-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
135 lines (111 loc) · 4.92 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import math
import numpy as np
def log10(x):
"""Convert a new tensor with the base-10 logarithm of the elements of x. """
return torch.log(x) / math.log(10)
def compute_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
valid_mask = gt>0
pred = pred[valid_mask]
gt = gt[valid_mask]
thresh = torch.max((gt / pred), (pred / gt))
d1 = float((thresh < 1.25).float().mean())
d2 = float((thresh < 1.25 ** 2).float().mean())
d3 = float((thresh < 1.25 ** 3).float().mean())
rmse = (gt - pred) ** 2
rmse = math.sqrt(rmse.mean())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log = math.sqrt(rmse_log.mean())
abs_rel = ((gt - pred).abs() / gt).mean()
sq_rel = (((gt - pred) ** 2) / gt).mean()
return abs_rel, sq_rel, rmse, rmse_log, d1, d2, d3
class Result(object):
def __init__(self):
self.irmse, self.imae = 0, 0
self.mse, self.rmse, self.mae = 0, 0, 0
self.absrel, self.sqrel = 0, 0
self.lg10, self.rmse_log = 0, 0
self.delta1, self.delta2, self.delta3 = 0, 0, 0
self.data_time, self.gpu_time = 0, 0
def set_to_worst(self):
self.irmse, self.imae = np.inf, np.inf
self.mse, self.rmse, self.mae = np.inf, np.inf, np.inf
self.absrel, self.sqrel = np.inf, np.inf
self.lg10, self.rmse_log = np.inf, np.inf
self.delta1, self.delta2, self.delta3 = 0, 0, 0
self.data_time, self.gpu_time = 0, 0
def update(self, irmse, imae, mse, rmse, mae, absrel, sqrel, lg10, rmse_log, delta1, delta2, delta3, gpu_time, data_time):
self.irmse, self.imae = irmse, imae
self.mse, self.rmse, self.mae = mse, rmse, mae
self.absrel, self.sqrel = absrel, sqrel
self.lg10, self.rmse_log = lg10, rmse_log
self.delta1, self.delta2, self.delta3 = delta1, delta2, delta3
self.data_time, self.gpu_time = data_time, gpu_time
def evaluate(self, pred, gt, cap=None):
valid_mask = gt>0
pred = pred[valid_mask]
gt = gt[valid_mask]
if cap != None:
cap_mask = gt <= cap
pred = pred[cap_mask]
gt = gt[cap_mask]
abs_diff = (gt - pred).abs()
abs_diff_log = torch.log(gt) - torch.log(pred)
self.mse = float((torch.pow(abs_diff, 2)).mean())
self.rmse = math.sqrt(self.mse)
self.mae = float(abs_diff.mean())
rmse_log = float((torch.pow(abs_diff_log, 2)).mean())
self.rmse_log = math.sqrt(rmse_log)
self.lg10 = float((log10(pred) - log10(gt)).abs().mean())
self.absrel = float((abs_diff / gt).mean())
self.sqrel = ((abs_diff**2) / gt).mean()
maxRatio = torch.max(pred / gt, gt / pred)
self.delta1 = float((maxRatio < 1.25).float().mean()) # diff_ratio < 1.25
self.delta2 = float((maxRatio < 1.25 ** 2).float().mean()) # diff_ratio < 1.5625
self.delta3 = float((maxRatio < 1.25 ** 3).float().mean()) # diff_ratio < 1.953125
self.data_time = 0
self.gpu_time = 0
inv_pred= 1 / pred
inv_gt = 1 / gt
abs_inv_diff = (inv_pred - inv_gt).abs()
self.irmse = math.sqrt((torch.pow(abs_inv_diff, 2)).mean())
self.imae = float(abs_inv_diff.mean())
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.count = 0.0
self.sum_irmse, self.sum_imae = 0, 0
self.sum_mse, self.sum_rmse, self.sum_mae = 0, 0, 0
self.sum_absrel, self.sum_sqrel = 0, 0
self.sum_lg10, self.sum_rmse_log = 0, 0
self.sum_delta1, self.sum_delta2, self.sum_delta3 = 0, 0, 0
self.sum_data_time, self.sum_gpu_time = 0, 0
def update(self, result, gpu_time, data_time, n=1):
self.count += n
self.sum_irmse += n*result.irmse
self.sum_imae += n*result.imae
self.sum_mse += n*result.mse
self.sum_rmse += n*result.rmse
self.sum_mae += n*result.mae
self.sum_absrel += n*result.absrel
self.sum_sqrel += n*result.sqrel
self.sum_lg10 += n*result.lg10
self.sum_rmse_log += n*result.rmse_log
self.sum_delta1 += n*result.delta1
self.sum_delta2 += n*result.delta2
self.sum_delta3 += n*result.delta3
self.sum_data_time += n*data_time
self.sum_gpu_time += n*gpu_time
def average(self):
avg = Result()
avg.update(
self.sum_irmse / self.count, self.sum_imae / self.count,
self.sum_mse / self.count, self.sum_rmse / self.count, self.sum_mae / self.count,
self.sum_absrel / self.count, self.sum_sqrel / self.count,
self.sum_lg10 / self.count, self.sum_rmse_log / self.count,
self.sum_delta1 / self.count, self.sum_delta2 / self.count, self.sum_delta3 / self.count,
self.sum_gpu_time / self.count, self.sum_data_time / self.count)
return avg