-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_compressai.py
346 lines (292 loc) · 11.1 KB
/
train_compressai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Training script is taken from CompressAI repository and slightly modified for handling grayscale images + MS-SSIM loss.
# Copyright (c) 2021-2022, InterDigital Communications, Inc
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import random
import shutil
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from compressai.datasets import ImageFolder
from compressai.losses import RateDistortionLoss
from compressai.optimizers import net_aux_optimizer
from compressai.zoo import image_models
from PIL import Image
import models_compressai
class AverageMeter:
"""Compute running average."""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class CustomDataParallel(nn.DataParallel):
"""Custom DataParallel to access the module methods."""
def __getattr__(self, key):
try:
return super().__getattr__(key)
except AttributeError:
return getattr(self.module, key)
def configure_optimizers(net, args):
"""Separate parameters for the main optimizer and the auxiliary optimizer.
Return two optimizers"""
conf = {
"net": {"type": "Adam", "lr": args.learning_rate},
"aux": {"type": "Adam", "lr": args.aux_learning_rate},
}
optimizer = net_aux_optimizer(net, conf)
return optimizer["net"], optimizer["aux"]
def train_one_epoch(
model, criterion, train_dataloader, optimizer, aux_optimizer, epoch, clip_max_norm
):
model.train()
device = next(model.parameters()).device
for i, d in enumerate(train_dataloader):
d = d.to(device)
optimizer.zero_grad()
aux_optimizer.zero_grad()
out_net = model(d)
out_criterion = criterion(out_net, d)
out_criterion["loss"].backward()
if clip_max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_max_norm)
optimizer.step()
aux_loss = model.aux_loss()
aux_loss.backward()
aux_optimizer.step()
# if i % (len(train_dataloader) // 4) == 0:
# print(
# f"Train epoch {epoch}: ["
# f"{i*len(d)}/{len(train_dataloader.dataset)}"
# f" ({100. * i / len(train_dataloader):.0f}%)]"
# f'\tLoss: {out_criterion["loss"].item():.3f} |'
# f'\tMS-SSIM loss: {out_criterion["ms_ssim_loss"].item():.3f} |'
# f'\tBpp loss: {out_criterion["bpp_loss"].item():.2f} |'
# f"\tAux loss: {aux_loss.item():.2f}"
# )
def test_epoch(epoch, test_dataloader, model, criterion, args):
model.eval()
device = next(model.parameters()).device
loss = AverageMeter()
bpp_loss = AverageMeter()
mse_loss = AverageMeter()
aux_loss = AverageMeter()
with torch.no_grad():
for d in test_dataloader:
d = d.to(device)
out_net = model(d)
out_criterion = criterion(out_net, d)
aux_loss.update(model.aux_loss())
bpp_loss.update(out_criterion["bpp_loss"])
loss.update(out_criterion["loss"])
mse_loss.update(out_criterion[f"{args.dist_metric}_loss"])
print(
f"Test epoch {epoch}: Average losses:"
f"\tLoss: {loss.avg:.4f} |"
f"\tDistort loss: {mse_loss.avg:.4f} |"
f"\tBpp loss: {bpp_loss.avg:.4f} |"
f"\tAux loss: {aux_loss.avg:.4f}\n"
)
return loss.avg
def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, f"{filename[:-3]}_best.pt")
def parse_args(argv):
parser = argparse.ArgumentParser(description="Example training script.")
parser.add_argument(
"-m",
"--model",
default="bmshj2018-factorized",
choices=image_models.keys(),
help="Model architecture (default: %(default)s)",
)
parser.add_argument(
"-d", "--dataset", type=str, required=True, help="Training dataset"
)
parser.add_argument(
"-e",
"--epochs",
default=100,
type=int,
help="Number of epochs (default: %(default)s)",
)
parser.add_argument(
"-lr",
"--learning-rate",
default=1e-4,
type=float,
help="Learning rate (default: %(default)s)",
)
parser.add_argument(
"-n",
"--num-workers",
type=int,
default=4,
help="Dataloaders threads (default: %(default)s)",
)
parser.add_argument(
"--lambda",
dest="lmbda",
type=float,
default=1e-2,
help="Bit-rate distortion parameter (default: %(default)s)",
)
parser.add_argument(
"--dist_metric",
dest="dist_metric",
type=str,
default="mse",
help="Either mse or ms-ssim (default: %(default)s)"
)
parser.add_argument(
"--batch-size", type=int, default=16, help="Batch size (default: %(default)s)"
)
parser.add_argument(
"--test-batch-size",
type=int,
default=64,
help="Test batch size (default: %(default)s)",
)
parser.add_argument(
"--aux-learning-rate",
type=float,
default=1e-3,
help="Auxiliary loss learning rate (default: %(default)s)",
)
parser.add_argument(
"--patch-size",
type=int,
nargs=2,
default=(256, 256),
help="Size of the patches to be cropped (default: %(default)s)",
)
parser.add_argument("--cuda", action="store_true", help="Use cuda")
parser.add_argument("--use_data_parallel", action="store_true", help="Use data parallel (requires multiple GPUs)")
parser.add_argument(
"--save", action="store_true", default=True, help="Save model to disk"
)
parser.add_argument("--seed", type=int, help="Set random seed for reproducibility")
parser.add_argument(
"--clip_max_norm",
default=1.0,
type=float,
help="gradient clipping max norm (default: %(default)s",
)
parser.add_argument("--checkpoint", type=str, help="Path to a checkpoint")
args = parser.parse_args(argv)
return args
def main(argv):
args = parse_args(argv)
if args.seed is not None:
torch.manual_seed(args.seed)
random.seed(args.seed)
train_transforms = transforms.Compose(
[
transforms.RandomCrop(args.patch_size),
transforms.Grayscale(),
transforms.ToTensor()
]
)
test_transforms = transforms.Compose(
[
transforms.CenterCrop(args.patch_size),
transforms.Grayscale(),
transforms.ToTensor()]
)
train_dataset = ImageFolder(args.dataset, split="train", transform=train_transforms)
test_dataset = ImageFolder(args.dataset, split="test", transform=test_transforms)
device = "cuda" if args.cuda and torch.cuda.is_available() else "cpu"
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=(device == "cuda"),
)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.test_batch_size,
num_workers=args.num_workers,
shuffle=False,
pin_memory=(device == "cuda"),
)
# net = image_models[args.model](quality=3)
args_ntc = argparse.Namespace()
args_ntc.model_name = 'Cheng2020AttentionFull'
args_ntc.orig_channels = 1 # since HED sketches are grayscale
net = models_compressai.get_models(args_ntc)
net = net.to(device)
if args.cuda and args.use_data_parallel and torch.cuda.device_count() > 1:
net = CustomDataParallel(net)
optimizer, aux_optimizer = configure_optimizers(net, args)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min")
criterion = RateDistortionLoss(lmbda=args.lmbda, metric=args.dist_metric)
args.dist_metric = "ms_ssim" if args.dist_metric == "ms-ssim" else args.dist_metric
last_epoch = 0
if args.checkpoint: # load from previous checkpoint
print("Loading", args.checkpoint)
checkpoint = torch.load(args.checkpoint, map_location=device)
last_epoch = checkpoint["epoch"] + 1
net.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
aux_optimizer.load_state_dict(checkpoint["aux_optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
best_loss = float("inf")
for epoch in range(last_epoch, args.epochs):
print(f"Learning rate: {optimizer.param_groups[0]['lr']}")
train_one_epoch(
net,
criterion,
train_dataloader,
optimizer,
aux_optimizer,
epoch,
args.clip_max_norm,
)
loss = test_epoch(epoch, test_dataloader, net, criterion, args)
lr_scheduler.step(loss)
is_best = loss < best_loss
best_loss = min(loss, best_loss)
if args.save:
save_dir = f"models_ntc/"
os.makedirs(save_dir, exist_ok=True)
save_checkpoint(
net.state_dict(),
is_best,
filename=f"{save_dir}/{args_ntc.model_name}_CLIC_HED_{args.dist_metric}_lmbda{args.lmbda}.pt"
)
if __name__ == "__main__":
main(sys.argv[1:])