From aa42b3a429fe035dd79fb500d0fa30bfac79adfd Mon Sep 17 00:00:00 2001 From: Thmoas-Guan <150537269+Thmoas-Guan@users.noreply.github.com> Date: Mon, 17 Feb 2025 22:12:20 +0800 Subject: [PATCH] Revert "fix proof" This reverts commit c355b1ab91802571b4ddcc27509a2034548477a8. --- .../RingTheory/AdicCompletion/Algebra.lean | 23 ++++++++----------- 1 file changed, 10 insertions(+), 13 deletions(-) diff --git a/Mathlib/RingTheory/AdicCompletion/Algebra.lean b/Mathlib/RingTheory/AdicCompletion/Algebra.lean index 93740b0d08f3b..ce3c98af2351c 100644 --- a/Mathlib/RingTheory/AdicCompletion/Algebra.lean +++ b/Mathlib/RingTheory/AdicCompletion/Algebra.lean @@ -60,19 +60,18 @@ def transitionMapₐ {m n : ℕ} (hmn : m ≤ n) : /-- `AdicCompletion I R` is an `R`-subalgebra of `∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)`. -/ def subalgebra : Subalgebra R (∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)) := - Submodule.toSubalgebra (submodule I R) (fun _ ↦ by simp [transitionMap_map_one I]) - (fun x y hx hy m n hmn ↦ by simp [hx hmn, hy hmn, transitionMap_map_mul I hmn]) + Submodule.toSubalgebra (submodule I R) (fun _ ↦ by simp) + (fun x y hx hy m n hmn ↦ by simp [hx hmn, hy hmn]) /-- `AdicCompletion I R` is a subring of `∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)`. -/ def subring : Subring (∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)) := Subalgebra.toSubring (subalgebra I) instance : Mul (AdicCompletion I R) where - mul x y := ⟨x.val * y.val, fun hmn ↦ by - simp [x.property, y.property, transitionMap_map_mul I hmn]⟩ + mul x y := ⟨x.val * y.val, by simp [x.property, y.property]⟩ instance : One (AdicCompletion I R) where - one := ⟨1, by simp [transitionMap_map_one I]⟩ + one := ⟨1, by simp⟩ instance : NatCast (AdicCompletion I R) where natCast n := ⟨n, fun _ ↦ rfl⟩ @@ -81,7 +80,7 @@ instance : IntCast (AdicCompletion I R) where intCast n := ⟨n, fun _ ↦ rfl⟩ instance : Pow (AdicCompletion I R) ℕ where - pow x n := ⟨x.val ^ n, fun hmn ↦ by simp [x.property, transitionMap_map_pow I hmn]⟩ + pow x n := ⟨x.val ^ n, fun _ ↦ by simp [x.property]⟩ instance : CommRing (AdicCompletion I R) := let f : AdicCompletion I R → ∀ n, R ⧸ (I ^ n • ⊤ : Ideal R) := Subtype.val @@ -91,11 +90,9 @@ instance : CommRing (AdicCompletion I R) := instance [Algebra S R] : Algebra S (AdicCompletion I R) where algebraMap := - { toFun r := ⟨algebraMap S (∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)) r, fun hmn ↦ by - simp only [Pi.algebraMap_apply, - IsScalarTower.algebraMap_apply S R (R ⧸ (I ^ _ • ⊤ : Ideal R)), - Ideal.Quotient.algebraMap_eq, mapQ_eq_factor] - rfl⟩ + { toFun r := ⟨algebraMap S (∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)) r, by + simp [-Ideal.Quotient.mk_algebraMap, + IsScalarTower.algebraMap_apply S R (R ⧸ (I ^ _ • ⊤ : Ideal R))]⟩ map_one' := Subtype.ext <| map_one _ map_mul' x y := Subtype.ext <| map_mul _ x y map_zero' := Subtype.ext <| map_zero _ @@ -242,8 +239,8 @@ instance smul : SMul (AdicCompletion I R) (AdicCompletion I M) where property := fun {m n} hmn ↦ by apply induction_on I R r (fun r ↦ ?_) apply induction_on I M x (fun x ↦ ?_) - simp only [coe_eval, mapQ_eq_factor, mk_apply_coe, mkQ_apply, Ideal.Quotient.mk_eq_mk, - mk_smul_mk, map_smul, mapQ_apply, LinearMap.id_coe, id_eq] + simp only [coe_eval, mk_apply_coe, mkQ_apply, Ideal.Quotient.mk_eq_mk, + mk_smul_mk, LinearMapClass.map_smul, mapQPow_mk] rw [smul_mk I hmn] }