-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
45 lines (36 loc) · 1.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from parameter import *
from trainer import Trainer
from tester import Tester
from alpha_trainer import alpha_Trainer
# from tester import Tester
from data_loader import Data_Loader
from torch.backends import cudnn
from utils import make_folder
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
def main(config):
# For fast training
cudnn.benchmark = True
# Data loader
data_loader = Data_Loader(config.train, config.dataset, config.mura_class, config.mura_type,
config.image_path, config.imsize, config.batch_size, shuf=config.train)
# Create directories if not exist
make_folder(config.model_save_path, config.version)
make_folder(config.sample_path, config.version)
make_folder(config.log_path, config.version)
make_folder(config.attn_path, config.version)
if config.train:
if config.model=='sagan':
trainer = Trainer(data_loader.loader(), config)
elif config.model == 'qgan':
trainer = qgan_trainer(data_loader.loader(), config)
elif config.model == 'alpha':
trainer = alpha_Trainer(data_loader.loader(), config)
trainer.train()
else:
tester = Tester(data_loader.loader(), config)
tester.test()
if __name__ == '__main__':
config = get_parameters()
print(config)
main(config)