-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcriterion.py
executable file
·99 lines (82 loc) · 4.26 KB
/
criterion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch.nn as nn
from component.loss import OhemCrossEntropy2d
import torch
from torch.nn import functional as F
from component.lovasz_losses import lovasz_softmax
class CriterionAll(nn.Module):
def __init__(self, ignore_index=255):
super(CriterionAll, self).__init__()
self.ignore_index = ignore_index
weight = torch.FloatTensor(
[0.5, 0.9, 0.9, 1.1, 1.0,
0.9, 1.3, 0.9, 1.0, 0.9,
1.4, 2, 1.6, 0.9, 0.9,
1, 1.2, 1.2, 1.3, 1.3])
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index,weight=weight)
def forward(self, preds, target):
scale_pred = F.interpolate(preds, scale_factor=4., mode='bilinear', align_corners=False)
loss = self.criterion(scale_pred, target)
return loss
class CriterionAll_lovasz(nn.Module):
def __init__(self, ignore_index=255):
super(CriterionAll_lovasz, self).__init__()
self.ignore_index = ignore_index
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index)
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds, size=(h, w), mode='bilinear', align_corners=False)
loss = lovasz_softmax(F.softmax(scale_pred, dim=1), target)
return loss
class Criterion_lovasz_ce(nn.Module):
def __init__(self, ignore_index=255):
super(Criterion_lovasz_ce, self).__init__()
self.ignore_index = ignore_index
weight = torch.FloatTensor(
[0.8, 0.9, 0.9, 1.1, 1.8,
0.9, 1.3, 0.9, 0.9, 0.9,
2, 2, 1.4, 0.9, 0.9,
0.9, 1.2, 1.2, 1.3, 1.3])
self.criterion = torch.nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds, size=(h, w), mode='bilinear', align_corners=False)
loss = 0.3 * self.criterion(scale_pred, target) + 0.7 * lovasz_softmax(F.softmax(scale_pred, dim=1), target)
return loss
class CriterionOhemDSN(nn.Module):
'''
DSN + OHEM : We need to consider two supervision for the model.
'''
def __init__(self, ignore_index=255, thres=0.7, min_kept=100000, dsn_weight=0.4, use_weight=True):
super(CriterionOhemDSN, self).__init__()
self.ignore_index = ignore_index
self.dsn_weight = dsn_weight
self.criterion = OhemCrossEntropy2d(ignore_index, thres, min_kept, use_weight=use_weight)
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds[0], size=(h, w), mode='bilinear', align_corners=False)
loss1 = self.criterion(scale_pred, target)
scale_pred = F.interpolate(input=preds[1], size=(h, w), mode='bilinear', align_corners=False)
loss2 = self.criterion(scale_pred, target)
return self.dsn_weight * loss1 + loss2
class CriterionOhemDSN_single(nn.Module):
'''
DSN + OHEM : we find that use hard-mining for both supervision harms the performance.
Thus we choose the original loss for the shallow supervision
and the hard-mining loss for the deeper supervision
'''
def __init__(self, ignore_index=255, thres=0.7, min_kept=100000, dsn_weight=0.4):
super(CriterionOhemDSN_single, self).__init__()
self.ignore_index = ignore_index
self.dsn_weight = dsn_weight
weight = torch.FloatTensor(
[0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116,
0.9037, 1.0865, 1.0955, 1.0865, 1.1529, 1.0507])
self.criterion = torch.nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
self.criterion_ohem = OhemCrossEntropy2d(ignore_index, thres, min_kept, use_weight=True)
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds[0], size=(h, w), mode='bilinear', align_corners=False)
loss1 = self.criterion(scale_pred, target)
scale_pred = F.interpolate(input=preds[1], size=(h, w), mode='bilinear', align_corners=False)
loss2 = self.criterion_ohem(scale_pred, target)
return self.dsn_weight * loss1 + loss2