-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
347 lines (304 loc) · 13.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import torch
import numpy as np
from PIL import Image
import gradio as gr
import os
import piexif
import json
from datetime import datetime
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import FluxInpaintPipeline, AutoencoderKL
from src.pipeline_tryon import FluxTryonPipeline
# from optimum.quanto import freeze, qfloat8, quantize
device = torch.device("cuda")
torch_dtype = torch.bfloat16
def load_models(device=device, torch_dtype=torch_dtype,):
bfl_repo = "black-forest-labs/FLUX.1-dev"
# Enable memory efficient attention
text_encoder = CLIPTextModel.from_pretrained(bfl_repo, subfolder="text_encoder", torch_dtype=torch_dtype,)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=torch_dtype,)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=torch_dtype,)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae")
# transformer = FluxTransformer2DModel.from_single_file("Kijai/flux-fp8/flux1-dev-fp8.safetensors", torch_dtype=torch_dtype)
pipe = FluxTryonPipeline.from_pretrained(
bfl_repo,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
).to(device="cpu", dtype=torch_dtype)
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) # resolution may change, not use this
# # quantize transformer cause severe degration
# quantize(pipe.transformer, weights=qfloat8)
# freeze(pipe.transformer)
# quantize(pipe.text_encoder_2, weights=qfloat8)
# freeze(pipe.text_encoder_2)
pipe.to(device=device)
# Enable memory efficient attention and VAE optimization
pipe.enable_attention_slicing()
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name="dev_lora_any2any_tryon.safetensors",
adapter_name="tryon",
)
return pipe
pipe = load_models()
def crop_to_multiple_of_16(img):
width, height = img.size
# Calculate new dimensions that are multiples of 8
new_width = width - (width % 16)
new_height = height - (height % 16)
# Calculate crop box coordinates
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
# Crop the image
cropped_img = img.crop((left, top, right, bottom))
return cropped_img
def resize_and_pad_to_size(image, target_width, target_height):
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Get original dimensions
orig_width, orig_height = image.size
# Calculate aspect ratios
target_ratio = target_width / target_height
orig_ratio = orig_width / orig_height
# Calculate new dimensions while maintaining aspect ratio
if orig_ratio > target_ratio:
# Image is wider than target ratio - scale by width
new_width = target_width
new_height = int(new_width / orig_ratio)
else:
# Image is taller than target ratio - scale by height
new_height = target_height
new_width = int(new_height * orig_ratio)
# Resize image
resized_image = image.resize((new_width, new_height))
# Create white background image of target size
padded_image = Image.new('RGB', (target_width, target_height), 'white')
# Calculate padding to center the image
left_padding = (target_width - new_width) // 2
top_padding = (target_height - new_height) // 2
# Paste resized image onto padded background
padded_image.paste(resized_image, (left_padding, top_padding))
return padded_image, left_padding, top_padding, target_width - new_width - left_padding, target_height - new_height - top_padding
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
return crop_to_multiple_of_16(image)
# @spaces.GPU()
@torch.no_grad
def generate_image(prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, show_type="follow model image", num_inference_steps=30):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = []
has_model_image = model_image is not None
has_garment_image = garment_image is not None
if has_model_image:
if has_garment_image:
# if both model and garment image are provided, ensure model image and target image have the same size
input_height, input_width = model_image.shape[:2]
model_image, lp, tp, rp, bp = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
else:
model_image = resize_by_height(model_image, height)
# model_image = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
concat_image_list.append(model_image)
if has_garment_image:
# if has_model_image:
# garment_image = resize_and_pad_to_size(Image.fromarray(garment_image), width, height)
# else:
garment_image = resize_by_height(garment_image, height)
concat_image_list.append(garment_image)
concat_image_list.append(np.zeros((height, width, 3), dtype=np.uint8))
image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
image = Image.fromarray(image)
mask = np.zeros_like(image)
mask[:,-width:] = 255
mask_image = Image.fromarray(mask)
assert height==image.height, "ensure same height"
# with torch.cuda.amp.autocast(): # this cause black image
# with torch.no_grad():
output = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=has_model_image and has_garment_image,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
output_type="latent",
).images
latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
if show_type!="all outputs":
latents = latents[:,:,:,-width//pipe.vae_scale_factor:]
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")[0]
output = image
if show_type=="follow model image" and has_model_image and has_garment_image:
output = output.crop((lp, tp, output.width-rp, output.height-bp)).resize((input_width, input_height))
return output
def update_dimensions(model_image, garment_image, height, width, auto_ar):
if not auto_ar:
return height, width
if model_image is not None:
height = model_image.shape[0]
width = model_image.shape[1]
elif garment_image is not None:
height = garment_image.shape[0]
width = garment_image.shape[1]
else:
height = 512
width = 384
# Set max dimensions and minimum size
max_height = 1024
max_width = 1024
min_size = 384
# Scale down if exceeds max dimensions while maintaining aspect ratio
if height > max_height or width > max_width:
aspect_ratio = width / height
if height > max_height:
height = max_height
width = int(height * aspect_ratio)
if width > max_width:
width = max_width
height = int(width / aspect_ratio)
# Scale up if below minimum size while maintaining aspect ratio
if height < min_size and width < min_size:
aspect_ratio = width / height
if height < width:
height = min_size
width = int(height * aspect_ratio)
else:
width = min_size
height = int(width / aspect_ratio)
return height, width
model1 = Image.open("asset/images/model/model1.png")
model2 = Image.open("asset/images/model/model2.jpg")
model3 = Image.open("asset/images/model/model3.png")
model4 = Image.open("asset/images/model/model4.png")
garment1 = Image.open("asset/images/garment/garment1.jpg")
garment2 = Image.open("asset/images/garment/garment2.jpg")
garment3 = Image.open("asset/images/garment/garment3.jpg")
garment4 = Image.open("asset/images/garment/garment4.jpg")
def launch_demo():
with gr.Blocks() as demo:
gr.Markdown("# Any2AnyTryon")
gr.Markdown("Demo(experimental) for [Any2AnyTryon: A Unified Framework for Virtual Try-on Generation](https://arxiv.org/abs/2501.15891) ([Code](https://github.com/logn-2024/Any2anyTryon)).")
with gr.Row():
with gr.Column():
model_image = gr.Image(label="Model Image", type="numpy", interactive=True,)
with gr.Row():
garment_image = gr.Image(label="Garment Image", type="numpy", interactive=True,)
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Try example prompts from right side",
placeholder="Enter your prompt here...",
value="",
visible=False,
)
with gr.Row(visible=False):
height = gr.Number(label="Height", value=768, precision=0)
width = gr.Number(label="Width", value=576, precision=0)
seed = gr.Number(label="Seed", value=0, precision=0)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="Guidance Scale", value=3.5)
num_inference_steps = gr.Number(label="Inference Steps", value=15)
show_type = gr.Radio(label="Show Type",choices=["follow model image", "follow height & width", "all outputs"],value="follow model image")
auto_ar = gr.Checkbox(label="Detect Image Size(From Uploaded Images)", value=False, visible=False,)
btn = gr.Button("Generate")
with gr.Column():
output = gr.Image(label="Generated Image")
example_prompts = gr.Examples(
[
"<MODEL> a person with fashion garment. <GARMENT> a garment. <TARGET> model with fashion garment",
"<MODEL> a person with fashion garment. <TARGET> the same garment laid flat.",
"<GARMENT> The image shows a fashion garment. <TARGET> a smiling person with the garment in white background",
],
inputs=prompt,
label="Example Prompts",
visible=False
)
example_model = gr.Examples(
examples=[
model1, model2, model3, model4
],
inputs=model_image,
label="Example Model Images"
)
example_garment = gr.Examples(
examples=[
garment1, garment2, garment3, garment4
],
inputs=garment_image,
label="Example Garment Images"
)
# Update dimensions when images change
model_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
garment_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
btn.click(fn=generate_image,
inputs=[prompt, model_image, garment_image, height, width, seed, guidance_scale, show_type, num_inference_steps],
outputs=output)
demo.title = "FLUX Image Generation Demo"
demo.description = "Generate images using FLUX model with LoRA"
examples = [
# tryon
[
# '''''',
model1,
garment1,
768, 576
],
[
# '''''',
model2,
garment2,
768, 576
],
[
# '''''',
model3,
garment3,
768, 576
],
[
# '''''',
model4,
garment4,
768, 576
],
]
gr.Examples(
examples=examples,
inputs=[model_image, garment_image], # prompt
outputs=output,
fn=generate_image,
cache_examples=False,
examples_per_page=20
)
demo.queue().launch(share=False, show_error=False,
server_name="0.0.0.0"
)
if __name__ == "__main__":
launch_demo()