Skip to content

Latest commit

 

History

History
126 lines (91 loc) · 4.22 KB

README.md

File metadata and controls

126 lines (91 loc) · 4.22 KB

Pandas Audio Methods

Audio methods for pandas dataframes using soundfile.

Features:

  • Use sf.SoundFile objects in pandas dataframes
  • Call sf.SoundFile methods on a column, for example:
    • .read() / .write()
    • .truncate()
    • .seek()
  • Easy to use with librosa
  • Save dataframes with sf.SoundFile objects to Parquet
  • Process audios in parallel with Dask
  • Manipulate audio datasets from Hugging Face

Installation

pip install pandas-audio-methods

Usage

You can open audios as sf.SoundFile objects using the .open() method.

Once the audios are opened, you can call any sf.SoundFile method:

import pandas as pd
from pandas_audio_methods import SFMethods

pd.api.extensions.register_series_accessor("sf")(SFMethods)

df = pd.DataFrame({"file_path": ["path/to/audio.wav"]})
df["audio"] = df["file_path"].sf.open()
# 0    SoundFile('path/to/audio.wav', mode='r', sampl...
# Name: audio, dtype: object, soundfile methods enabled

Use with librosa:

import librosa
df["audio"] = [librosa.load(audio, sr=16_000) for audio in df["audio"]]
df["audio"] = df["audio"].sf.write()
# 0    SoundFile(<_io.BytesIO object at 0x11b747ba0>,...
# Name: audio, dtype: object, soundfile methods enabled

Here is how to enable sf methods for sf.SoundFiles created manually:

df = pd.DataFrame({"audio": [sf.SoundFile("path/to/audio.wav")]})
df["audio"] = df["audio"].sf.enable()
# 0    SoundFile('path/to/audio.wav', mode='r', sampl...
# Name: audio, dtype: object, soundfile methods enabled

Save

You can save a dataset of sf.SoundFiles to Parquet:

# Save
df = pd.DataFrame({"file_path": ["path/to/audio.wav"]})
df["audio"] = df["file_path"].sf.open()
df.to_parquet("data.parquet")

# Later
df = pd.read_parquet("data.parquet")
df["audio"] = df["audio"].sf.enable()

This doesn't just save the paths to the audio files, but the actual audios themselves !

Under the hood it saves dictionaries of {"bytes": <bytes of the audio file>, "path": <path or name of the audio file>}. The audios are saved as bytes using their audio encoding or WAV by default. Anyone can load the Parquet data even without pandas-audio-methods since it doesn't rely on extension types.

Note: if you created the sf.SoundFiles manually, don't forget to enable the sf methods to enable saving to Parquet.

Run in parallel

Dask DataFrame parallelizes pandas to handle large datasets. It enables faster local processing with multiprocessing as well as distributed large scale processing. Dask mimics the pandas API:

import dask.dataframe as dd
from distributed import Client
from pandas_audio_methods import SFMethods

dd.extensions.register_series_accessor("sf")(SFMethods)

if __name__ == "__main__":
    client = Client()
    df = dd.read_csv("path/to/large/dataset.csv")
    df = df.repartition(npartitions=1000)  # divide the processing in 1000 jobs
    df["audio"] = df["file_path"].sf.open()
    df["audio"].head(1)
    # 0    SoundFile('path/to/audio.wav', mode='r', sampl...
    # Name: audio, dtype: object, soundfile methods enabled
    df.to_parquet("data_folder")

Hugging Face support

Most audio datasets in Parquet format on Hugging Face are compatible with pandas-audio-methods. For example you can load the microset of the People's Speech dataset:

df = pd.read_parquet("hf://datasets/MLCommons/peoples_speech/microset/train-00000-of-00001.parquet")
df["audio"] = df["audio"].sf.enable()

You can also use the datasets library, here is an example on the jlvdoorn/atco2-asr dataset for automatic speech recognition:

from datasets import load_dataset

df = load_dataset("jlvdoorn/atco2-asr", split="train").to_pandas()
df["audio"] = df["audio"].sf.enable()

Datasets created with pandas-audio-methods and saved to Parquet are also compatible with the Dataset Viewer on Hugging Face and the datasets library:

df.to_parquet("hf://datasets/username/dataset_name/train.parquet")