-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_PIC.py
184 lines (155 loc) · 6.41 KB
/
eval_PIC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from dataloaders import CLIC, Kodak
import matplotlib.pyplot as plt
import numpy as np
import math
from annotator.hed import HEDdetector
from annotator.util import HWC3, resize_image
import tqdm
import pathlib
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
import prompt_inversion.optim_utils as prompt_inv
import prompt_inversion.open_clip as open_clip
import dataloaders
from PIL import Image
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode, to_pil_image, adjust_sharpness, to_tensor
import yaml
import sys, zlib
from argparse import ArgumentParser, Namespace
# import lpips
def get_loss(args):
# if args.loss == 'lpips':
# return lpips.LPIPS(net='alex')
if args.loss == 'clip':
args_clip = Namespace()
args_clip.__dict__.update(prompt_inv.read_json("prompt_inversion/sample_config.json"))
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(args_clip.clip_model, pretrained=args_clip.clip_pretrain, device='cuda:0')
return lambda x, xhat: 1 - prompt_inv.clip_cosine(x, xhat, clip_model, clip_preprocess, 'cuda:0')
else:
sys.exit('Not a valid loss')
prompt_pos = 'high quality'
prompt_neg = 'disfigured, deformed, low quality, lowres, b&w, blurry, Photoshop, video game, bad art'
def encode_rcc(model, clip, preprocess, im, N=5, i=0):
"""
Generates canny map and caption of image.
Then uses ControlNet to generate codebook, and select minimum distortion index.
Inputs:
model: ControlNet model
clip: CLIP model
im: image to compress
N: number of candidates to generate
Outputs:
canny_map: np.array containing canny edge map
caption: text string containing caption
idx: index selected
seed: random seed used
"""
# Optionally load saved captions (for consistency)
# if i > 0:
# with open(f'recon_examples/SD_pi+hed_lpips_sketch0.5/DIV2K_recon/{i}_caption.yaml', 'r') as file:
# caption_dict = yaml.safe_load(file)
# caption = caption_dict['caption']
# else:
caption = prompt_inv.optimize_prompt(clip, preprocess, args_clip, 'cuda:0', target_images=[Image.fromarray(im)])
guidance_scale = 9
num_inference_steps = 25
images = model(
f'{caption}, {prompt_pos}',
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(N)],
num_images_per_prompt=N,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=im.shape[0],
width=im.shape[1],
negative_prompt=prompt_neg,
).images
loss = loss_func([Image.fromarray(im)]*N, images).squeeze()
idx = torch.argmin(loss)
return caption, idx
def recon_rcc(model, prompt, idx, N=5):
"""
Takes canny map and caption to generate codebook.
Outputs codebook[idx], where idx is selected from encoder.
Inputs:
"""
# decode image
guidance_scale = 9
num_inference_steps = 25
# n_batches = N // 8 + 1
# images = []
# for b in range(n_batches):
images = model(
f'{prompt}, {prompt_pos}',
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(N)],
num_images_per_prompt=N,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=im.shape[0],
width=im.shape[1],
negative_prompt=prompt_neg,
).images
return images[idx]
def ntc_preprocess(image):
transform = transforms.Compose(
[transforms.ToTensor()]
)
image = transform(image)
return image
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--N', default=4, type=int)
parser.add_argument('--dataset', default='CLIC2020', type=str)
parser.add_argument('--data_root', default='/home/Shared/image_datasets', type=str)
parser.add_argument('--loss', default='clip', type=str)
args = parser.parse_args()
dm = dataloaders.get_dataloader(args)
# Load Stable Diffusion
model_id = "stabilityai/stable-diffusion-2-1-base"
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
model = StableDiffusionPipeline.from_pretrained(
model_id,
scheduler=scheduler,
torch_dtype=torch.float16,
revision="fp16",
)
model = model.to('cuda:0')
model.enable_xformers_memory_efficient_attention()
# model.enable_attention_slicing()
# Load loss
loss_func = get_loss(args)
# Make savedir
save_dir = f'recon_examples/PIC_{args.loss}/{args.dataset}_recon'
pathlib.Path(save_dir).mkdir(parents=True, exist_ok=True)
# Load CLIP
args_clip = Namespace()
args_clip.__dict__.update(prompt_inv.read_json("prompt_inversion/sample_config.json"))
clip, _, clip_preprocess = open_clip.create_model_and_transforms(args_clip.clip_model, pretrained=args_clip.clip_pretrain, device='cuda:0')
for i, x in tqdm.tqdm(enumerate(dm.test_dset), total=len(dm.test_dset)):
x = x[0]
x_im = (255*x.permute(1,2,0)).numpy().astype(np.uint8)
im = resize_image(HWC3(x_im), 512)
# caption, idx = encode_rcc(model, clip, clip_preprocess, im, args.N)
caption, idx = encode_rcc(model, clip, clip_preprocess, im, args.N, i)
xhat = recon_rcc(model, caption, idx, args.N)
im_orig = Image.fromarray(im)
# im_orig.save(f'{save_dir}/{i}_gt.png')
# for j, im_recon in enumerate(xhat):
# im_recon.save(f'{save_dir}/{i}_recon_{j}.png')
# im_recon = Image.fromarray(xhat)
xhat.save(f'{save_dir}/{i}_recon.png')
# im_sketch = Image.fromarray(sketch)
# im_sketch = to_pil_image(sketch[0])
# im_sketch.save(f'{save_dir}/{i}_sketch.png')
# im_sketch_recon = Image.fromarray(sketch_recon)
# im_sketch_recon.save(f'{save_dir}/{i}_sketch_recon.png')
# Compute rates
bpp_caption = sys.getsizeof(zlib.compress(caption.encode()))*8 / (im_orig.size[0]*im_orig.size[1])
compressed = {'caption': caption,
'bpp_caption' : bpp_caption,
'bpp_total' : bpp_caption + math.log2(args.N) / (im_orig.size[0]*im_orig.size[1])
}
with open(f'{save_dir}/{i}_caption.yaml', 'w') as file:
yaml.dump(compressed, file)
# file.write(caption)