-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrainer_perceptual.py
206 lines (164 loc) · 8.79 KB
/
trainer_perceptual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import glob
import time
import torch
import torch.utils
import torch.nn as nn
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset import VaganDataset
from model_base import Generator, Discriminator
# from embedding import Encoder
from tensorboard_logger import configure, log_value
from collections import OrderedDict
from embedding import Encoder
class Trainer():
def __init__(self, config):
self.generator = Generator()
self.discriminator = Discriminator()
self.encoder = Encoder()
self.encoder.load_state_dict(torch.load('/mnt/disk1/dat/lchen63/grid/model/model_embedding/encoder_6.pth'))
for param in self.encoder.parameters():
param.requires_grad = False
print(self.generator)
print(self.discriminator)
self.l1_loss_fn = nn.L1Loss()
self.bce_loss_fn = nn.BCELoss()
self.mse_loss_fn = nn.MSELoss()
self.opt_g = torch.optim.Adam(filter(lambda p: p.requires_grad, self.generator.parameters()),
lr=config.lr, betas=(config.beta1, config.beta2))
self.opt_d = torch.optim.Adam(self.discriminator.parameters(),
lr=config.lr, betas=(config.beta1, config.beta2))
if config.dataset == 'grid':
self.dataset = VaganDataset(config.dataset_dir, train=config.is_train)
elif config.dataset == 'lrw':
self.dataset = LRWdataset(config.dataset_dir, train=config.is_train)
self.data_loader = DataLoader(self.dataset,
batch_size=config.batch_size,
num_workers=4,
shuffle=True, drop_last=True)
data_iter = iter(self.data_loader)
data_iter.next()
self.ones = Variable(torch.ones(config.batch_size), requires_grad=False)
self.zeros = Variable(torch.zeros(config.batch_size), requires_grad=False)
if config.cuda:
device_ids = [int(i) for i in config.device_ids.split(',')]
self.generator = nn.DataParallel(self.generator.cuda(), device_ids=device_ids)
self.discriminator = nn.DataParallel(self.discriminator.cuda(), device_ids=device_ids)
self.encoder = nn.DataParallel(self.encoder.cuda(), device_ids=device_ids)
self.bce_loss_fn = self.bce_loss_fn.cuda()
self.mse_loss_fn = self.mse_loss_fn.cuda()
self.l1_loss_fn = self.l1_loss_fn.cuda()
self.ones = self.ones.cuda()
self.zeros = self.zeros.cuda()
self.config = config
self.start_epoch = 0
# self.load(config.model_dir)
def fit(self):
config = self.config
configure("{}/".format(config.log_dir), flush_secs=5)
num_steps_per_epoch = len(self.data_loader)
cc = 0
for epoch in range(self.start_epoch, config.max_epochs):
for step, (example, real_im, landmarks, right_audio, wrong_audio) in enumerate(self.data_loader):
t1 = time.time()
if config.cuda:
example = Variable(example).cuda()
landmarks = Variable(landmarks).cuda()
real_im = Variable(real_im).cuda()
right_audio = Variable(right_audio).cuda()
wrong_audio = Variable(wrong_audio).cuda()
else:
example = Variable(example)
landmarks = Variable(landmarks)
real_im = Variable(real_im)
right_audio = Variable(right_audio)
wrong_audio = Variable(wrong_audio)
fake_im = self.generator(example, right_audio)
# Train the discriminator
D_real = self.discriminator(real_im, right_audio)
D_wrong = self.discriminator(real_im, wrong_audio)
D_fake = self.discriminator(fake_im.detach(), right_audio)
loss_real = self.bce_loss_fn(D_real, self.ones)
loss_wrong = self.bce_loss_fn(D_wrong, self.zeros)
loss_fake = self.bce_loss_fn(D_fake, self.zeros)
loss_disc = loss_real + 0.5*(loss_fake + loss_wrong)
loss_disc.backward()
self.opt_d.step()
self._reset_gradients()
# Train the generator
# noise = Variable(torch.randn(config.batch_size, config.noise_size))
# noise = noise.cuda() if config.cuda else noise
fake_im = self.generator(example, right_audio)
fea_r = self.encoder(real_im)[1]
fea_f = self.encoder(fake_im)[1]
D_fake = self.discriminator(fake_im, right_audio)
############gan loss###################
loss_gen1 = self.bce_loss_fn(D_fake, self.ones)
#######gradient loss##############
# f_gra_x = torch.abs(fake_im[:,:,:,:-1,:] - fake_im[:,:,:,1:,:])
# f_gra_y = torch.abs(fake_im[:,:,:,:,:-1] - fake_im[:,:,:,:,1:])
# r_gra_x = torch.abs(real_im[:,:,:,:-1,:] - real_im[:,:,:,1:,:])
# r_gra_y = torch.abs(real_im[:,:,:,:,:-1] - real_im[:,:,:,:,1:])
# loss_grad_x = self.l1_loss_fn(f_gra_x,r_gra_x)
# loss_grad_y = self.l1_loss_fn(f_gra_y, r_gra_y)
######perceptual loss ##############
loss_perceptual = self.mse_loss_fn(fea_f, fea_r)
loss_gen = loss_gen1 + loss_perceptual
loss_gen.backward()
self.opt_g.step()
self._reset_gradients()
t2 = time.time()
if (step+1) % 1 == 0 or (step+1) == num_steps_per_epoch:
steps_remain = num_steps_per_epoch-step+1 + \
(config.max_epochs-epoch+1)*num_steps_per_epoch
eta = int((t2-t1)*steps_remain)
print("[{}/{}][{}/{}] Loss_D: {:.4f} Loss_G: {:.4f}, loss_perceptual: {: .4f}, ETA: {} second"
.format(epoch+1, config.max_epochs,
step+1, num_steps_per_epoch,
loss_disc.data[0], loss_gen1.data[0], loss_perceptual.data[0], eta))
log_value('discriminator_loss',loss_disc.data[0] , step + num_steps_per_epoch * epoch)
log_value('generator_loss',loss_gen1.data[0] , step + num_steps_per_epoch * epoch)
log_value('perceptual_loss',0.5 * loss_perceptual.data[0] , step + num_steps_per_epoch * epoch)
if (step ) % (num_steps_per_epoch/3) == 0 :
fake_store = fake_im.data.permute(0,2,1,3,4).contiguous().view(config.batch_size*16,3,64,64)
torchvision.utils.save_image(fake_store,
"{}fake_{}.png".format(config.sample_dir,cc), nrow=16,normalize=True)
real_store = real_im.data.permute(0,2,1,3,4).contiguous().view(config.batch_size*16,3,64,64)
torchvision.utils.save_image(real_store,
"{}real_{}.png".format(config.sample_dir,cc), nrow=16,normalize=True)
cc += 1
if epoch % 1 == 0:
torch.save(self.generator.state_dict(),
"{}/generator_{}.pth"
.format(config.model_dir,epoch))
torch.save(self.discriminator.state_dict(),
"{}/discriminator_{}.pth"
.format(config.model_dir, epoch))
def load(self, directory):
paths = glob.glob(os.path.join(directory, "*.pth"))
gen_path = [path for path in paths if "generator" in path][0]
disc_path = [path for path in paths if "discriminator" in path][0]
# gen_state_dict = torch.load(gen_path)
# new_gen_state_dict = OrderedDict()
# for k, v in gen_state_dict.items():
# name = 'model.' + k
# new_gen_state_dict[name] = v
# # load params
# self.generator.load_state_dict(new_gen_state_dict)
# disc_state_dict = torch.load(disc_path)
# new_disc_state_dict = OrderedDict()
# for k, v in disc_state_dict.items():
# name = 'model.' + k
# new_disc_state_dict[name] = v
# # load params
# self.discriminator.load_state_dict(new_disc_state_dict)
self.generator.load_state_dict(torch.load(gen_path))
self.discriminator.load_state_dict(torch.load(disc_path))
self.start_epoch = int(gen_path.split(".")[0].split("_")[-1])
print("Load pretrained [{}, {}]".format(gen_path, disc_path))
def _reset_gradients(self):
self.generator.zero_grad()
self.discriminator.zero_grad()
self.encoder.zero_grad()