-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_image.py
461 lines (399 loc) · 20.7 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import argparse
import os
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import network
import loss
import pre_process as prep
from torch.utils.data import DataLoader
import lr_schedule
import data_list
import datetime
from data_list import ImageList
from torch.autograd import Variable
import random
import pdb
import math
from utils import ReplayBuffer,weights_init_normal
import itertools
import net
def image_classification_test(loader, model, test_10crop=True):
start_test = True
with torch.no_grad():
if test_10crop:
iter_test = [iter(loader['test'][i]) for i in range(10)]
for i in range(len(loader['test'][0])):
data = [iter_test[j].next() for j in range(10)]
inputs = [data[j][0] for j in range(10)]
labels = data[0][1]
for j in range(10):
inputs[j] = inputs[j].cuda()
labels = labels
outputs = []
for j in range(10):
_, predict_out = model(inputs[j])
outputs.append(nn.Softmax(dim=1)(predict_out))
outputs = sum(outputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
else:
iter_test = iter(loader["test"])
for i in range(len(loader['test'])):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
labels = labels.cuda()
_, outputs = model(inputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
return accuracy
def train(config):
## set pre-process
prep_dict = {}
prep_config = config["prep"]
prep_dict["source"] = prep.image_train(**config["prep"]['params'])
prep_dict["target"] = prep.image_train(**config["prep"]['params'])
if prep_config["test_10crop"]:
prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
else:
prep_dict["test"] = prep.image_test(**config["prep"]['params'])
## prepare data
dsets = {}
dset_loaders = {}
data_config = config["data"]
train_bs = data_config["source"]["batch_size"]
test_bs = data_config["test"]["batch_size"]
dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
transform=prep_dict["source"])
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
shuffle=True, num_workers=0, drop_last=True)
dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
transform=prep_dict["target"])
dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
shuffle=True, num_workers=0, drop_last=True)
if prep_config["test_10crop"]:
for i in range(10):
dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
transform=prep_dict["test"][i]) for i in range(10)]
dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
shuffle=False, num_workers=0) for dset in dsets['test']]
else:
dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
transform=prep_dict["test"])
dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
shuffle=False, num_workers=0)
class_num = config["network"]["params"]["class_num"]
## set base network
net_config = config["network"]
base_network = net_config["name"](**net_config["params"])
base_network = base_network.cuda()
## 添加判别器D_s,D_t,生成器G_s2t,G_t2s
z_dimension = 256
D_s = network.models["Discriminator"]()
D_s = D_s.cuda()
G_s2t = network.models["Generator"](z_dimension, 1024)
G_s2t = G_s2t.cuda()
D_t = network.models["Discriminator"]()
D_t = D_t.cuda()
G_t2s = network.models["Generator"](z_dimension, 1024)
G_t2s = G_t2s.cuda()
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
criterion_Sem = torch.nn.L1Loss()
optimizer_G = torch.optim.Adam(itertools.chain(G_s2t.parameters(), G_t2s.parameters()), lr=0.0003)
optimizer_D_s = torch.optim.Adam(D_s.parameters(), lr=0.0003)
optimizer_D_t = torch.optim.Adam(D_t.parameters(), lr=0.0003)
fake_S_buffer = ReplayBuffer()
fake_T_buffer = ReplayBuffer()
classifier_optimizer = torch.optim.Adam(base_network.parameters(), lr=0.0003)
## 添加分类器
classifier1 = net.Net(256,class_num)
classifier1 = classifier1.cuda()
classifier1_optim = optim.Adam(classifier1.parameters(), lr=0.0003)
## add additional network for some methods
if config["loss"]["random"]:
random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
else:
random_layer = None
ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)
if config["loss"]["random"]:
random_layer.cuda()
ad_net = ad_net.cuda()
parameter_list = base_network.get_parameters() + ad_net.get_parameters()
## set optimizer
optimizer_config = config["optimizer"]
optimizer = optimizer_config["type"](parameter_list, \
**(optimizer_config["optim_params"]))
param_lr = []
for param_group in optimizer.param_groups:
param_lr.append(param_group["lr"])
schedule_param = optimizer_config["lr_param"]
lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]
gpus = config['gpu'].split(',')
if len(gpus) > 1:
ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])
## train
len_train_source = len(dset_loaders["source"])
len_train_target = len(dset_loaders["target"])
transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
best_acc = 0.0
for i in range(config["num_iterations"]):
if i % config["test_interval"] == config["test_interval"] - 1:
base_network.train(False)
temp_acc = image_classification_test(dset_loaders, \
base_network, test_10crop=prep_config["test_10crop"])
temp_model = nn.Sequential(base_network)
if temp_acc > best_acc:
best_acc = temp_acc
best_model = temp_model
now = datetime.datetime.now()
d = str(now.month) + '-' + str(now.day) + ' ' + str(now.hour) + ':' + str(now.minute) + ":" + str(
now.second)
torch.save(best_model, osp.join(config["output_path"],
"{}_to_{}_best_model_acc-{}_{}.pth.tar".format(args.source, args.target,
best_acc, d)))
log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
config["out_file"].write(log_str + "\n")
config["out_file"].flush()
print(log_str)
if i % config["snapshot_interval"] == 0:
torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
"{}_to_{}_iter_{:05d}_model_{}.pth.tar".format(args.source,
args.target,
i, str(
datetime.datetime.utcnow()))))
loss_params = config["loss"]
## train one iter
classifier1.train(True)
base_network.train(True)
ad_net.train(True)
optimizer = lr_scheduler(optimizer, i, **schedule_param)
optimizer.zero_grad()
if i % len_train_source == 0:
iter_source = iter(dset_loaders["source"])
if i % len_train_target == 0:
iter_target = iter(dset_loaders["target"])
inputs_source, labels_source = iter_source.next()
inputs_target, labels_target = iter_target.next()
inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()
# 提取特征
features_source, outputs_source = base_network(inputs_source)
features_target, outputs_target = base_network(inputs_target)
features = torch.cat((features_source, features_target), dim=0)
outputs = torch.cat((outputs_source, outputs_target), dim=0)
softmax_out = nn.Softmax(dim=1)(outputs)
outputs_source1 = classifier1(features_source.detach())
outputs_target1 = classifier1(features_target.detach())
outputs1 = torch.cat((outputs_source1,outputs_target1),dim=0)
softmax_out1 = nn.Softmax(dim=1)(outputs1)
softmax_out = (1-args.cla_plus_weight)*softmax_out + args.cla_plus_weight*softmax_out1
if config['method'] == 'CDAN+E':
entropy = loss.Entropy(softmax_out)
transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
elif config['method'] == 'CDAN':
transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
elif config['method'] == 'DANN':
transfer_loss = loss.DANN(features, ad_net)
else:
raise ValueError('Method cannot be recognized.')
classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
# Cycle
num_feature = features_source.size(0)
# =================train discriminator T
real_label = Variable(torch.ones(num_feature)).cuda()
fake_label = Variable(torch.zeros(num_feature)).cuda()
# 训练生成器
optimizer_G.zero_grad()
# Identity loss
same_t = G_s2t(features_target.detach())
loss_identity_t = criterion_identity(same_t, features_target)
same_s = G_t2s(features_source.detach())
loss_identity_s = criterion_identity(same_s, features_source)
# Gan loss
fake_t = G_s2t(features_source.detach())
pred_fake = D_t(fake_t)
loss_G_s2t = criterion_GAN(pred_fake, labels_source.float())
fake_s = G_t2s(features_target.detach())
pred_fake = D_s(fake_s)
loss_G_t2s = criterion_GAN(pred_fake, labels_source.float())
# cycle loss
recovered_s = G_t2s(fake_t)
loss_cycle_sts = criterion_cycle(recovered_s, features_source)
recovered_t = G_s2t(fake_s)
loss_cycle_tst = criterion_cycle(recovered_t, features_target)
# sem loss
pred_recovered_s = base_network.fc(recovered_s)
pred_fake_t = base_network.fc(fake_t)
loss_sem_t2s = criterion_Sem(pred_recovered_s, pred_fake_t)
pred_recovered_t = base_network.fc(recovered_t)
pred_fake_s = base_network.fc(fake_s)
loss_sem_s2t = criterion_Sem(pred_recovered_t, pred_fake_s)
loss_cycle = loss_cycle_tst + loss_cycle_sts
weights = args.weight_in_lossG.split(',')
loss_G = float(weights[0]) * (loss_identity_s + loss_identity_t) + \
float(weights[1]) * (loss_G_s2t + loss_G_t2s) + \
float(weights[2]) * loss_cycle + \
float(weights[3]) * (loss_sem_s2t + loss_sem_t2s)
# 训练softmax分类器
outputs_fake = classifier1(fake_t.detach())
# 分类器优化
classifier_loss1 = nn.CrossEntropyLoss()(outputs_fake, labels_source)
classifier1_optim.zero_grad()
classifier_loss1.backward()
classifier1_optim.step()
total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss + args.cyc_loss_weight*loss_G
total_loss.backward()
optimizer.step()
optimizer_G.step()
###### Discriminator S ######
optimizer_D_s.zero_grad()
# Real loss
pred_real = D_s(features_source.detach())
loss_D_real = criterion_GAN(pred_real, real_label)
# Fake loss
fake_s = fake_S_buffer.push_and_pop(fake_s)
pred_fake = D_s(fake_s.detach())
loss_D_fake = criterion_GAN(pred_fake, fake_label)
# Total loss
loss_D_s = loss_D_real + loss_D_fake
loss_D_s.backward()
optimizer_D_s.step()
###################################
###### Discriminator t ######
optimizer_D_t.zero_grad()
# Real loss
pred_real = D_t(features_target.detach())
loss_D_real = criterion_GAN(pred_real, real_label)
# Fake loss
fake_t = fake_T_buffer.push_and_pop(fake_t)
pred_fake = D_t(fake_t.detach())
loss_D_fake = criterion_GAN(pred_fake, fake_label)
# Total loss
loss_D_t = loss_D_real + loss_D_fake
loss_D_t.backward()
optimizer_D_t.step()
now = datetime.datetime.now()
d = str(now.month)+'-'+str(now.day)+' '+str(now.hour)+':'+str(now.minute)+":"+str(now.second)
torch.save(best_model, osp.join(config["output_path"],
"{}_to_{}_best_model_acc-{}_{}.pth.tar".format(args.source, args.target,
best_acc,d)))
return best_acc
if __name__ == "__main__":
torch.cuda.manual_seed(42) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(42)
parser = argparse.ArgumentParser(description='Conditional Domain Adversarial Network')
parser.add_argument('--method', type=str, default='CDAN+E', choices=['CDAN', 'CDAN+E', 'DANN'])
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--net', type=str, default='ResNet50',
choices=["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152", "VGG11", "VGG13",
"VGG16", "VGG19", "VGG11BN", "VGG13BN", "VGG16BN", "VGG19BN", "AlexNet"])
parser.add_argument('--dset', type=str, default='office', choices=['office', 'image-clef', 'visda', 'office-home'],
help="The dataset or source dataset used")
parser.add_argument('--s_dset_path', type=str, default='data/office/dslr_list.txt',
help="The source dataset path list")
parser.add_argument('--t_dset_path', type=str, default='data/office/amazon_list.txt',
help="The target dataset path list")
parser.add_argument('--source', type=str, default="webcam", help="The source dataset name")
parser.add_argument('--target', type=str, default="amazon", help="The target dataset name")
parser.add_argument('--test_interval', type=int, default=300, help="interval of two continuous test phase")
parser.add_argument('--snapshot_interval', type=int, default=5000, help="interval of two continuous output model")
parser.add_argument('--lr', type=float, default=0.001, help="learning rate")
parser.add_argument('--random', type=bool, default=False, help="whether use random projection")
parser.add_argument('--cyc_loss_weight',type=float,default=0.005)
parser.add_argument('--cla_plus_weight', type=float, default=0.1)
parser.add_argument("--weight_in_lossG",type=str,default='1,0.01,0.1,0.1')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'
# train config
task_name = args.source+"2"+args.target
config = {}
config['torch_seed'] = torch.initial_seed()
config['torch_cuda_seed'] = torch.cuda.initial_seed()
config['method'] = args.method
config["gpu"] = args.gpu_id
config['cyc_loss_weight'] = args.cyc_loss_weight
config['cla_plus_weight'] = args.cla_plus_weight
config['weight_in_lossG'] = args.weight_in_lossG
config["num_iterations"] = 20000
config["test_interval"] = args.test_interval
config["snapshot_interval"] = args.snapshot_interval
config["output_for_test"] = True
config["output_path"] = "snapshot/" + task_name
if not osp.exists(config["output_path"]):
os.system('mkdir -p ' + config["output_path"])
config["out_file"] = open(osp.join(config["output_path"], "log_{}_to_{}_{}.txt".format(args.source, args.target,
str(
datetime.datetime.utcnow()))),
"w")
if not osp.exists(config["output_path"]):
os.mkdir(config["output_path"])
config["prep"] = {"test_10crop": True, 'params': {"resize_size": 256, "crop_size": 224, 'alexnet': False}}
config["loss"] = {"trade_off": 1.0}
if "AlexNet" in args.net:
config["prep"]['params']['alexnet'] = True
config["prep"]['params']['crop_size'] = 227
config["network"] = {"name": network.AlexNetFc, \
"params": {"use_bottleneck": True, "bottleneck_dim": 256, "new_cls": True}}
elif "ResNet" in args.net:
config["network"] = {"name": network.ResNetFc, \
"params": {"resnet_name": args.net, "use_bottleneck": True, "bottleneck_dim": 256,
"new_cls": True}}
elif "VGG" in args.net:
config["network"] = {"name": network.VGGFc, \
"params": {"vgg_name": args.net, "use_bottleneck": True, "bottleneck_dim": 256,
"new_cls": True}}
config["loss"]["random"] = args.random
config["loss"]["random_dim"] = 1024
config["optimizer"] = {"type": optim.SGD, "optim_params": {'lr': args.lr, "momentum": 0.9, \
"weight_decay": 0.0005, "nesterov": True},
"lr_type": "inv", \
"lr_param": {"lr": args.lr, "gamma": 0.001, "power": 0.75}}
config["dataset"] = args.dset
config["data"] = {"source": {"list_path": args.s_dset_path, "batch_size": 36}, \
"target": {"list_path": args.t_dset_path, "batch_size": 36}, \
"test": {"list_path": args.t_dset_path, "batch_size": 4}}
if config["dataset"] == "office":
if ("amazon" in args.s_dset_path and "webcam" in args.t_dset_path) or \
("webcam" in args.s_dset_path and "dslr" in args.t_dset_path) or \
("webcam" in args.s_dset_path and "amazon" in args.t_dset_path) or \
("dslr" in args.s_dset_path and "amazon" in args.t_dset_path):
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
elif ("amazon" in args.s_dset_path and "dslr" in args.t_dset_path) or \
("dslr" in args.s_dset_path and "webcam" in args.t_dset_path):
config["optimizer"]["lr_param"]["lr"] = 0.0003 # optimal parameters
config["network"]["params"]["class_num"] = 31
elif config["dataset"] == "image-clef":
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
config["network"]["params"]["class_num"] = 12
elif config["dataset"] == "visda":
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
config["network"]["params"]["class_num"] = 12
config['loss']["trade_off"] = 1.0
elif config["dataset"] == "office-home":
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
config["network"]["params"]["class_num"] = 65
else:
raise ValueError('Dataset cannot be recognized. Please define your own dataset here.')
config["out_file"].write(str(config))
config["out_file"].flush()
train(config)