-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
264 lines (225 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from __future__ import print_function, division
import argparse
import os
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import time
from tensorboardX import SummaryWriter
from datasets import __datasets__
from models import __models__, model_loss
from utils import *
from torch.utils.data import DataLoader
import gc
# from ptflops import get_model_complexity_info
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
cudnn.benchmark = True
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# model params
parser = argparse.ArgumentParser(description='Group-wise Correlation Stereo Network (GwcNet)')
parser.add_argument('--model', default='gwcnet-g', help='select a model structure', choices=__models__.keys())
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity') # sclar down disp with H and W
parser.add_argument('--inliers', type=int, default=3, help='how many std to include for inliers')
parser.add_argument('--bin_scale', type=str, default='line', help='how to create the distribution, line or log')
parser.add_argument('--n_bins', type=int, default=11, help='how many bins to create the distribution')
parser.add_argument('--loss_type', type=str, required=True, help='define the componet of loss')
parser.add_argument('--mask', type=str, default='soft', help='type of mask assignment',choices=['soft','hard'])
# dataset
parser.add_argument('--dataset', required=True, help='dataset name', choices=__datasets__.keys())
parser.add_argument('--zoom', type=float, default=1.0, help='scaler for zoom in/out the image')
parser.add_argument('--crop_w', type=int, default=0, help='random crop width')
parser.add_argument('--crop_h', type=int, default=0, help='random crop height')
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--trainlist', required=True, help='training list')
parser.add_argument('--testlist', required=True, help='testing list')
# training schedule
parser.add_argument('--training', action='store_true', help='turn to training mode if presents.')
parser.add_argument('--resume', action='store_true', help='continue training the model')
parser.add_argument('--loadckpt', help='load the weights from a specific checkpoint')
parser.add_argument('--seed', type=int, default=999, metavar='S', help='random seed (default: 1)')
parser.add_argument('--device_id', default=[0], type=int, nargs='+', help='gpu indices')
parser.add_argument('--batch_size', type=int, default=2, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=2, help='testing batch size')
parser.add_argument('--epochs', type=int, required=True, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.0001, help='base learning rate')
parser.add_argument('--lrepochs', type=str, required=True, help='the epochs to decay lr: the downscale rate')
# save outputs
parser.add_argument('--logdir', required=True, help='the directory to save logs and checkpoints')
parser.add_argument('--summary_freq', type=int, default=10, help='the frequency of saving summary')
parser.add_argument('--save_freq', type=int, default=1, help='the frequency of saving checkpoint')
parser.add_argument('--save_test', action='store_true', help='save test outputs if presents.')
# parse arguments, set seeds
args = parser.parse_args()
torch.cuda.empty_cache()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.logdir, exist_ok=True)
# create summary logger
print("creating new summary file")
logger = SummaryWriter(args.logdir)
args.maxdisp = int(args.maxdisp * args.zoom)
# dataset, dataloader
StereoDataset = __datasets__[args.dataset]
train_dataset = StereoDataset(args.datapath, args.trainlist, True, args)
test_dataset = StereoDataset(args.datapath, args.testlist, False, args)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=8, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.test_batch_size, shuffle=False, num_workers=4, drop_last=False)
# model, optimizer
model = __models__[args.model](args.maxdisp)
model.cuda()
# count FLOPS and MACs
# macs, params = get_model_complexity_info(model, (3, 1248, 384), as_strings=True,
# print_per_layer_stat=True, verbose=True)
# params = count_parameters(model)
# print('{:<30} {:<8}'.format('Computational complexity: ', macs))
# print('{:<30} {}'.format('Number of parameters: ', params))
model = nn.DataParallel(model,device_ids=args.device_id)
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
# load parameters
start_epoch = 0
if args.resume:
if args.loadckpt:
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
else:# find all checkpoints file and sort according to epoch id
all_saved_ckpts = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
all_saved_ckpts = sorted(all_saved_ckpts, key=lambda x: int(x.split('_')[-1].split('.')[0]))
# use the latest checkpoint file
loadckpt = os.path.join(args.logdir, all_saved_ckpts[-1])
print("loading the lastest model in logdir: {}".format(loadckpt))
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif args.loadckpt:
# load the checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
print("start at epoch {}".format(start_epoch))
def train():
for epoch_idx in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch_idx, args.lr, args.lrepochs)
# training
if args.training:
save_outputs = {"disp_est": [], "disp_gt": [], "uncert_est": [], "cost_conf": [], "pred_conf": []}
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
losses, scalar_outputs, image_outputs = train_sample(sample, compute_metrics=do_summary)
if do_summary:
save_scalars(logger, 'train', scalar_outputs, global_step)
save_images(logger, 'train', image_outputs, global_step)
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TrainImgLoader), losses["loss"], time.time() - start_time))
# saving checkpoints
if (epoch_idx + 1) % args.save_freq == 0:
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/checkpoint_{:0>6}.ckpt".format(args.logdir, epoch_idx))
gc.collect()
# testing
avg_test_scalars = AverageMeterDict()
save_outputs = {"disp_est":[], "disp_gt": [], "uncert_est":[], "cost_conf":[], "pred_conf":[]}
for batch_idx, sample in enumerate(TestImgLoader):
global_step = len(TestImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
losses, scalar_outputs, image_outputs = test_sample(sample, compute_metrics=do_summary)
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
save_images(logger, 'test', image_outputs, global_step)
avg_test_scalars.update(scalar_outputs)
# save test result
if args.save_test:
if epoch_idx == (args.epochs - 1):
save_outputs["disp_est"].append(image_outputs["disp_est"][0].cpu())
save_outputs["disp_gt"].append(image_outputs["disp_gt"].cpu())
if args.model in ['gwcnet-gcs']:
save_outputs["uncert_est"].append(image_outputs["uncert_est"][0].cpu())
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TestImgLoader), losses["loss"],
time.time() - start_time))
avg_test_scalars = avg_test_scalars.mean()
save_scalars(logger, 'fulltest', avg_test_scalars, len(TrainImgLoader) * (epoch_idx + 1))
if args.save_test:
if epoch_idx == (args.epochs -1):
torch.save(save_outputs, "{}/test_outputs_{:0>6}.pth".format(args.logdir, epoch_idx))
print("avg_test_scalars", avg_test_scalars)
gc.collect()
# train one sample
def train_sample(sample, compute_metrics=False):
model.train()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
optimizer.zero_grad()
output = model(imgL, imgR)
disp_ests = output['disp']
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
losses = model_loss(output, disp_gt, mask, args)
scalar_outputs = {}
for key in losses.keys():
scalar_outputs[key] = losses[key]
image_outputs = {"disp_est": disp_ests,
"disp_gt": disp_gt,
"imgL": imgL,
"imgR": imgR,
}
if args.model in ['gwcnet-gcs']:
uncert_ests = output['uncert']
image_outputs["uncert_est"] = [torch.exp(uncert_ests[0])]
if compute_metrics:
with torch.no_grad():
image_outputs["errormap"] = [disp_error_image_func()(disp_est, disp_gt) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
losses["loss"].backward()
optimizer.step()
return tensor2float(losses), tensor2float(scalar_outputs), image_outputs
# test one sample
@make_nograd_func
def test_sample(sample, compute_metrics=True):
model.eval()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
output = model(imgL, imgR)
disp_ests = output['disp']
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
losses = model_loss(output, disp_gt, mask, args)
scalar_outputs = {}
for key in losses.keys():
scalar_outputs[key] = losses[key]
image_outputs = {"disp_est": disp_ests,
"disp_gt": disp_gt,
"imgL": imgL,
"imgR": imgR,
}
if args.model in ['gwcnet-gcs']:
uncert_ests = output['uncert']
image_outputs["uncert_est"] = uncert_ests
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
if compute_metrics:
image_outputs["errormap"] = [disp_error_image_func()(disp_est, disp_gt) for disp_est in disp_ests]
return tensor2float(losses), tensor2float(scalar_outputs), image_outputs
if __name__ == '__main__':
train()