-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfibonacci_kan.py
74 lines (61 loc) · 2.65 KB
/
fibonacci_kan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
from typing import List
# code modified from https://github.com/Boris-73-TA/OrthogPolyKANs
class FibonacciKANLayer(nn.Module):
def __init__(self, input_dim, output_dim, degree):
super(FibonacciKANLayer, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.degree = degree
# Initialize coefficients for the Fibonacci polynomials
self.fib_coeffs = nn.Parameter(torch.empty(input_dim, output_dim, degree + 1))
nn.init.normal_(self.fib_coeffs, mean=0.0, std=1 / (input_dim * (degree + 1)))
def forward(self, x):
x = x.view(-1, self.input_dim) # Reshape to (batch_size, input_dim)
x = torch.tanh(x) # Normalize input x to [-1, 1] for stability in polynomial calculation
# Initialize Fibonacci polynomial tensors
fib = torch.zeros(x.size(0), self.input_dim, self.degree + 1, device=x.device)
fib[:, :, 0] = 0 # F_0(x) = 0
if self.degree > 0:
fib[:, :, 1] = 1 # F_1(x) = 1
for i in range(2, self.degree + 1):
# Compute Fibonacci polynomials using the recurrence relation
fib[:, :, i] = x * fib[:, :, i - 1].clone() + fib[:, :, i - 2].clone()
# Normalize the polynomial outputs to prevent runaway values
fib = torch.tanh(fib)
# Compute the Fibonacci interpolation
y = torch.einsum('bid,iod->bo', fib, self.fib_coeffs) # shape = (batch_size, output_dim)
y = y.view(-1, self.output_dim)
return y
# Add orthogonalization ?
# To avoid gradient vanishing caused by tanh
class FibonacciKANLayerWithNorm(nn.Module):
def __init__(self, input_dim, output_dim, degree):
super(FibonacciKANLayerWithNorm, self).__init__()
self.layer = FibonacciKANLayer(input_dim=input_dim, output_dim=output_dim, degree=degree)
self.layer_norm = nn.LayerNorm(output_dim) # To avoid gradient vanishing caused by tanh
def forward(self, x):
x = self.layer(x)
x = self.layer_norm(x)
return x
class Fibonacci_KAN(nn.Module):
def __init__(
self,
layers_hidden: List[int],
degree: int = 4,
grid_size: int = 8, # placeholder
spline_order=0. # placehold
) -> None:
super().__init__()
self.layers = nn.ModuleList([
FibonacciKANLayerWithNorm(
input_dim=in_dim,
output_dim=out_dim,
degree=degree,
) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])
])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x