-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_train.py
151 lines (126 loc) · 6.64 KB
/
base_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import utils.util as util
from utils.visualizer import Visualizer
import os
import numpy as np
import torch
from torch.autograd import Variable
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
if opt.debug:
opt.display_freq = 1
opt.print_freq = 1
opt.niter = 1
opt.niter_decay = 0
opt.max_dataset_size = 10
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = (start_epoch-1) * dataset_size + epoch_iter
optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
##############
with torch.autograd.set_detect_anomaly(False):
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
# losses_list, generated = model(references =Variable(data['reference_frames']),target_lmark= Variable(data['target_lmark']), \
# real_image= Variable(data['target_rgb']),dif_img= Variable(data['dif_img']), \
# mis_img= Variable(data['mis_img']), infer=save_fake)
losses, generated = model(references =Variable(data['reference_frames']),target_lmark= Variable(data['target_lmark']), \
real_image= Variable(data['target_rgb']), infer=save_fake)
# sum per device losses
# sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)
############### Backward Pass ####################
# update generator weights
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
# update discriminator weights
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
############## Display results and errors ##########
### print out errors
# print (loss_dict['D_fake'], loss_dict['D_real'], loss_dict['G_GAN'], loss_dict.get('G_GAN_Feat',0), loss_dict.get('G_VGG',0))
errors = {}
if total_steps % opt.print_freq == print_delta:
errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.print_freq
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
#call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
### display output images
tmp = []
tmp.extend([( 'reference1', util.tensor2im(data['reference_frames'][0,:3]))])
if opt.num_frames >= 4:
tmp.extend([('reference2', util.tensor2im(data['reference_frames'][0, 6:9])),
('reference3', util.tensor2im(data['reference_frames'][0, 12:15])),
('reference4', util.tensor2im(data['reference_frames'][0, 18:21]))])
tmp.extend([('target_lmark', util.tensor2im(data['target_lmark'][0])),
('synthesized_image', util.tensor2im(generated.data[0])),
('real_image', util.tensor2im(data['target_rgb'][0]))])
visuals = OrderedDict(tmp)
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
if epoch_iter >= dataset_size:
break
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()
# from options.train_options import TrainOptions
# from dataset import LRSLmark2rgbDataset
# opt = TrainOptions().parse()
# dataset = LRSLmark2rgbDataset(opt)
# sample = dataset[0]
# print (sample)