-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_moco_fw.py
48 lines (35 loc) · 1.18 KB
/
run_moco_fw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
from nets.ResNet import resnet50
class ModelWrap:
def __init__(self):
model = resnet50(pretrained=False, head_type='embed')
model.cuda()
model.eval()
state_dict = torch.load('ckpt/model_moco.pth')
model.load_state_dict(state_dict)
self.model = model
self.base_path = "./rgb_variants/"
def run(self, image_file):
img = cv2.imread(os.path.join(self.base_path, image_file))
img = cv2.resize(img, (224, 224))
trafo = lambda x: np.transpose(x[:, :, ::-1], [2, 0, 1]).astype(np.float32) / 255.0 - 0.5
img_t = trafo(img)
batch = torch.Tensor(np.stack([img_t], 0)).cuda()
embed = self.model(batch)
embed = embed.detach().cpu().numpy()
return embed
if __name__ == '__main__':
m = ModelWrap()
f1 = '0007/cam4/00000016_5.jpg'
f2 = '0007/cam4/00000017_4.jpg'
embed = m.run(f1), m.run(f2)
def cossim(x, y):
ip = np.sum(np.multiply(x, y))
n1 = np.linalg.norm(x, 2)
n2 = np.linalg.norm(y, 2)
return ip / (n1*n2)
print('score', cossim(embed[0], embed[1]))