-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample.py
68 lines (53 loc) · 2.43 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import json
import argparse
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from tqdm import tqdm
from torchvision.utils import save_image, make_grid
import numpy as np
import re
import ml_collections
import math
from main import DiffusionModel, samples_fn
from config import get_config
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_json", type=str, default='', help="Path to config.")
parser.add_argument("--model_dir", type=str, required=True, help="Path to model for loading.")
parser.add_argument("--sample_dir", type=str, default='samples', help="Path to save generated samples.")
parser.add_argument("--batch_size", type=int, default=32, help="Number of generated samples in evaluation.")
parser.add_argument("--n_samples", type=int, default=32, help="Number of generated samples in evaluation.")
args = parser.parse_args()
step = int(re.findall(r'\d+', args.model_dir)[-1])
exp_dir = os.path.dirname(args.model_dir)
if args.config_json is not None:
with open(args.config_json, 'r') as f:
config = ml_collections.ConfigDict(json.loads(f.read()))
else:
config = get_config()
if not os.path.isdir(args.sample_dir):
os.makedirs(args.sample_dir)
d3pm = DiffusionModel(config, exp_dir)
d3pm.cuda()
state_dict = torch.load(args.model_dir)
d3pm.load_state_dict(state_dict['state_dict'])
d3pm.eval()
out = []
for k in tqdm(range(int(args.n_samples // args.batch_size))):
sample = samples_fn(d3pm.ema,
d3pm.diffusion,
(args.batch_size, 3, config.dataset.resolution, config.dataset.resolution))
imgs = sample['samples'].float().cpu().view(args.batch_size, 3, config.dataset.resolution, config.dataset.resolution)
out.append(imgs)
if k < 1:
filepath = os.path.join(args.sample_dir, f'sample_10K_%i.png' % step)
save_image(imgs, filepath, normalize=True, scale_each=True, nrow=int(math.sqrt(args.batch_size)))
out_pt = torch.cat(out)
out = out_pt.numpy()
sample_path = os.path.join(args.sample_dir, f'sample_10K_%i.npy' % step)
np.save(sample_path, out)