-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy patheval_colmap.py
141 lines (118 loc) · 5.29 KB
/
eval_colmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import subprocess
from pathlib import Path
import os
import numpy as np
from skimage.io import imread, imsave
from transforms3d.quaternions import mat2quat
from colmap.database import COLMAPDatabase
from colmap.read_write_model import CAMERA_MODEL_NAMES
import open3d as o3d
from ldm.base_utils import read_pickle
K, _, _, _, POSES = read_pickle(f'meta_info/camera-16.pkl')
H, W, NUM_IMAGES = 256, 256, 16
def extract_and_match_sift(colmap_path, database_path, image_dir):
cmd = [
str(colmap_path), 'feature_extractor',
'--database_path', str(database_path),
'--image_path', str(image_dir),
]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [
str(colmap_path), 'exhaustive_matcher',
'--database_path', str(database_path),
]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_triangulation(colmap_path, model_path, in_sparse_model, database_path, image_dir):
print('Running the triangulation...')
model_path.mkdir(exist_ok=True, parents=True)
cmd = [
str(colmap_path), 'point_triangulator',
'--database_path', str(database_path),
'--image_path', str(image_dir),
'--input_path', str(in_sparse_model),
'--output_path', str(model_path),
'--Mapper.ba_refine_focal_length', '0',
'--Mapper.ba_refine_principal_point', '0',
'--Mapper.ba_refine_extra_params', '0']
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_patch_match(colmap_path, sparse_model: Path, image_dir: Path, dense_model: Path):
print('Running patch match...')
assert sparse_model.exists()
dense_model.mkdir(parents=True, exist_ok=True)
cmd = [str(colmap_path), 'image_undistorter', '--input_path', str(sparse_model), '--image_path', str(image_dir), '--output_path', str(dense_model),]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [str(colmap_path), 'patch_match_stereo','--workspace_path', str(dense_model),]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def dump_images(in_image_dir, image_dir):
for index in range(NUM_IMAGES):
img = imread(f'{in_image_dir}/{index:03}.png')
imsave(f'{str(image_dir)}/{index:03}.png', img)
def build_db_known_poses_fixed(db_path, in_sparse_path):
db = COLMAPDatabase.connect(db_path)
db.create_tables()
# insert intrinsics
with open(f'{str(in_sparse_path)}/cameras.txt', 'w') as f:
for index in range(NUM_IMAGES):
fx, fy = K[0,0], K[1,1]
cx, cy = K[0,2], K[1,2]
model, width, height, params = CAMERA_MODEL_NAMES['PINHOLE'].model_id, W, H, np.array((fx, fy, cx, cy),np.float32)
db.add_camera(model, width, height, params, prior_focal_length=(fx+fy)/2, camera_id=index+1)
f.write(f'{index+1} PINHOLE {W} {H} {fx:.3f} {fy:.3f} {cx:.3f} {cy:.3f}\n')
with open(f'{str(in_sparse_path)}/images.txt','w') as f:
for index in range(NUM_IMAGES):
pose = POSES[index]
q = mat2quat(pose[:,:3])
t = pose[:,3]
img_id = db.add_image(f"{index:03}.png", camera_id=index+1, prior_q=q, prior_t=t)
f.write(f'{img_id} {q[0]:.5f} {q[1]:.5f} {q[2]:.5f} {q[3]:.5f} {t[0]:.5f} {t[1]:.5f} {t[2]:.5f} {index+1} {index:03}.png\n\n')
db.commit()
db.close()
with open(f'{in_sparse_path}/points3D.txt','w') as f:
f.write('\n')
def patch_match_with_known_poses(in_image_dir, project_dir, colmap_path='colmap'):
Path(project_dir).mkdir(exist_ok=True, parents=True)
if os.path.exists(f'{str(project_dir)}/dense/stereo/depth_maps'): return
# output poses
db_path = f'{str(project_dir)}/database.db'
image_dir = Path(f'{str(project_dir)}/images')
sparse_dir = Path(f'{str(project_dir)}/sparse')
in_sparse_dir = Path(f'{str(project_dir)}/sparse_in')
dense_dir = Path(f'{str(project_dir)}/dense')
image_dir.mkdir(exist_ok=True,parents=True)
sparse_dir.mkdir(exist_ok=True,parents=True)
in_sparse_dir.mkdir(exist_ok=True,parents=True)
dense_dir.mkdir(exist_ok=True,parents=True)
dump_images(in_image_dir, image_dir)
build_db_known_poses_fixed(db_path, in_sparse_dir)
extract_and_match_sift(colmap_path, db_path, image_dir)
run_triangulation(colmap_path,sparse_dir, in_sparse_dir, db_path, image_dir)
run_patch_match(colmap_path, sparse_dir, image_dir, dense_dir)
# fuse
cmd = [str(colmap_path), 'stereo_fusion',
'--workspace_path', f'{project_dir}/dense',
'--workspace_format', 'COLMAP',
'--input_type', 'geometric',
'--output_path', f'{project_dir}/points.ply',]
print(' '.join(cmd))
subprocess.run(cmd, check=True)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dir',type=str)
parser.add_argument('--project',type=str)
parser.add_argument('--name',type=str)
parser.add_argument('--colmap',type=str, default='colmap')
args = parser.parse_args()
if not os.path.exists(f'{args.project}/points.ply'):
patch_match_with_known_poses(args.dir, args.project, colmap_path=args.colmap)
mesh = o3d.io.read_triangle_mesh(f'{args.project}/points.ply',)
vn = len(mesh.vertices)
with open('colmap-results.log', 'a') as f:
f.write(f'{args.name}\t{vn}\n')
if __name__=="__main__":
main()