-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathafcgan.py
495 lines (416 loc) · 21.1 KB
/
afcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import argparse
import os
import random
import sys
import time
import torch.autograd as autograd
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import argparse
import classifier
import classifier2
import model
import soft_cls
import util
import torch
import numpy as np
def GetNowTime():
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
def pairwise_distances(x, y=None):
'''
Input: x is a Nxd matrix
y is an optional Mxd matirx
Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]
if y is not given then use 'y=x'.
i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2
'''
x_norm = (x ** 2).sum(1).view(-1, 1)
if y is not None:
y_t = torch.transpose(y, 0, 1)
y_norm = (y ** 2).sum(1).view(1, -1)
else:
y_t = torch.transpose(x, 0, 1)
y_norm = x_norm.view(1, -1)
dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t)
# Ensure diagonal is zero if x=y
if y is None:
dist = dist - torch.diag(dist.diag)
return torch.clamp(dist, 0.0, np.inf)
def loadPretrainedMain(netS, savePost):
print('Loading pretrained Mainnet......')
path = './pretrain/'
netS.load_state_dict( torch.load( path+savePost, map_location='cuda:0' ) )
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='FLO', help='FLO')
parser.add_argument('--dataroot', default='/home/poxiaoge/Documents/dataset/ZSL', help='path to dataset')
parser.add_argument('--matdataset', default=True, help='Data in matlab format')
parser.add_argument('--image_embedding', default='res101')
parser.add_argument('--class_embedding', default='att')
parser.add_argument('--gzsl', action='store_true', default=False, help='enable generalized zero-shot learning')
parser.add_argument('--preprocessing', action='store_true', default=False,
help='enbale MinMaxScaler on visual features')
parser.add_argument('--standardization', action='store_true', default=False)
parser.add_argument('--validation', action='store_true', default=False, help='enable cross validation mode')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=3)
parser.add_argument('--batch_size', type=int, default=64, help='input batch size')
parser.add_argument('--resSize', type=int, default=2048, help='size of visual features')
parser.add_argument('--attSize', type=int, default=1024, help='size of semantic features')
parser.add_argument('--nz', type=int, default=312, help='size of the latent z vector')
parser.add_argument('--ngh', type=int, default=4096, help='size of the hidden units in generator')
parser.add_argument('--ndh', type=int, default=1024, help='size of the hidden units in discriminator')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate to train GANs ')
parser.add_argument('--classifier_lr', type=float, default=0.001, help='learning rate to train softmax classifier')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', default=True, help='enables cuda')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--pretrain_classifier', default='', help="path to pretrain classifier (to continue training)")
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--netG_name', default='')
parser.add_argument('--netD_name', default='')
parser.add_argument('--outf', default='./checkpoint/', help='folder to output data and model checkpoints')
parser.add_argument('--outname', help='folder to output data and model checkpoints')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--nclass_all', type=int, default=200, help='number of all classes')
parser.add_argument('--nepoch', type=int, default=2000, help='number of epochs to train for')
parser.add_argument('--critic_iter', type=int, default=5, help='critic iteration, following WGAN-GP')
parser.add_argument('--lambda1', type=float, default=10, help='gradient penalty regularizer, following WGAN-GP')
parser.add_argument('--cls_weight', type=float, default=1, help='weight of the classification loss')
parser.add_argument('--loss_syn_num', type=int, default=30, help='G learning rate')
parser.add_argument('--cyc_seen_weight', type=float, default=0.01, help='weight of the seen class cycle loss')
parser.add_argument('--cyc_unseen_weight', type=float, default=0.01, help='weight of the unseen class cycle loss')
parser.add_argument('--dm_seen_weight', type=float, default=0.01, help='weight of the seen class cycle loss')
parser.add_argument('--dm_unseen_weight', type=float, default=0.01, help='weight of the unseen class cycle loss')
parser.add_argument('--dm_weight', type=float, default=0.01, help='weight of the unseen class cycle loss')
parser.add_argument('--cls_syn_num', type=int, default=100, help='number features to generate per class')
parser.add_argument('--cls_batch_size', type=int, default=5, help='G learning rate')
parser.add_argument('--f_hid', type=int, default=4096, help='forward hidden units')
parser.add_argument('--new_lr', type=int, default=0, help='forward hidden units')
parser.add_argument('--ensemble_ratio', type=float, default=0.8, help='forward hidden units')
parser.add_argument('--use_pretrain_s', type=int, default=1, help='forward hidden units')
print(GetNowTime())
print('Begin run!!!')
since = time.time()
opt = parser.parse_args()
sys.stdout.flush()
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
cudnn.benchmark = True
data = util.DATA_LOADER(opt)
print("Training Samples: ", data.ntrain)
netG = model.MLP_G(opt)
if opt.netG != '':
netG.load_state_dict(torch.load(opt.netG))
netD = model.MLP_CRITIC(opt)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
if opt.dataset == 'CUB':
opt.f_hid = 7000
if opt.dataset == 'FLO':
opt.f_hid = 7000
if opt.dataset == 'SUN':
opt.f_hid = 7000
if opt.dataset == 'AWA1':
opt.f_hid = 3072
if opt.dataset == 'APY':
opt.f_hid = 6144
netS = model.MLP_V2S(opt)
dm_classifier = model.DomainClassifier(opt.resSize)
cls_criterion = nn.NLLLoss()
reg_criterion = nn.MSELoss()
logsoftmax = nn.LogSoftmax(dim=1)
cnp_criterion = nn.CrossEntropyLoss()
input_res = torch.FloatTensor(opt.batch_size, opt.resSize)
input_att = torch.FloatTensor(opt.batch_size, opt.attSize)
noise = torch.FloatTensor(opt.batch_size, opt.nz)
one = torch.FloatTensor([1])
mone = one * -1
input_label = torch.LongTensor(opt.batch_size)
input_res2 = torch.FloatTensor(opt.batch_size, opt.resSize)
input_att2 = torch.FloatTensor(opt.batch_size, opt.attSize)
input_label2 = torch.LongTensor(opt.batch_size)
input_res3 = torch.FloatTensor(opt.batch_size, opt.resSize)
input_att3 = torch.FloatTensor(opt.batch_size, opt.attSize)
input_label3 = torch.LongTensor(opt.batch_size)
if opt.cuda:
netD.cuda()
netG.cuda()
netS.cuda()
input_res = input_res.cuda()
noise, input_att = noise.cuda(), input_att.cuda()
one = one.cuda()
mone = mone.cuda()
cls_criterion.cuda()
reg_criterion.cuda()
cnp_criterion.cuda()
logsoftmax.cuda()
input_label = input_label.cuda()
dm_classifier.cuda()
input_res2 = input_res2.cuda()
input_att2 = input_att2.cuda()
input_label2 = input_label2.cuda()
input_res3 = input_res3.cuda()
input_att3 = input_att3.cuda()
input_label3 = input_label3.cuda()
def sample():
batch_feature, batch_label, batch_att = data.next_batch(opt.batch_size)
input_res.copy_(batch_feature)
input_att.copy_(batch_att)
input_label.copy_(util.map_label(batch_label, data.seenclasses))
def sample2():
batch_feature, batch_label, batch_att = data.next_batch(opt.batch_size)
input_res2.copy_(batch_feature)
input_att2.copy_(batch_att)
input_label2.copy_(util.map_label(batch_label, data.seenclasses))
def sample3():
batch_feature, batch_label, batch_att = data.next_batch(opt.batch_size)
input_res3.copy_(batch_feature)
input_att3.copy_(batch_att)
input_label3.copy_(util.map_label(batch_label, data.seenclasses))
def generate_syn_feature(netG, classes, attribute, num): # 每个类都生成num个
nclass = classes.size(0)
syn_feature = torch.FloatTensor(nclass * num, opt.resSize)
syn_label = torch.LongTensor(nclass * num)
syn_att = torch.FloatTensor(num, opt.attSize)
syn_noise = torch.FloatTensor(num, opt.nz)
if opt.cuda:
syn_att = syn_att.cuda()
syn_noise = syn_noise.cuda()
for i in range(nclass):
iclass = classes[i]
iclass_att = attribute[iclass]
syn_att.copy_(iclass_att.repeat(num, 1))
syn_noise.normal_(0, 1)
output = netG(Variable(syn_noise, volatile=True), Variable(syn_att, volatile=True))
syn_feature.narrow(0, i * num, num).copy_(output.data.cpu())
syn_label.narrow(0, i * num, num).fill_(iclass)
return syn_feature, syn_label
def generate_syn_feature_with_grad(netG, classes, attribute, num):
nclass = classes.size(0)
# syn_feature = torch.FloatTensor(nclass*num, opt.resSize)
syn_label = torch.LongTensor(nclass * num)
syn_att = torch.FloatTensor(nclass * num, opt.attSize)
syn_noise = torch.FloatTensor(nclass * num, opt.nz)
if opt.cuda:
syn_att = syn_att.cuda()
syn_noise = syn_noise.cuda()
syn_label = syn_label.cuda()
syn_noise.normal_(0, 1)
for i in range(nclass):
iclass = classes[i]
iclass_att = attribute[iclass]
syn_att.narrow(0, i * num, num).copy_(iclass_att.repeat(num, 1))
syn_label.narrow(0, i * num, num).fill_(iclass)
syn_feature = netG(Variable(syn_noise), Variable(syn_att))
return syn_feature, syn_label.cpu()
d_lr = opt.lr
g_lr = opt.lr
if opt.new_lr == 1:
d_lr = 1e-3
g_lr = 1e-4
optimizerD = optim.Adam(netD.parameters(), lr=d_lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=g_lr, betas=(opt.beta1, 0.999))
optimizerS = optim.Adam(netS.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
optimizer_dm = optim.Adam(dm_classifier.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
def calc_gradient_penalty(netD, real_data, fake_data, input_att):
alpha = torch.rand(opt.batch_size, 1)
alpha = alpha.expand(real_data.size())
if opt.cuda:
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if opt.cuda:
interpolates = interpolates.cuda()
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates, Variable(input_att))
ones = torch.ones(disc_interpolates.size())
if opt.cuda:
ones = ones.cuda()
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=ones,
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.lambda1
return gradient_penalty
pretrain_cls = classifier.CLASSIFIER(data, data.train_feature, util.map_label(data.train_label, data.seenclasses),
data.seenclasses.size(0), opt.resSize, opt.cuda, 0.001, 0.5, 50, 4096,
opt.pretrain_classifier)
def getTrainSeenAcc():
fake_train_attr = netS(Variable(data.train_feature.cuda(), volatile=True))
dist = pairwise_distances(fake_train_attr.data, data.attribute[data.seenclasses].cuda()) # range 150
pred_idx = torch.min(dist, 1)[1]
pred = data.seenclasses[pred_idx.cpu()]
acc = sum(pred == data.train_label) / data.train_label.size()[0]
print('Train Seen Acc: {:.2f}%'.format(acc * 100))
def getTestUnseenAcc():
fake_unseen_attr = netS(Variable(data.test_unseen_feature.cuda(), volatile=True))
dist = pairwise_distances(fake_unseen_attr.data, data.attribute[data.unseenclasses].cuda()) # range 50
pred_idx = torch.min(dist, 1)[1] # relative pred
pred = data.unseenclasses[pred_idx.cpu()] # map relative pred to absolute pred
acc = sum(pred == data.test_unseen_label) / data.test_unseen_label.size()[0]
print('Test Unseen Acc: {:.2f}%'.format(acc * 100))
return logsoftmax(Variable(dist.cuda())).data
def getTestAllAcc():
fake_unseen_attr = netS(Variable(data.test_unseen_feature.cuda(), volatile=True))
dist1 = pairwise_distances(fake_unseen_attr.data, data.attribute.cuda()) # range 200
pred_idx = torch.min(dist1, 1)[1] # absolute pred
acc_unseen = sum(pred_idx.cpu() == data.test_unseen_label) / data.test_unseen_label.size()[0]
fake_seen_attr = netS(Variable(data.test_seen_feature.cuda(), volatile=True))
dist2 = pairwise_distances(fake_seen_attr.data, data.attribute.cuda()) # range 200
pred_idx = torch.min(dist2, 1)[1] # absolute pred
acc_seen = sum(pred_idx.cpu() == data.test_seen_label) / data.test_seen_label.size()[0]
if (acc_seen == 0) or (acc_unseen == 0):
H = 0
else:
H = 2 * acc_seen * acc_unseen / (acc_seen + acc_unseen)
print('Forward Seen:{:.2f}%, Unseen:{:.2f}%, H:{:.2f}%'.format(acc_seen * 100, acc_unseen * 100, H * 100))
return logsoftmax(Variable(dist1.cuda())).data, logsoftmax(Variable(dist2.cuda())).data
if opt.use_pretrain_s == 1:
modelStr = {'CUB':'netS_CUB_Acc415900_03_15_11_23.pth','FLO':'netS_FLO_Acc269300_03_15_10_26.pth','SUN':'netS_SUN_Acc457600_03_15_10_44.pth',
'AWA1':'netS_AWA1_Acc450100_03_15_10_58.pth','APY':'netS_APY_Acc203100_03_15_11_08.pth'}
loadPretrainedMain(netS,modelStr[opt.dataset])
else:
netS.train()
for epoch in range(50):
for i in range(0, data.ntrain, opt.batch_size):
optimizerS.zero_grad()
sample()
input_resv = Variable(input_res)
input_attv = Variable(input_att)
pred = netS(input_resv)
loss = reg_criterion(pred, input_attv)
loss.backward()
optimizerS.step()
print(epoch)
for p in netS.parameters():
p.requires_grad = False
netS.eval()
if opt.gzsl:
opt.gzsl_unseen_output, opt.gzsl_seen_output = getTestAllAcc()
opt.fake_test_seen_attr = netS(Variable(data.test_seen_feature.cuda(), volatile=True)).data
opt.fake_test_unseen_attr = netS(Variable(data.test_unseen_feature.cuda(), volatile=True)).data
else:
opt.zsl_unseen_output = getTestUnseenAcc()
opt.fake_test_attr = netS(Variable(data.test_unseen_feature.cuda(), volatile=True)).data
for p in pretrain_cls.model.parameters(): # set requires_grad to False
p.requires_grad = False
pretrain_cls.model.eval()
for epoch in range(opt.nepoch):
print('EP[%d/%d]****************************************************************************************************************' % (epoch, opt.nepoch))
for i in range(0, data.ntrain, opt.batch_size):
for p in netD.parameters():
p.requires_grad = True
for p in netG.parameters():
p.requires_grad = False
for iter_d in range(opt.critic_iter):
sample()
netD.zero_grad()
# train with realG
input_resv = Variable(input_res)
input_attv = Variable(input_att)
criticD_real = netD(input_resv, input_attv)
criticD_real = criticD_real.mean()
criticD_real.backward(mone)
# train with fakeG
noise.normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev, input_attv)
fake_norm = fake.data[0].norm()
sparse_fake = fake.data[0].eq(0).sum()
criticD_fake = netD(fake.detach(), input_attv)
criticD_fake = criticD_fake.mean()
criticD_fake.backward(one)
# gradient penalty
gradient_penalty = calc_gradient_penalty(netD, input_res, fake.data, input_att)
gradient_penalty.backward()
Wasserstein_D = criticD_real - criticD_fake
D_cost = criticD_fake - criticD_real + gradient_penalty
optimizerD.step()
for p in netD.parameters():
p.requires_grad = False
for q in dm_classifier.parameters():
q.requires_grad = True
for p in netG.parameters():
p.requires_grad = False
optimizer_dm.zero_grad()
sample2()
input_resv2 = Variable(input_res2)
fake_unseen_feature1, fake_unseen_label1 = generate_syn_feature(netG, data.unseenclasses,data.attribute, opt.loss_syn_num) # 每个类生成2个sample;31x2=62
src_label_dm = torch.ones(input_label2.size()).long().cuda()
tgt_label_dm = torch.zeros(fake_unseen_label1.size()).long().cuda()
src_label_dm = Variable(src_label_dm)
tgt_label_dm = Variable(tgt_label_dm)
src_output_dm = dm_classifier(input_resv2)
tgt_output_dm = dm_classifier(Variable(fake_unseen_feature1.cuda()))
loss_dm_src = cnp_criterion(src_output_dm, src_label_dm)
loss_dm_tgt = cnp_criterion(tgt_output_dm, tgt_label_dm)
loss_dm = opt.dm_seen_weight * loss_dm_src + opt.dm_unseen_weight * loss_dm_tgt
loss_dm.backward()
optimizer_dm.step()
for q in dm_classifier.parameters():
q.requires_grad = False
for p in netG.parameters():
p.requires_grad = True
for p in netD.parameters():
p.requires_grad = False
netG.zero_grad()
input_attv = Variable(input_att)
noise.normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev, input_attv)
criticG_fake = netD(fake, input_attv)
criticG_fake = criticG_fake.mean()
G_cost = -criticG_fake
c_errG = cls_criterion(pretrain_cls.model(fake), Variable(input_label))
unseen_feature, unseen_label = generate_syn_feature_with_grad(netG, data.unseenclasses, data.attribute,opt.loss_syn_num)
unseen_attr = Variable(data.attribute[unseen_label].cuda())
seen_feature, seen_label = generate_syn_feature_with_grad(netG, data.seenclasses, data.attribute,opt.loss_syn_num)
seen_attr = Variable(data.attribute[seen_label].cuda())
r_errG_seen = reg_criterion(netS(seen_feature), seen_attr)
r_errG_unseen = reg_criterion(netS(unseen_feature), unseen_attr)
errG = G_cost + opt.cls_weight * c_errG + opt.cyc_seen_weight * r_errG_seen + opt.cyc_unseen_weight * r_errG_unseen
errG.backward()
fake_unseen_feature2, fake_unseen_label2 = generate_syn_feature_with_grad(netG, data.unseenclasses,data.attribute,opt.loss_syn_num)
sample3()
input_resv3 = Variable(input_res3)
feature_concat = torch.cat((input_resv3, fake_unseen_feature2), 0)
output_dm_conf = dm_classifier(feature_concat)
output_dm_conf = F.softmax(output_dm_conf, dim=1)
uni_distrib = torch.FloatTensor(output_dm_conf.size()).uniform_(0, 1)
uni_distrib = uni_distrib.cuda()
uni_distrib = Variable(uni_distrib)
loss_conf = -opt.dm_weight * (torch.sum(uni_distrib * torch.log(output_dm_conf))) / float(output_dm_conf.size(0))
loss_conf.backward()
optimizerG.step()
netG.eval()
syn_unseen_feature, syn_unseen_label = generate_syn_feature(netG, data.unseenclasses, data.attribute,opt.cls_syn_num) # 1500x2048
if opt.gzsl:
train_X = torch.cat((data.train_feature, syn_unseen_feature), 0)
train_Y = torch.cat((data.train_label, syn_unseen_label), 0)
nclass = opt.nclass_all
v2s = soft_cls.Visual_to_semantic(opt, netS(Variable(train_X.cuda(), volatile=True)).data.cpu(), train_Y,data, nclass, generalized=True)
opt.gzsl_unseen_output = v2s.unseen_out
opt.gzsl_seen_output = v2s.seen_out
cls = classifier2.CLASSIFIER(opt, train_X, train_Y, data, nclass, _beta1=0.5, _nepoch=25, generalized=True)
print('GZSL Classifier Seen Acc: {:.2f}%, Unseen Acc: {:.2f}%, H Acc: {:.2f}%'.format(cls.seen_cls * 100,cls.unseen_cls * 100,cls.H_cls * 100))
print('GZSL Ensemble Seen Acc: {:.2f}%, Unseen Acc: {:.2f}%, H Acc: {:.2f}%'.format(cls.seen_ensemble * 100,cls.unseen_ensemble * 100,cls.H_ensemble * 100))
else:
fake_syn_unseen_attr = netS(Variable(syn_unseen_feature.cuda(), volatile=True))
v2s = soft_cls.Visual_to_semantic(opt, fake_syn_unseen_attr.data.cpu(), syn_unseen_label, data,data.unseenclasses.size(0), generalized=False)
opt.zsl_unseen_output = v2s.output
cls = classifier2.CLASSIFIER(opt, syn_unseen_feature, util.map_label(syn_unseen_label, data.unseenclasses),data, data.unseenclasses.size(0), _beta1=0.5, _nepoch=25, generalized=False)
print('ZSL Classifier: {:.2f}%'.format(cls.cls_acc*100))
print('ZSL Ensemble: {:.2f}%'.format(cls.ensemble_acc*100))
sys.stdout.flush()
netG.train()
time_elapsed = time.time() - since
print('End run!!!')
print('Time Elapsed: {}'.format(time_elapsed))
print(GetNowTime())