-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrainer_model_vgg.py
122 lines (98 loc) · 5 KB
/
trainer_model_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import glob
import time
import numpy as np
import torch
import torch.utils
import torch.nn as nn
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset import VaganDataset,LRWdataset
from model_vgg import Generator
from tensorboard_logger import configure, log_value
class Trainer():
def __init__(self, config):
self.generator = Generator()
print(self.generator)
self.l1_loss_fn = nn.L1Loss()
# self.l1_loss_fn = nn.MSELoss()
self.opt_g = torch.optim.Adam(self.generator.parameters(),
lr=config.lr, betas=(config.beta1, config.beta2))
if config.dataset == 'grid':
self.dataset = VaganDataset(config.dataset_dir, train=config.is_train)
elif config.dataset == 'lrw':
self.dataset = LRWdataset(config.dataset_dir, train=config.is_train)
self.data_loader = DataLoader(self.dataset,
batch_size=config.batch_size,
num_workers=12,
shuffle=True, drop_last=True)
data_iter = iter(self.data_loader)
data_iter.next()
self.ones = Variable(torch.ones(config.batch_size), requires_grad=False)
self.zeros = Variable(torch.zeros(config.batch_size), requires_grad=False)
if config.cuda:
device_ids = [int(i) for i in config.device_ids.split(',')]
self.generator = nn.DataParallel(self.generator.cuda(), device_ids=device_ids)
self.l1_loss_fn = self.l1_loss_fn.cuda()
self.ones = self.ones.cuda()
self.zeros = self.zeros.cuda()
self.config = config
self.start_epoch = 0
def fit(self):
config = self.config
configure("{}/".format(config.log_dir), flush_secs=5)
num_steps_per_epoch = len(self.data_loader)
cc = 0
for epoch in range(self.start_epoch, config.max_epochs):
for step, (example, real_im, landmarks, right_audio, wrong_audio) in enumerate(self.data_loader):
t1 = time.time()
if config.cuda:
example = Variable(example).cuda()
landmarks = Variable(landmarks).cuda()
real_im = Variable(real_im).cuda()
right_audio = Variable(right_audio).cuda()
wrong_audio = Variable(wrong_audio).cuda()
else:
example = Variable(example)
landmarks = Variable(landmarks)
real_im = Variable(real_im)
right_audio = Variable(right_audio)
wrong_audio = Variable(wrong_audio)
# generate fake image
# noise = Variable(torch.randn(config.batch_size, config.noise_size))
# noise = noise.cuda() if config.cuda else noise
fake_im = self.generator(example, right_audio)
loss_gen = self.l1_loss_fn(fake_im,real_im)
loss_gen.backward()
self.opt_g.step()
self._reset_gradients()
t2 = time.time()
if (step+1) % 1 == 0 or (step+1) == num_steps_per_epoch:
steps_remain = num_steps_per_epoch-step+1 + \
(config.max_epochs-epoch+1)*num_steps_per_epoch
eta = int((t2-t1)*steps_remain)
print("[{}/{}][{}/{}] Loss_G: {:.4f} , ETA: {} second"
.format(epoch+1, config.max_epochs,
step+1, num_steps_per_epoch, loss_gen.data[0], eta))
log_value('generator_loss',loss_gen.data[0] , step + num_steps_per_epoch * epoch)
if (step ) % (num_steps_per_epoch/3) == 0 :
fake_store = fake_im.data.permute(0,2,1,3,4).contiguous().view(config.batch_size*16,3,64,64)
torchvision.utils.save_image(fake_store,
"{}fake_{}.png".format(config.sample_dir,cc), nrow=16,normalize=True)
real_store = real_im.data.permute(0,2,1,3,4).contiguous().view(config.batch_size*16,3,64,64)
torchvision.utils.save_image(real_store,
"{}real_{}.png".format(config.sample_dir,cc), nrow=16,normalize=True)
cc += 1
if epoch % 1 == 0:
torch.save(self.generator.state_dict(),
"{}/generator_{}.pth"
.format(config.model_dir,epoch))
def load(self, directory):
paths = glob.glob(os.path.join(directory, "*.pth"))
gen_path = [path for path in paths if "generator" in path][0]
self.generator.load_state_dict(torch.load(gen_path))
self.start_epoch = int(gen_path.split(".")[0].split("_")[-1])
print("Load pretrained [{}, {},{}]".format(gen_path, disc_path,diff_path))
def _reset_gradients(self):
self.generator.zero_grad()