PM/+EOs9tXb7TAJJOoCrKr55UtPiGGF38pcp0L0dW3Ja9JyKoQQvY1SEJECMQNhzp3wg6Uw4hwIiuLYm/n9yIfODKYASnqPCSHaRj41hBCit0uf5f8CKNgDr14N+TsA/y+B2vtnTc1/ekJCYjrhoEKI3kxaToUQoi+JGwo/WVnTiuqnVOcEUw14+k3p+AMLIXo1CadCCNHXWKww6+ZOP40Cyked0+nnEUL0LhJOhRCiL5p9G8SN6NRTeIHggXM79RxCiN5HwqkQQvRFFhv84ENQnfdrYK/NSrAjrNOOL4TonSScCiFEXxUa658XtRNowGoNBltIpxxfCNF7STgVQoi+bMxF8MOPIWFUvc0dMQP2kKQpnTQFgBCiN5NwKoQQfV3aDLhxFdxbAmc/BPgz5YnkUwVQcaQDihNC9DUSToUQQvgpBVOvhUueA0sQJ9zmeeS7DihKCNHXSDgVQghR3+gL4Z5suPItwHZix+rZK2QLIQJAwqkQQoiGDAsMPRXuPQKTrmn/cR6a2HE1CSH6BFm+VAgREKWlpTz88MP1ts2YMYMzzzwzQBWJRikF5/0dJl4Fn/wGsla37fnlBzqnLiFErxXQltMBAwaglKr3dddddwWyJCFEF/jnP//ZIJgCrF69msWLF3d9QaJlqdPg2o/h1o2BrkQI0csF/Lb+73//e3Jycuq+fv3rXwe6JCFEJ8rKyiInJ6fZff74xz92UTWizWIGwZ172vacgn2dU4sQolcKeDgNDw8nKSmp7issTFYTEaI3e+aZlid993q9XVCJaLewBDijDZP3L72z82oRQvQ6AQ+nf/7zn4mNjWXChAn86U9/wu12N7u/y+WirKys3pcQoveR/7a7uZkXt37fnK2dV4cQotcJaDj96U9/yssvv8wXX3zBzTffzCOPPMKNN97Y7HPuv/9+IiMj675SU1O7qFohRFcqLi4OdAmiJRO/37r9qoo6tQwhRO/S4eF08eLFDQY5Hf+1bt06AH72s59xyimnMG7cOK677jqeeuopnnnmGQoLC5s8/t13301paWndV1ZWVke/BCFEN5Cenh7oEkRLpl7byh19kL2lU0sRQvQeHT6V1M0338zll1/e7D4DBgxodPuMGTMA2Lt3L7GxsY3u43A4cDgcJ1SjECJwYmNjm/0DVPQgH7dhdpWnT4bFpZ1XixCi1+jwcBoXF0dcXFy7nrtxo3+KkuTk5I4sSQjRjdxyyy0tThd14YUXdk0x4sTk7wh0BUKIXihgfU5XrVrFww8/zKZNmzhw4ACvvvoqP/nJTzjvvPNIS0sLVFlCiC7QXDi94IILGD9+fNcVI9rPEd62/RdHdk4dQoheRWkdmIWPN2zYwI033sjOnTtxuVykp6dz+eWX84tf/IKQkJBWH6esrIzIyEhKS0uJiIjoxIqFEJ3hrbfeori4mIULF8pdk55m75fw4vlte47c2heiT2pLXgtYOO0oEk6FECKAfh8LZhvmpe1m4fT17AJeyytmZlQotw1MCXQ5QvRabclrHd7nVAghRB/yi0x4oA2hzusGq73z6mmly1ZtZbnTCxpQiuUllTxwIA8U5M6bGOjyhOjTAj4JvxBCiB4sKBR+04Z5TC22zqullc5btZXl1V5AgVL1H9SQ9MX6gNQlhPCTcCqEEOLEWCyt2y8yvWEYDIBvnd7G66jdpg0uWbWpS2sSQhwl4VQIIcSJu31Xy/uc//fOr6MFN23eDTQTkJW/NfUrp9llNQkh6pNwKoQQ4sRFJMEPPgbVxK+Vcx6FQXO7tKTGfFRU1fJOWoMOfAuvEH2VDIgSQvQ9xRmw/R1IGA1DTu0Wt5p7hfQZ8JsCWPsMbHoRTNMfSOfdDfbQQFcHQJhFUelrYZIapfwBVQgREBJOhRB9w8E18NyCxh9LngA//lJCakcwLDD9x/6vbuiLacMZ9U3NylbNXW8l4VSIQJHb+kKI3m/5P5oOpgA5m+DBoW1vLdvxIeV/G0veX0ZT9vwl/pZC0a3FBAX5g2dTwVRr0Jrfp0V3bWFCiDoSToUQvd8Xv255n6ojsOWN1h2vNIfMPw0l/40bCCvPJLHqEOEHPqHqD4kcfOqsE6tVdLrceZOAmj8kav8gOeYPE5vy8ePBA7u+MCEEIOFUCNHbvdaG28vv39byPqbJ3idOJdWTT4K3pG7ctwJCtJv03K85ct/QdhQqulLuvElH+7XVBVOTy+OCyZo3JUBVCSFA+pwKIXq7ba+0fl9PeYu7uN6+iTRXXpOPKyDOnQ9v3AyLHmv9uUWXOzRvQqBLEEI0QlpOhRCiTssfiQd2r8SOr7mZMlGA3vpCh1UlhBB9iYRTIYSoNWhei7tYacOgp8WRUFV6AgUJIUTfI+FUCNF7tXX0/cX/7rBT17Ws/iUNCjM77LhCCNHbSTgVQvReXmfb9g+JaXEXR+o02jwD5j/Ggruyrc8SQog+ScKpEKL3sgZ1+CFTr3y2LTf2j9r8ckeXIoQQvZKEUyFE79VJKz45sbe99XT9851RihBC9DoSToUQvduZf+vwQ3ottmZH6zeqounpp4QQQhwl4VQI0bvNuK51+1la0QWgOAPXp3/EVO346IxKa/tzhBCiD5JJ+IUQvd+V78D/zm9+n7ObaWF1lsGTs6A0Cztgb08N045ZqcpZBq5yCI0Dq6M9RxNCiF5LwqkQovcbOhdm3wlf/7XxxydcCZOuqr+tuhg2LYGdH0LG19SuxX7s7Xx93M9Nbk8cDaMvgEPrYPmfYc8y/162EJjwPTjllxCW0K6XJoQQvY3Suq0TAXYvZWVlREZGUlpaSkRERKDLEUJ0Z4UH4O3rIXsjoCFuGJzzCKROrb9fxjfwwkXgrW7xkI19gGqg1BJGtK8CBs+Hy16AzFXw0mX+uVe1r24/DRgY8LOtENn/xF6fEEJ0U23JaxJOhRDiWOW58Mg48Lna9LSmWlH5TSFoEx4aAVWFzT7fvHgJljFntem8QgjRE7Qlr8ltfSFE35O/E/55CviOm6T/+k2w/aU2B1NoIpgC/CEWLv1vs8G09vnG61dgDjiIERbd5vMLIURvIS2nQoi+5bv34fUru/ikNsCHxmxxCiofYFlc2gU1CSFE12lLXpOppIQQfYenOgDBFMADrQimUPOh7Kzo3HKEEKIbk3AqhOg7ljcxWr8bUQDPnR3oMoQQImAknAoh+o6vHw10Ba2Tuwkqmu+jKoQQvZWEUyFE31EzhVOP8NdB4G77wCwhhOjpJJwKIfqOQfMCXUHbPDG15X2EEKKXkXAqhOg7rnot0BW0TUlGoCsQQoguJ+FUCNF3GBZIPyXQVQghhGiGhFMhRN/yg3cDXUHb5G4LdAVCCNGlJJwKIfqe8B60hv1TJwe6AiGE6FISToUQfc/gnjQwqgfNMCCEEB1AwqkQou/pNzHQFQghhGiChFMhRN8z+sJAVyCEEKIJEk6FEH1PSAwMOyvQVQghhGiEhFMhRN90ybNgiw50Fa0gH9NCiL5FPvWEEH2TLQju3h/oKlq2uDjQFQghRJeScCqE6LsMA0YtCnQVQgghjiHhVAjRt136H3CEB7qKxv2mMNAVCCFEl5NwKoQQdx+CsZcHuoqjwlLg1wVgsQa6EiGE6HLyySeEEACL/gn9psJHdwSuhuQp8MP3wRYcuBqEECLAJJwKIUStGddB3jbY+J+uO+eYS2D6T6D/FFCq684rhBDdlNzWF0KIY53/MFz8fNeca+SlcPG/IXWqBFMhhKgh4VQIIY435gK4twQGd/JE/Zf9q3OPL4QQPZCEUyGEaIxScPUSSJ7cOcdfXNo5xxVCiB5OwqkQQjTnJ5/DnF923PFiJ0gwFUKIZkg4FUKIlpz6K7gr68SP86NVcMvyEz+OEEL0YhJOhRCiNYIiYPDp7X/+/Huh36iOq0cIIXopCadCCNFaF/2zfc87/fdw8u0dW4sQQvRSnRpO//SnPzFr1ixCQkKIiopqdJ/MzEzOPfdcQkNDiYuL49Zbb8XtdndmWUII0T6hsXDmX1q3r4qE8x6DXx+B2T/t3LqEEKIX6dRJ+N1uN5dccgkzZ87kmWeeafC4z+fj7LPPJj4+npUrV1JYWMg111yD1pp//OMfnVmaEEK0z4yaCfOfPxc8lfUfu+i/MHKBrPAkhBAnQGmtdWef5LnnnuO2226jpKSk3valS5dyzjnnkJWVRUpKCgAvv/wy3//+98nPzyciIqLBsVwuFy6Xq+7nsrIyUlNTKS0tbXR/IYQQQggRWGVlZURGRrYqrwW0z+mqVasYM2ZMXTAFOOOMM3C5XKxfv77R59x///1ERkbWfaWmpnZVuUIIIYQQopMFNJzm5uaSmJhYb1t0dDR2u53c3NxGn3P33XdTWlpa95WV1QHTuwghhBBCiG6hzeF08eLFKKWa/Vq3bl2rj6caWU9aa93odgCHw0FERES9LyGEEEII0Tu0eUDUzTffzOWXX97sPgMGDGjVsZKSklizZk29bcXFxXg8ngYtqkIIIYQQovdrcziNi4sjLi6uQ04+c+ZM/vSnP5GTk0NycjIAn3zyCQ6Hg8mTO2k9ayGEEEII0W116lRSmZmZFBUVkZmZic/nY9OmTQAMGTKEsLAwFixYwKhRo7j66qt58MEHKSoq4s477+RHP/qR3K4XQgghhOiDOjWc/va3v+X555+v+3nixIkAfPHFF8ydOxeLxcIHH3zAjTfeyOzZswkODuZ73/sef/3rXzuzLCGEEEII0U11yTynnakt82YJIYQQQoiu15a81qktp12hNluXlZUFuBIhhBBCCNGY2pzWmjbRHh9Oy8vLAWQyfiGEEEKIbq68vJzIyMhm9+nxt/VN0yQ7O5vw8PAm50YVTatd/jUrK0u6RfQRcs37FrnefY9c876lp1xvrTXl5eWkpKRgGM1Ps9/jW04Nw6B///6BLqPHkwUN+h655n2LXO++R65539ITrndLLaa1Arp8qRBCCCGEEMeScCqEEEIIIboNCad9nMPh4N5778XhcAS6FNFF5Jr3LXK9+x655n1Lb7zePX5AlBBCCCGE6D2k5VQIIYQQQnQbEk6FEEIIIUS3IeFUCCGEEEJ0GxJOhRBCCCFEtyHhVAghhBBCdBsSTvuwP/3pT8yaNYuQkBCioqIa3SczM5Nzzz2X0NBQ4uLiuPXWW3G73V1bqOgwTzzxBAMHDiQoKIjJkyfz1VdfBbok0UFWrFjBueeeS0pKCkop3n777XqPa61ZvHgxKSkpBAcHM3fuXLZt2xaYYsUJu//++5k6dSrh4eEkJCRwwQUXsGvXrnr7yDXvPZ588knGjRtXtwrUzJkzWbp0ad3jve1aSzjtw9xuN5dccgk33HBDo4/7fD7OPvtsKisrWblyJS+//DJvvPEGd9xxRxdXKjrCK6+8wm233cY999zDxo0bOfnkk1m4cCGZmZmBLk10gMrKSsaPH89jjz3W6ON/+ctfeOihh3jsscdYu3YtSUlJnH766ZSXl3dxpaIjLF++nJtuuonVq1ezbNkyvF4vCxYsoLKysm4fuea9R//+/XnggQdYt24d69at49RTT+X888+vC6C97lpr0ec9++yzOjIyssH2Dz/8UBuGoQ8fPly3bcmSJdrhcOjS0tIurFB0hGnTpunrr7++3rYRI0bou+66K0AVic4C6LfeeqvuZ9M0dVJSkn7ggQfqtjmdTh0ZGamfeuqpAFQoOlp+fr4G9PLly7XWcs37gujoaP3vf/+7V15raTkVTVq1ahVjxowhJSWlbtsZZ5yBy+Vi/fr1AaxMtJXb7Wb9+vUsWLCg3vYFCxbwzTffBKgq0VUOHDhAbm5uvevvcDg45ZRT5Pr3EqWlpQDExMQAcs17M5/Px8svv0xlZSUzZ87slddawqloUm5uLomJifW2RUdHY7fbyc3NDVBVoj0KCgrw+XwNrmdiYqJcyz6g9hrL9e+dtNbcfvvtnHTSSYwZMwaQa94bbd26lbCwMBwOB9dffz1vvfUWo0aN6pXXWsJpL7N48WKUUs1+rVu3rtXHU0o12Ka1bnS76P6Ov25yLfsWuf69080338yWLVtYsmRJg8fkmvcew4cPZ9OmTaxevZobbriBa665hu3bt9c93puutTXQBYiOdfPNN3P55Zc3u8+AAQNadaykpCTWrFlTb1txcTEej6fBX2iie4uLi8NisTT4Kzo/P1+uZR+QlJQE+FvTkpOT67bL9e/5brnlFt59911WrFhB//7967bLNe997HY7Q4YMAWDKlCmsXbuWRx99lF/+8pdA77rW0nLay8TFxTFixIhmv4KCglp1rJkzZ/Ldd9+Rk5NTt+2TTz7B4XAwefLkznoJohPY7XYmT57MsmXL6m1ftmwZs2bNClBVoqsMHDiQpKSketff7XazfPlyuf49lNaam2++mTfffJPPP/+cgQMH1ntcrnnvp7XG5XL1ymstLad9WGZmJkVFRWRmZuLz+di0aRMAQ4YMISwsjAULFjBq1CiuvvpqHnzwQYqKirjzzjv50Y9+RERERGCLF212++23c/XVVzNlyhRmzpzJ008/TWZmJtdff32gSxMdoKKigr1799b9fODAATZt2kRMTAxpaWncdttt3HfffQwdOpShQ4dy3333ERISwve+970AVi3a66abbuKll17inXfeITw8vO6uSGRkJMHBwSil5Jr3Ir/61a9YuHAhqamplJeX8/LLL/Pll1/y0Ucf9c5rHbiJAkSgXXPNNRpo8PXFF1/U7ZORkaHPPvtsHRwcrGNiYvTNN9+snU5n4IoWJ+Txxx/X6enp2m6360mTJtVNOyN6vi+++KLR/56vueYarbV/aqF7771XJyUlaYfDoefMmaO3bt0a2KJFuzV2rQH97LPP1u0j17z3+OEPf1j32R0fH6/nz5+vP/nkk7rHe9u1Vlpr3fWRWAghhBBCiIakz6kQQgghhOg2JJwKIYQQQohuQ8KpEEIIIYToNiScCiGEEEKIbkPCqRBCCCGE6DYknAohhBBCiG5DwqkQQgghhOg2JJwKIYQQQohuQ8KpEEIIIYToNiScCiGEEEKIbkPCqRBCCCGE6Db+H3Xi5tNVlfkbAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(4, 1, figsize=(8,20))\n",
+ "for i in range(4):\n",
+ " ax[i].scatter(\n",
+ " umaps[i][:, 0],\n",
+ " umaps[i][:, 1],\n",
+ " c=[sns.color_palette()[x] for x in labels[i]],\n",
+ " lw=1\n",
+ " )\n",
+ "plt.gca().set_aspect('equal', 'datalim')\n",
+ "plt.title('UMAP Embedding', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b3fb79cc-708a-4766-abe4-c85ce5a33103",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}